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The intracellular bacterial pathogen Coxiella burnetii directs biogenesis of a parasitophorous vacuole (PV) that acquires host
endolysosomal components. Formation of a PV that supports C. burnetii replication requires a Dot/Icm type 4B secretion sys-
tem (T4BSS) that delivers bacterial effector proteins into the host cell cytosol. Thus, a subset of T4BSS effectors are presumed to
direct PV biogenesis. Recently, the PV-localized effector protein CvpA was found to promote C. burnetii intracellular growth
and PV expansion. We predict additional C. burnetii effectors localize to the PV membrane and regulate eukaryotic vesicle traf-
ficking events that promote pathogen growth. To identify these vacuolar effector proteins, a list of predicted C. burnetii T4BSS
substrates was compiled using bioinformatic criteria, such as the presence of eukaryote-like coiled-coil domains. Adenylate cy-
clase translocation assays revealed 13 proteins were secreted in a Dot/Icm-dependent fashion by C. burnetii during infection of
human THP-1 macrophages. Four of the Dot/Icm substrates, termed Coxiella vacuolar protein B (CvpB), CvpC, CvpD, and
CvpE, labeled the PV membrane and LAMP1-positive vesicles when ectopically expressed as fluorescently tagged fusion proteins.
C. burnetii �cvpB, �cvpC, �cvpD, and �cvpE mutants exhibited significant defects in intracellular replication and PV forma-
tion. Genetic complementation of the �cvpD and �cvpE mutants rescued intracellular growth and PV generation, whereas the
growth of C. burnetii �cvpB and �cvpC was rescued upon cohabitation with wild-type bacteria in a common PV. Collectively,
these data indicate C. burnetii encodes multiple effector proteins that target the PV membrane and benefit pathogen replication
in human macrophages.

Coxiella burnetii is an intracellular pathogen and the etiological
agent of human Q fever. This highly infectious Gram-negative

bacterium is capable of colonizing mammalian, avian, and arthro-
pod host organisms (1). The pathogen is shed in high numbers by
infected livestock and easily disseminated via aerosols (1). C. bur-
netii exhibits a biphasic developmental cycle in which the bacte-
rium transitions between small cell variant (SCV) and large cell
variant (LCV) forms (2–4). SCVs are 0.2 to 0.5 �m in size with
densely packed chromatin and low metabolic activity. Once inter-
nalized within a host cell, SCVs differentiate into replicative LCVs
of �1 �m in size with dispersed chromatin. The compact struc-
ture of SCVs correlates with resistance to osmotic stress, sonic
disruption, and high pressure (3, 5). Therefore, the SCV is pre-
sumed to be the environmentally stable form of C. burnetii that
facilitates disease transmission (3).

Successful intracellular replication of C. burnetii in mononu-
clear phagocytes, such as alveolar macrophages, is required for
development of human Q fever, a disease that typically manifests
as an acute flu-like illness (6). C. burnetii replicates within a spe-
cialized parasitophorous vacuole (PV) with characteristics of a
phagolysosome (6). After internalization by a host cell, C. burnetii
is sequestered within a nascent phagosome that traffics canoni-
cally through the endolysosomal system to ultimately acquire late
endosomal and lysosomal markers such as Rab7, lysosome-asso-
ciated membrane protein 1 (LAMP1), and cathepsin D (7). PV
acquisition of acid hydrolases correlates with pronounced degra-
dative activity that C. burnetii, by unknown mechanisms, is able to
resist (7). In response to vacuole acidification, C. burnetii becomes
metabolically active, resulting in the synthesis of bacterial pro-
teins required for PV maturation (8, 9). PV biogenesis involves

fusion of the vacuole with vesicles originating from endocytic,
autophagic, and secretory pathways through processes regu-
lated by multiple host factors, including Rab GTPases and sol-
uble N-ethylmaleimide-sensitive factor attachment protein re-
ceptors (SNAREs) (10–15).

Translocation by C. burnetii of proteins directly into the host
cell cytosol by a specialized type 4B secretion system (T4BSS) is
required for PV formation (16–18). The C. burnetii T4BSS is ho-
mologous to the virulence-associated T4BSS of Legionella pneu-
mophila, encoded by defect in organelle trafficking (dot) and
intracellular replication (icm) genes (19). C. burnetii strains har-
boring Himar1 transposon (Tn) insertions in icmL or icmD (16,
17), or deletions in dotA or dotB (20), fail to secrete effector pro-
teins and have severe defects in intracellular growth. Interestingly,
a C. burnetii icmD::Tn mutant can replicate intracellularly if se-
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questered in a vacuole with wild-type C. burnetii that provide
Dot/Icm functions in trans (16). Collectively, these data confirm
that Dot/Icm T4BSS function is essential for the productive infec-
tion by C. burnetii.

Based on similar function of L. pneumophila and C. burnetii
Dot/Icm T4BSSs, investigators have extensively used L. pneumo-
phila to screen candidate C. burnetii effectors for Dot/Icm-depen-
dent secretion using either adenylate cyclase (CyaA) or �-lacta-
mase (BlaM) translocation assays (17, 18, 21–25). C. burnetii
proteins are typically selected as candidate effectors using bioin-
formatic criteria that include the presence of eukaryote-like motifs
(21, 23, 24), a C terminus enriched in acidic residues (22, 25–27),
and/or a PmrA regulatory element upstream of the encoding gene
promoter (21, 25, 28). Screening of candidate effectors has re-
sulted in the identification of approximately 130 C. burnetii pro-
teins that are secreted in a Dot/Icm-dependent fashion (17, 18,
21–25, 29). Recently, several groups have used new genetic tools to
express proteins in C. burnetii and validate that substrates recog-
nized by the L. pneumophila Dot/Icm system are also exported
during C. burnetii infection of host cells, including six Dot/Icm
substrates encoded by the QpH1 cryptic plasmid (18) and 21 sub-
strates encoded by chromosomal genes (14, 17, 21, 25).

C. burnetii Dot/Icm effectors are predicted to remodel host
endomembrane compartments for generation of the replication-
permissive PV, but information is lacking on specific effector
functions that promote this process. However, inactivation of C.
burnetii genes is now possible, allowing direct assessment of effec-
tor requirements during C. burnetii infection of mammalian cells.
From a Himar1 Tn mutant library, Weber et al. (25) identified 20
C. burnetii mutants where a Tn insertion disrupts a gene encoding
a known T4BSS substrate. Five of these mutants exhibit impaired
growth in J774A.1 mouse macrophages and, consequently, the
affected genes are named cir genes for Coxiella effectors for intra-
cellular replication. Martinez et al. (30) recently identified 12 C.
burnetii Himar1 Tn mutants with significant growth defects in
Vero epithelial cells where the Tn insertion disrupts a gene
encoding a known Dot/Icm substrate. The functions of these
Tn-disrupted effector-encoding genes are currently unknown
(25, 30).

Recently, we functionally characterized a new T4BSS effector
protein, termed CvpA for Coxiella vacuolar protein A, that was
identified based on the presence of a eukaryote-like leucine-rich
repeat and multiple endocytic sorting motifs (14). CvpA localizes
to the PV membrane when ectopically expressed as a fusion to
mCherry red fluorescent protein. A C. burnetii �cvpA mutant dis-
plays severe defects in intracellular replication and PV biogenesis
that are rescuable by genetic complementation. In uninfected
cells, mCherry-CvpA labels the membrane of endocytic recycling
vesicles, an interaction mediated by the multiple endocytic sorting
motifs within CvpA that bind the heterotetrameric clathrin adap-
tor protein complex 2 (AP2) (14, 31). Depletion of cellular AP2 or
clathrin with small interfering RNA significantly inhibits C. bur-
netii replication. In addition, a mutated form of CvpA lacking
endocytic motifs does not rescue growth of the �cvpA mutant.
Collectively, these data suggest CvpA modulates clathrin-medi-
ated vesicle transport events on the PV membrane that promote
vacuole biogenesis (14). We predict additional C. burnetii effec-
tors on the PV membrane regulate vesicle fusion events required
for vacuole maturation and pathogen growth.

In the present study, bioinformatic criteria were used to com-

pile a list of candidate C. burnetii T4BSS substrates that were then
screened for Dot/Icm-dependent translocation during C. burnetii
infection of mammalian cells. To gain insight into potential effec-
tor functions, confirmed T4BSS substrates were ectopically ex-
pressed in eukaryotic cells to identify those that traffic to the PV
membrane. Four effectors localized to the PV in Coxiella-infected
cells, and strains harboring targeted deletions in the encoding
genes of each effector displayed significant defects in intracellular
replication and PV formation. These results indicate multiple C.
burnetii Dot/Icm effectors localize to the PV membrane that pro-
mote C. burnetii replication. Importantly, these findings are based
on assessments of Dot/Icm substrate recognition and effector
function performed directly within C. burnetii.

MATERIALS AND METHODS
Bacterial and mammalian cell culture. C. burnetii Nine Mile RSA439
(phase II, clone 4) was cultivated axenically in ACCM-2 as previously
described (32). HeLa (CCL-2; American Type Culture Collection
[ATCC]) human cervical epithelial cells were cultured in Dulbecco mod-
ified Eagle medium (Invitrogen, Carlsbad, CA) containing 10% fetal bo-
vine serum (FBS) (Invitrogen) at 37°C and 5% CO2. THP-1 (TIB-202;
ATCC) human monocytic leukemia cells and Vero (CCL-81; ATCC) Af-
rican green monkey kidney cells were maintained in RPMI 1640 medium
(Invitrogen) containing 10% FBS at 37°C and 5% CO2. THP-1 monocytes
were differentiated into macrophage-like cells by overnight treatment
with 200 nM phorbol-12-myristate-13-acetate (PMA) and then washed
twice with phosphate-buffered saline (PBS; 1.05 mM KH2PO4, 155 mM
NaCl, 2.96 mM Na2HPO4 [pH 7.2]) prior to infection.

Construction of plasmids for C. burnetii transformation. The bac-
terial strains and plasmids utilized in the present study are listed in Table
S1 in the supplemental material, and the primers used in plasmid con-
struction are listed in Table S2 in the supplemental material. C. burnetii
genes were amplified with Accuprime Pfx DNA polymerase (Invitrogen)
from genomic DNA extracted from the Nine Mile (RSA439), Dugway
(5J108-111), and K (Q154) strains of C. burnetii using gene-specific prim-
ers (Integrated DNA Technologies, Coralville, IA). For the construction
of plasmids used in targeted deletion of C. burnetii genes, the 5= and 3=
flanking sequences of cbu0021, cbu1556, cbu1818, and cbu1863 were PCR
amplified using the respective primer pairs listed in Table S2 in the sup-
plemental material. Using the In-Fusion PCR cloning system (BD Clon-
tech, Mountain View, CA), the 5= and 3= amplicons were inserted into
pJC-CAT linearized by BamHI/SalI digestion to generate pJC-CAT::
CBU0021-5=3=, pJC-CAT::CBU1556-5=3=, pJC-CAT::CBU1818-5=3=, and
pJC-CAT::CBU1863-5=3=. The kanamycin cassette was amplified from
pJB-Kan (32) using either P1169-Kan-NdeI-KO-F and P1169-Kan-NdeI-
KO-R or P1169-Kan-AgeI-KO-F and P1169-Kan-AgeI-KO-R and then
inserted into the NdeI or AgeI site located between the 5= and 3= sequences
within the pJC-CAT constructs to produce pJC-CAT::CBU0021-5=3=-
Kan, pJC-CAT::CBU1556-5=3=-Kan, pJC-CAT::CBU1818-5=3=-Kan, and
pJC-CAT::CBU1863-5=3=-Kan, which were then used in targeted gene
deletion (20). For construction of Tn7 complementation plasmids,
cbu1818 or cbu1863, and their upstream promoter regions were PCR am-
plified from genomic DNA by using the primer pairs CBU1818comp-F
and CBU1818comp-R or CBU1863comp-F and CBU1863comp-R. PCR
products were inserted into the EcoRI site of pMini-Tn7T-CAT (20) with
In-Fusion to create pMini-Tn7T-CAT::CBU1818comp and pMini-Tn7T-
CAT::CBU1863comp.

Genes conferring resistance to chloramphenicol, kanamycin, or am-
picillin are approved for C. burnetii genetic transformation studies by the
Rocky Mountain Laboratories Institutional Biosafety Committee and the
Centers for Disease Control and Prevention, Division of Select Agents and
Toxins Program.

C. burnetii transformation. Transformation and selection of C. bur-
netii �cvp mutants was conducted as described previously (20). Briefly,
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pJC-CAT::CBU0021-5=3=-Kan, pJC-CAT::CBU1556-5=3=-Kan, pJC-
CAT::CBU1818-5=3=-Kan, and pJC-CAT::CBU1863-5=3=-Kan chromo-
somal integrants were selected by culturing the bacteria in ACCM-2 con-
taining 350 �g/ml kanamycin and 3 �g/ml chloramphenicol and then
subculturing the bacteria for 4 days in ACCM-2 supplemented with 1%
sucrose and kanamycin to select for cointegrants that had excised the
sacB-containing plasmid backbone. C. burnetii �cvpB, �cvpC, �cvpD, and
�cvpE clones were isolated by limiting dilution in ACCM-2 and gene
deletions confirmed by PCR (20). Transformation and selection of C.
burnetii �cvp complement strains was accomplished as previously de-
scribed (20).

Construction of plasmids for expression of C. burnetii proteins in
eukaryotic cells. C. burnetii effector-coding genes were amplified by PCR
using the oligonucleotide primers listed in Table S2 in the supplemental
material and cloned into pENTR/D-TOPO (Invitrogen). The plasmids
were transformed into E. coli Top10 (Invitrogen), purified, and then
cloned genes transferred to Gateway compatible pT-Rex-DEST30/N-
mCherry or pT-Rex-DEST30/N-GFP that allow anhydrotetracycline
(aTet)-inducible expression of N-terminal mCherry or green fluorescent
protein (GFP) fusion proteins. Plasmids were purified from E. coli TOP10
using the GenElute HP Plasmid Midiprep kit (Sigma, St. Louis, MO) and
sequence confirmed.

Adenylate cyclase translocation assays. Adenylate cyclase assays were
conducted as previously described (14). Briefly, PMA-differentiated
THP-1 macrophages were plated in 24-well plates (5 � 105 cells/well) and
infected at a multiplicity of infection (MOI) of 50 with C. burnetii strains
expressing each of the candidate proteins N-terminally fused to CyaA.
After a 48 h of incubation, the cells were washed with PBS and then lysed
with 200 �l of lysis buffer containing 50 mM HCl and 0.1% Triton X-100.
Samples were boiled for 5 min, and 400 �l of 95% ethanol was added. The
samples were dried under vacuum and resuspended in 400 �l of assay
buffer (0.5 M sodium acetate [pH 6.0], 0.002% [wt/vol] bovine serum
albumin). The amount of cyclic AMP (cAMP) in the samples was deter-
mined with the cAMP Biotrak enzyme immunoassay system (GE Health-
care, Piscataway, NJ) according to the nonacetylation procedure. Samples
were measured in duplicate for each independent experiment (n � 3).
Values are reported as the fold change in cAMP concentration versus the
empty vector control (CyaA only). Proteins were deemed T4BSS sub-
strates if the fold change in cAMP concentration was significantly greater
(P � 0.05) than the CyaA only control, as judged by one-way analysis of
variance (ANOVA).

Ectopic expression and immunofluorescence microscopy. HeLa
cells infected with C. burnetii for 24 h on 12-mm coverslips in a 24-well
plate were transfected with 500 ng of the pT-REx-DEST30/N-GFP or
pT-Rex-DEST30/N-mCherry constructs described above and 250 ng of
pcDNA 6/TR (Invitrogen) using FuGENE HD (Promega, Madison, WI)
as previously described (14). The cells were incubated 24 h; fresh growth
medium containing 1 �g/ml aTc (Sigma) was then added to induce pro-
tein expression. The cells were fixed 24 h later with 4% paraformaldehyde
and permeabilized with PBS containing 0.05% saponin and 5% FBS. For
immunostaining, rabbit anti-LAMP1 polyclonal antibody (Abcam, Cam-
bridge, England) and guinea pig anti-Coxiella serum (14) were used as
primary antibodies, followed by goat anti-rabbit Alexa Fluor 594 (Invit-
rogen) and goat anti-guinea pig Alexa Fluor 647 (Invitrogen). Coverslips
were mounted using Prolong Gold with DAPI (4=,6=-diamidino-2-phe-
nylindole; Invitrogen) and imaged. For subcellular localization of
ectopically expressed pT-Rex-DEST30/N-mCherry-CBU1556, cells were
stained with a mouse antibody against transferrin receptor (Life Technol-
ogies) and goat anti-mouse Alexa Fluor 488 (Invitrogen). Imaging was
conducted with a LSM710 confocal laser scanning microscope (Carl Zeiss
Micro Imaging, Thornwood, NY) or a Nikon Eclipse Ti-E inverted mi-
croscope.

Quantification of C. burnetii growth and PV morphology. THP-1
cells seeded at 5 � 105 per well in a 24-well plate were infected at an MOI
of 0.5 with C. burnetii suspended in RPMI plus 10% FBS. Plates were

centrifuged at 500 � g for 20 min. Infected cells were washed once with
PBS and then cultured in RPMI plus 10% FBS for the remainder of the
experiment. For each of three independent experiments, samples were
collected in duplicate on the day of infection (day 0) and 6 days postin-
fection. C. burnetii growth was assessed by quantifying genomic equiva-
lents (GE) as previously described (14).

To measure PV size, Vero cells (2 � 104) on 12-mm coverslips in a
24-well plate were infected at an MOI of 5 with C. burnetii suspended in
RPMI plus 2% FBS. Plates were centrifuged at 500 � g for 20 min. Infected
Vero cells were incubated 6 days and then fixed and stained with antibod-
ies against LAMP1 and Coxiella as described above. Fluorescence micro-
graphs were acquired, and 25 PV were measured for each C. burnetii strain
in three independent experiments. For mutant complementation by coin-
fection, Vero cells (2 � 104) on 12-mm coverslips in a 24-well plate were
infected at MOIs of 5 and 2, respectively, with the �cvp mutant and wild-
type C. burnetii expressing mCherry red fluorescent protein (16). The
�cvp mutants were visualized in PVs cohabited with wild-type C. burnetii
at 6 days postinfection by immunostaining with antibodies against C.
burnetii and LAMP1. Assessment of mutant PV fusion was conducted
with Vero cells (2 � 104) infected at an MOI of 100 with C. burnetii in
RPMI plus 2% FBS. Cells were immunostained for LAMP1 and C. burnetii
at 6 days postinfection, and the number of PVs in each cell (n � 100)
enumerated using fluorescence microscopy.

PV acidification. PV acidification was examined using LysoTracker
Green DND-26 (Invitrogen) according to the manufacturer’s protocol.
Vero cells (2 � 104) were infected at an MOI of 100 with C. burnetii in
RPMI plus 2% FBS. Cells were incubated 6 days, treated with LysoTracker,
and then immunostained for LAMP1 and C. burnetii.

Data analysis. GraphPad Prism 6.0 software (San Diego, CA) was used
to perform one-way ANOVA or two-way ANOVA statistical tests. All
image processing and measurements were conducted using ImageJ soft-
ware (W. S. Rasband, National Institutes of Health, Bethesda, MD).

RESULTS
Identification of C. burnetii T4BSS effector proteins. Bioinfor-
matic analysis of the C. burnetii Nine Mile (RSA493), Dugway
(5J108-111), and K (Q154) genomes (33) revealed 14 genes en-
coding predicted proteins with characteristics of T4BSS substrates
(Table 1). The identified candidate proteins contained eukaryote-
like features, including coiled-coil and leucine-rich repeat do-
mains associated with ligand recognition, and transmembrane
domains predicted to mediate membrane attachment. CBU0885
contains a haloacid dehalogenase (HAD)-like domain associated
with phosphatase activity (34), while CBU1457 harbors multiple
Sel1 repeats known to promote protein-protein interactions (35).
In addition, several genes encoding candidate proteins contained
PmrA regulatory elements (28). Genes encoding each of the can-
didate effectors were inserted into pJB-CAT-CyaA, allowing C.
burnetii expression of proteins N-terminally fused to the adenyl-
ate cyclase reporter protein CyaA (14, 18). PMA-differentiated
THP-1 human macrophages were infected with wild-type C. bur-
netii or �dotA mutant strains expressing each of the CyaA con-
structs. THP-1 macrophages were also infected with wild-type C.
burnetii transformed with the empty CyaA vector as a negative
control. At 48 h postinfection, THP-1 cells were lysed, and the
concentration of cytosolic cAMP measured (Fig. 1). Expression of
13 CyaA fusion proteins by C. burnetii resulted in a significant fold
increase in cAMP concentration relative to C. burnetii expressing
CyaA alone. No increase in cAMP concentration was detected
after infection with C. burnetii �dotA expressing CyaA fusion pro-
teins, indicating that secretion is Dot/Icm dependent. Collec-
tively, these data indicated that CBU0021, CBU0534, CBU0885,
CBUD0886, CBUK0790, CBU1493, CBUD0487, CBU1543,
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CBU1556, CBU1676, CBU1818, CBU1819, and CBU1863 are
Dot/Icm substrates delivered to the host cell cytosol by the C.
burnetii T4BSS. Negative translocation of CyaA-CBU1457 was not
due to lack of expression since all CyaA fusion proteins were ex-
pressed as assessed by immunoblotting (data not shown).

C. burnetii effectors traffic to the PV. A subset of effector
proteins within the repertoire of C. burnetii Dot/Icm substrates is
predicted to localize to the PV membrane where they modify ves-
icle budding, transport, and fusion events to promote vacuole
expansion. Indeed, CvpA was previously shown to localize to the
PV membrane and contribute to PV biogenesis by a mechanism
involving subversion of clathrin-mediated vesicular trafficking
(14). To identify additional PV-localized effector proteins, the 13
validated C. burnetii Dot/Icm substrates were ectopically ex-

pressed as N-terminal fusions to GFP or mCherry fluorescent pro-
tein in HeLa cells infected with C. burnetii. At 3 days postinfection,
cells were fixed and stained with antibodies against LAMP1 and C.
burnetii. The ectopically expressed Dot/Icm substrates displayed
subcellular localizations ranging from diffuse cytoplasmic to
punctate perinuclear (Fig. 2A; see also Fig. S1 in the supplemental
material). Of the 13 proteins examined, CBU0021, CBU1556,
CBU1818, and CBU1863 localized to the LAMP1-positive PV
membrane (Fig. 2A; see also Fig. S1 in the supplemental material),
suggesting they confer effector functions associated with PV bio-
genesis. Consequently, these proteins were termed CvpB, CvpC,
CvpD, and CvpE, respectively. To examine whether Cvp effectors
also interact with the PV early after infection, HeLa cells ectopi-
cally expressing the Cvp proteins were examined at 6 h postinfec-
tion. More than 90% of C. burnetii PV labeled with ectopically
expressed CvpB, CvpC, CvpD, or CvpE, suggesting the effectors
target vesicular components during the initial stages of PV matu-
ration (see Fig. S2 in the supplemental material).

Although Cvp effectors traffic to the LAMP1-positive PV
membrane, it remained possible that they also interact with mem-
brane components outside the late endosomal compartment, as is
the case with CvpA (14). To further examine their subcellular
itineraries, each Cvp protein was ectopically expressed N-termi-
nally fused to GFP or mCherry red fluorescent protein in unin-
fected HeLa cells. Transfected cells were then stained with anti-
bodies against protein markers of early, recycling, or late
endosomes, the endoplasmic reticulum (ER), the ER-Golgi inter-
mediate compartment (ERGIC), or the cis-Golgi or trans-Golgi.
As expected, all of the Cvp effectors localized with late endosomal
marker LAMP1 in uninfected cells. In addition, CvpC exhibited
partial localization with transferrin receptor, a marker of recycling
endosomes (Fig. 2B). We have previously shown that ectopically
expressed CvpA localizes to recycling endosomes and inhibits the
uptake of transferrin (14). However, ectopic expression of CvpC
did not alter transferrin uptake (data not shown). Moreover, none
of the Cvp proteins localized with structures that labeled with
antibodies against EEA1 (early endosomes), calreticulin (ER),
ERGIC53 (ERGIC), giantin (cis-Golgi), or p230/golgin-245
(trans-Golgi) (data not shown). Collectively, these results suggest
CvpB, CvpC, CvpD, and CvpE are C. burnetii effectors that target
components of the late endosomal system, and that CvpC also
targets recycling endosomes.

TABLE 1 Features of candidate Dot/Icm effectors

Candidate effector Size (kDa) Features of gene or protein Source or reference(s)

CBU0021 93.1 Coiled-coil domain 22, 30, 63
CBUD0487 90.6 Coiled-coil domain This study
CBU0534 46.1 Coiled-coil domain:, transmembrane domain This study
CBUK0790 84.7 PmrA regulatory element This study
CBU0885 43.3 Haloacid dehalogenase (HAD)-like domain 22, 25
CBUD0886 50.8 Leucine-rich repeats This study
CBU1457 78.3 Sel1-like repeats 21, 25
CBU1493 60.9 PmrA regulatory element This study
CBU1543 22.3 Coiled-coil domain, transmembrane domain 21, 25
CBU1556 64.6 Coiled-coil domain, transmembrane domains 21, 25
CBU1676 41.8 Paralog of CBU0885 62
CBU1818 53.9 Coiled-coil domain, transmembrane domains 62
CBU1819 42.3 Coiled-coil domain This study
CBU1863 33.2 PmrA regulatory element, transmembrane domains This study

FIG 1 C. burnetii translocates 13 proteins via its Dot/Icm T4BSS. Cytosolic
concentrations of cAMP were determined after infection of THP-1 macro-
phages for 48 h with wild-type C. burnetii or a �dotA mutant expressing CyaA
fusions to candidate Dot/Icm substrates. The results are expressed as the fold
change relative to wild-type C. burnetii expressing CyaA alone. Increased cy-
tosolic cAMP concentrations indicative of protein translocation were detected
for CBU0021, CBUD0487, CBU0534, CBUK0790, CBU0886, CBUD0886,
CBU1493, CBU1543, CBU1556, CBU1676, CBU1818, CBU1819, and
CBU1863. The results are from one experiment conducted in duplicate and are
representative of three independent experiments. Error bars indicate the stan-
dard deviations from the means. Asterisks indicate a significantly greater dif-
ference (P 	 0.05) compared to values for the CyaA only control as determined
by one-way ANOVA.
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Cvp effectors promote intracellular replication and PV ex-
pansion. Localization to the PV membrane suggested CvpB,
CvpC, CvpD, and CvpE promote PV biogenesis and C. burnetii
intracellular replication. To assess this possibility, C. burnetii cvp

deletion mutants were generated and growth was assessed in
THP-1 macrophages by measuring the increase in GE over 6 days.
Replication of the C. burnetii �cvpB, �cvpC, �cvpD, and �cvpE
mutants was significantly impaired with 49-, 276-, 160-, and 110-

FIG 2 Four C. burnetii Dot/Icm T4BSS substrates localize to the PV membrane. (A) Representative confocal fluorescence micrographs of C. burnetii-infected
HeLa cells ectopically expressing CvpB, CvpC, CvpD, or CvpE N-terminally fused to GFP. At 72 h postinfection, cells were fixed and stained with antibodies
against the lysosomal membrane protein LAMP1 (red) and C. burnetii (blue). (B) CvpC-mCherry colocalizes with transferrin receptor. HeLa cells were
transfected with a plasmid encoding CvpC N-terminally fused to mCherry red fluorescent protein. Cells were immunostained for transferrin receptor (green)
with the DNA stained by DAPI (blue). Scale bar, 5 �m.
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fold increases in GE, respectively, relative to the 713-fold increase
in GE observed for wild-type C. burnetii (Fig. 3A). Defects in C.
burnetii replication correlated with impaired PV biogenesis. All
mutants occupied aberrantly small, tight-fitting vacuoles in Vero
cells compared to the large and spacious PVs generated by wild-
type C. burnetii (Fig. 3B). PVs harboring C. burnetii �cvpB,
�cvpD, and �cvpE strains in Vero cells also exhibited impaired
homotypic fusion with 57.5, 35.2, and 32.6%, respectively, con-
taining two or more PVs compared to 16.2% of cells infected with
wild-type C. burnetii (see Fig. S3A in the supplemental material).
Consistent with the presence of LAMP1, PVs containing �cvp
mutants were acidified, as evidenced by the accumulation of the
acidotropic fluorescent dye LysoTracker DND-26 (see Fig. S3B in
the supplemental material). These acidified vacuoles supported
metabolic activation of �cvp mutants as each was capable of se-
creting a CyaA-CvpA fusion protein (14) (see Fig. S4 in the sup-
plemental material). Thus, �cvp mutant growth defects likely re-
sult from inactivation of the targeted effector.

To confirm that the specific gene deletion was responsible for
the intracellular growth defect of a �cvp mutant, complementa-
tion was attempted using Tn7 to introduce a single gene copy into
the chromosome under the control of a native promoter. Tn7
complementation rescued intracellular growth of the �cvpD and
�cvpE mutants, as evidenced by significant increases in replication
within THP-1 cells (Fig. 4A) and PV size in Vero cells (Fig. 4B).
This strategy of genetic complementation failed to rescue im-
paired growth of C. burnetii �cvpB and �cvpC. Transformation

with a multicopy plasmid encoding constitutively expressed CvpB
and CvpC also failed to complement mutant growth defects (data
not shown). Therefore, we used a coinfection strategy that has
been previously used to show that the growth deficiencies of C.
burnetii Dot/Icm mutants can be complemented by functions
provided in trans by wild-type C. burnetii (16, 25). Vero cells were
coinfected with wild-type C. burnetii and the �cvpB or �cvpC
strain. When sequestered within a PV co-occupied by wild-type C.
burnetii, the �cvpB and �cvpC mutants exhibited robust replica-
tion (Fig. 5).

DISCUSSION

The pronounced fusogenicity of the C. burnetii PV is predicted to
be mediated by C. burnetii Dot/Icm effector proteins that modu-
late vesicle budding, transport, and fusion events on the PV mem-
brane (6, 9, 14, 36). In support of this model is CvpA, a PV-
interacting Dot/Icm effector protein that promotes PV formation
(14). CvpA targets clathrin-dependent vesicular trafficking, pre-
sumably allowing C. burnetii to acquire membrane components
for PV biogenesis (14). In the present study, we used genetic ma-
nipulation of C. burnetii to directly identify Dot/Icm T4BSS sub-
strates secreted by the pathogen and to validate their importance
in intracellular replication. Based on interactions with the PV
membrane, four new Cvp proteins were identified among the 13

FIG 3 C. burnetii �cvp mutants exhibit defects in intracellular growth and PV
biogenesis. (A) Replication of wild-type C. burnetii and �cvp mutants. Fold
increases in bacterial GE at 6 days postinfection of THP-1 macrophages rela-
tive to the 0 day time point are depicted from three independent experiments,
each performed in duplicate. (B) Sizes of PVs generated by wild-type C. bur-
netii and the �cvp mutants 6 days postinfection in Vero cells. PV size was
measured using ImageJ (n � 25), and the data are representative of three
independent experiments. Error bars indicate the standard deviations from the
means. Asterisks indicate a statistically significant difference (P 	 0.01) com-
pared to values for wild-type bacteria as determined by one-way ANOVA.

FIG 4 Genetic complementation of the �cvpD and �cvpE mutants rescues
intracellular growth and PV biogenesis. (A) Replication of wild-type C. bur-
netii and complemented �cvp mutants. Fold increases in bacterial GE at 6 days
postinfection of THP-1 macrophages relative to the 0 day time point are de-
picted from three independent experiments, each performed in duplicate. (B)
Sizes of PVs generated by the wild-type C. burnetii and complemented �cvp
mutants at 6 days postinfection of Vero cells. PV size was measured using
ImageJ (n � 25), and the data are representative of three independent exper-
iments. Error bars indicate the standard deviations from the means. Asterisks
indicate a statistically significant difference (P 	 0.01) compared to values for
wild-type bacteria as determined by one-way ANOVA.
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identified Dot/Icm substrates. Defects in intracellular replication
and PV expansion observed for C. burnetii �cvp mutants support
the hypothesis that C. burnetii encodes a family of Dot/Icm effec-
tors that localize to the PV membrane and modulate membrane
trafficking events necessary for PV development and pathogen
replication.

The �cvp mutants occupy a LAMP1-positive, acidified PV and
can secrete proteins via the T4BSS. Thus, their growth deficiencies
are not related to overall failings in PV maturation and Dot/Icm
function. The �cvpB, �cvpD, and �cvpE mutants, but not the
�cvpC mutant, generated multi-PV in Vero cells that displayed
impaired homotypic fusion. These phenotypes correlated with a
severe replication defect. Rescue of mutant growth defects by Tn7
cis-complementation verified mutation of CvpD and CvpE im-
pairs C. burnetii intracellular growth, but this strategy failed to
complement growth of the �cvpB and �cvpC mutants. The rea-
sons for lack of genetic complementation remain unclear, but may
include temporal problems with gene expression, insufficient
chaperone engagement, and/or altered protein levels. To bypass
these issues, we and others have used coinfection with wild-type C.
burnetii to rescue impaired growth of strains with mutations in the
T4BSS apparatus (16, 30) and Dot/Icm effectors (25). Although
coinfection rescued the growth defects of �cvpB and �cvpC mu-

tants, we cannot rule out the possibility that the phenotypes are
due to a secondary mutation that can also be complemented in
trans.

The observation that cvpB, cvpC, cvpD, and cvpE are main-
tained as full-length genes among sequenced C. burnetii strains
suggests that they modulate core host cell functions required for
successful intracellular parasitism by the genus Coxiella. Polymor-
phisms among several previously identified C. burnetii Dot/Icm
substrates (17, 24) are hypothesized to contribute to pathogenic
potential (36). Of the substrates identified in the present study,
cbud0487 is full length only in the Dugway (5J108-111) strain,
cbud0886 is full length only in the Dugway (5J108-111) and K
(Q154) strains, and cubk0790 is only full length only in the K
(Q154) strain. The Nine Mile strain used here is representative of
acute disease isolates, the K strain is a human chronic endocarditis
isolate, and the Dugway strain is an attenuated rodent isolate (33).

Localization of bacterial effector proteins to pathogen-occu-
pied vacuoles is commonly observed. For example, L. pneumo-
phila translocates multiple effector proteins via its Dot/Icm T4BSS
that interact with the membrane of the Legionella vacuole (LV).
Dot/Icm effectors LidA, SidC, and DrrA/SidM bind specific phos-
phoinositides (37, 38), while LepA, LepB, LegC3, LegC2/YlfB, and
LegC7/YlfA contain transmembrane domains that facilitate inter-

FIG 5 Coinfection with wild-type C. burnetii rescues growth of �cvpB and �cvpC mutants. THP-1 macrophages were infected with the �cvpB or �cvpC mutant
alone or coinfected with the �cvpB or �cvpC mutant and wild-type C. burnetii expressing mCherry red fluorescent protein. At 6 days postinfection, C. burnetii
(wild type and mutant) and LAMP1 were immunostained green and blue, respectively. Robust growth of �cvpB and �cvpC mutants was only observed in PVs
cohabited with wild-type C. burnetii. Scale bar, 5 �m.
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action with the LV membrane (39, 40). Similarly, Chlamydia spp.
deploy a type 3 secretion system (T3SS) to deliver multiple Inc
family proteins that localize to the chlamydial inclusion via a con-
served bilobed hydrophobic motif (41). CvpC, CvpD, and CvpE
all contain predicted transmembrane domains that may facilitate
their interaction with the LAMP1-positive PV membrane. In con-
trast, CvpB lacks obvious transmembrane domains and therefore
might target the PV membrane by binding phosphoinositides.
When examined in uninfected cells, CvpB, CvpD, and CvpE con-
sistently localize only to the late endolysosomal compartment.
CvpC, in addition to LAMP1-positive structures, also localizes
with transferrin receptor, an endocytic carrier protein that under-
goes clathrin-dependent endocytosis and traffics through the en-
docytic recycling system. Thus, CvpC may traffic between late and
recycling endosomal compartments, as is the case with CvpA (14).

The activities of vesicular effectors produced by other patho-
gens may provide clues to Cvp biochemical activities. Modulation
of Rab GTPases is a prominent strategy used by intracellular
pathogens to remodel their phagosome into a replication-permis-
sive compartment (42, 43). Rab GTPases play critical roles in reg-
ulating transport of lipids and proteins that ultimately determine
organelle identity (44, 45). Guanine nucleotide exchange factors
(GEFs) and GTPase-activating proteins (GAPs) regulate the rate
of cycling between inactive GDP-bound and active GTP-bound
forms of Rab GTPases (45). Pathogens secrete effectors that sub-
vert these regulatory mechanisms to control spatial and temporal
aspects of membrane transport. Of the LV-localized Dot/Icm ef-
fectors produced by L. pneumophila, multiple proteins modulate
Rab1 activity to refurbish the LV with ER components and to
prevent LV fusion with lysosomes. For example, LidA binds Rab1,
which stabilizes its activation (46) and promotes the acquisition of
ER-derived vesicles (47). Furthermore, DrrA/SidM is a GEF that
posttranslationally modifies Rab1 with AMP (48–51), thereby
preventing inactivation by GAP proteins (52–54). Rab1 (12), as
well as the regulators of endocytic traffic Rab5 and Rab7, have
been implicated in C. burnetii PV biogenesis (15, 55, 56). Thus, it
is plausible that C. burnetii Cvp effectors disregulate Rab GTPases
to promote maturation of its strikingly large phagolysosome-like
replication compartment.

The Cvp effectors lack homology to proteins of known func-
tion, but CvpB, CvpC, and CvpD contain predicted eukaryote-
like coiled-coil domains similar to bacterial effectors known to
functionally mimic the activity of eukaryotic SNARE proteins
(57). SNAREs regulate fusion between transport vesicles and tar-
get compartment membranes, and pathogens subvert SNARE
function to promote fusion events beneficial to pathogen growth
(57). The chlamydial T3SS substrate IncA harbors two SNARE-
like coiled-coil motifs (58) and inhibits membrane fusion medi-
ated by endocytic, but not exocytic, SNARE complexes (59). Ex-
pression of the L. pneumophila effector LegC3 produces a vacuolar
protein sorting defect in yeast (40) linked to the disruption of
trans-SNARE complexes by coiled-coil domains within the effec-
tor (60). In contrast to L. pneumophila and Chlamydia spp. that
block fusion of their vacuoles with lysosomes, phagosome acidifi-
cation and lysosomal fusion promotes Coxiella replication (6).
Moreover, C. burnetii also requires membrane components from
autophagic and secretory compartments for PV expansion (10–
12, 15, 61). Several SNARE proteins, including syntaxin-8, syn-
taxin-17, and vesicle-associated membrane protein 7 (VAMP7),
localize to the PV membrane, with syntaxin-17 and VAMP7 hav-

ing demonstrated roles in vacuole expansion (11, 15). Coxiella
researchers are just beginning to investigate the molecular mech-
anisms that control PV fusogenicity, a process that likely involves
the activities of multiple Rab GTPases, SNARE proteins, and Dot/
Icm effectors (11, 14–16).

When this manuscript was originally submitted, 4 of the 13
proteins we report here as substrates of the C. burnetii Dot/Icm
system had also been described as L. pneumophila Dot/Icm sub-
strates (21, 22, 25). Using a hidden semi-Markov model, Lifshitz et
al. (22) identified a group of C. burnetii proteins, termed C-termi-
nal signal for effector translocation of C. burnetii (CetCb) pro-
teins, that have C-terminal amino acid sequences resembling
those of known Dot/Icm substrates. In agreement with our find-
ings using C. burnetii, CvpB/CetCb1 (CBU0021) and CetCb4
(CBU0885) fusions with CyaA are translocated by L. pneumophila
in a Dot/Icm-dependent manner (22). Chen et al. (21) expressed
multiple C. burnetii proteins in L. pneumophila fused to the �-lac-
tamase (BlaM) reporter. These researchers concluded that
CBU1457, CBU1543, and CvpC (CBU1556) are Dot/Icm sub-
strates based on 2, 25, and 50% translocation efficiencies of the
respective BlaM fusion protein (21, 25). We found that CBU1543
and CvpC fusions with CyaA are translocated by C. burnetii in a
Dot/Icm-dependent fashion. In contrast, we did not detect trans-
location of CyaA-CBU1457 by C. burnetii at the 48-h postinfec-
tion time point. Translocation was also not detected at 72 or 96 h
postinfection, nor with L. pneumophila using standard assay con-
ditions (data not shown) (18). The reason for this disparate result
is unclear but emphasizes the need to validate Dot/Icm effectors
directly in C. burnetii.

Since submission of the manuscript, a study by Lifshitz and
coworkers (62) demonstrated L. pneumophila Dot/Icm-depen-
dent secretion of CBU1676 and CBU1818 (CvpD). Expression of
CBU1676, or its paralog CBU0885, inhibits mitogen-activated
protein kinase signaling in Saccharomyces cerevisiae. Newton et al.
(63) reported that C. burnetii cig2 (cvpB) Tn insertion mutants
exhibit a multi-PV growth phenotype in HeLa cells without show-
ing an overall growth defect. We found that C. burnetii �cvpB
replicates poorly in THP-1 human macrophages, a behavior that
correlates with generation of multiple, small PVs in Vero cells.
Martinez et al. (30) also found that C. burnetii strains harboring a
Tn insertion in cbu0021 (cvpB) display impaired growth in Vero
cells. Thus, accumulating evidence from independent laboratories
indicates CvpB is a critical Dot/Icm effector that subverts cellular
functions involved in PV biogenesis. Indeed, because PVs con-
taining the cvpB mutant do not accumulate the autophagosome
protein LC3, and autophagy inhibition of cells infected with wild-
type bacteria produce multiple PVs similar to the C. burnetii cvpB
mutant, Newton et al. (63) conclude that CvpB promotes PV in-
teractions with autophagosomes that enhance PV maturation.
Biochemical characterization of the functional activities CvpB and
other Cvp effectors will provide important insight into mecha-
nisms governing PV development.
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