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We identify an N-ethyl-N-nitrosourea (ENU)-induced I23N mutation in the THEMIS protein that causes protection against ex-
perimental cerebral malaria (ECM) caused by infection with Plasmodium berghei ANKA. ThemisI23N homozygous mice show
reduced CD4� and CD8� T lymphocyte numbers. ECM resistance in P. berghei ANKA-infected ThemisI23N mice is associated
with decreased cerebral cellular infiltration, retention of blood-brain barrier integrity, and reduced proinflammatory cytokine
production. THEMISI23N protein expression is absent from mutant mice, concurrent with the decreased THEMISI23N stability
observed in vitro. Biochemical studies in vitro and functional complementation in vivo in ThemisI23N/�:Lck�/� doubly
heterozygous mice demonstrate that functional coupling of THEMIS to LCK tyrosine kinase is required for ECM pathogenesis.
Damping of proinflammatory responses in ThemisI23N mice causes susceptibility to pulmonary tuberculosis. Thus, THEMIS is
required for the development and ultimately the function of proinflammatory T cells. ThemisI23N mice can be used to study the
newly discovered association of THEMIS (6p22.33) with inflammatory bowel disease and multiple sclerosis.

The inflammatory response to microbial stimuli is a multistep
process that involves sensing of a danger signal, recruitment of

myeloid (neutrophils, basophils, monocytes, macrophages) and
lymphoid (CD4� and CD8� T lymphocytes, NK cells) cells, pro-
duction of proinflammatory cytokines (tumor necrosis factor al-
pha [TNF-�], interferon gamma [IFN-�], and interleukin-1 [IL-
1]) and chemokines (IL-8, monocyte chemoattractant protein 1,
and KC), elimination of the microbial threat, and tissue destruc-
tion and repair (1, 2). In the presence of persistent tissue injury or
of an unusual infectious or environmental insult, overexpression
of proinflammatory mediators or insufficient production of anti-
inflammatory signals (prostaglandin E2, IL-10, TGF-�, and IL-
1Ra) causes acute or chronic states of pathological inflammation.
Population studies of chronic inflammatory diseases such as in-
flammatory bowel disease, multiple sclerosis, rheumatoid arthri-
tis, and others have identified a complex genetic architecture of
disease susceptibility, with additional effects of microbial triggers
that initiate and sustain pathological inflammation (3–5). Many
of the mapped disease loci and genes are common to two or more
such diseases, suggesting that some critical features of pathogen-
esis are shared by these conditions.

Cerebral malaria (CM) is an acute, life-threatening encephali-
tis that is a complication of Plasmodium falciparum infection in
children and pregnant women (6). CM-associated neuroinflam-
mation has been studied in a mouse model of experimental CM
(ECM) induced by infection with Plasmodium berghei ANKA (7).
In this model, brain endothelial cells activated by trapped parasit-
ized red blood cells (pRBCs) produce cytokines and chemotactic
factors that recruit neutrophils and activated CD8� and CD4� T
cells. Release of cytotoxic molecules by inflammatory leukocytes
leads to loss of integrity of the blood-brain barrier (BBB), micro-
thrombosis, and hypoxia of the brain parenchyma, leading to neu-
rological symptoms, including seizures and coma, and ultimately
death (8, 9). Recent findings show that elevated levels of inflam-

matory molecules (TNF-�, IFN-�, IL-1�, macrophage inflamma-
tory protein 1� [MIP-1�], MIP-1�, CXCL10, and complement
component 5a [C5a]) are associated with an increased risk of CM,
supporting a neuroinflammatory component of human CM (10–
12). Antibody-mediated cell ablation experiments have demon-
strated a strong pathological role for CD8� and CD4� T cells, NK
cells, and neutrophils in ECM (7). Conversely, we and others have
demonstrated an ECM-protective effect of mutations in major
proinflammatory genes such as those for IFN-� (Ifng) and its re-
ceptor (Ifngr1), lymphotoxin (Lta/Ltb), complement component
5a (Hc) (reviewed in reference 13), and certain transcription fac-
tors that regulate the expression of these genes in myeloid and
lymphoid cells, including IFN regulatory factor 1 (IRF1) (14),
IRF8, and STAT1 (15). Whole-brain transcript profiling along
with chromatin immunoprecipitation and sequencing data com-
paring ECM-susceptible and -resistant (Irf8myls BXH2 strain)
mice identified a core transcriptome activated during ECM (15).
This transcriptome contains several genes, including those for
IRF1, IRF8, and STAT1, that have been identified as risk factors
for acute and chronic human inflammatory conditions. Thus,
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studies using the mouse model of ECM may identify critical reg-
ulatory genes and pathways that underlie the shared etiology and
pathogenesis of acute and chronic human inflammatory diseases.

To uncover novel host factors that, when inactivated, protect
against the development of ECM, we employed N-ethyl-N-nitro-
sourea (ENU) mutagenesis screening of mice. We report a reces-
sive mutation in the gene Themis (thymus-expressed molecule
involved in selection; Mouse Genome Informatics accession no.
2443552) that protects mice from lethal neuroinflammation upon
infection with P. berghei ANKA. The effect of this mutation on
immune cell function has been characterized at the cellular and
molecular levels.

MATERIALS AND METHODS
Ethics statement. This study was performed in accordance and compli-
ance with the strict guidelines of the Canadian Council on Animal Care.
Protocols were approved by the ethics committee of McGill University
(protocol 5287) and the Trudeau Institute Institutional Animal Care and
Use Committee of (protocol IACUC 02-191 [Cooper]). Mice were eutha-
nized by carbon dioxide inhalation, and every effort was made to mini-
mize animal suffering.

Mice. Inbred C57BL/6J (B6) and C57BL/10J (B10) mice were pur-
chased from The Jackson laboratory (Bar Harbor, ME). Lck mutant mice
(Lcktm1Mak, referred to as Lck�/�) were provided by André Veillette
(IRCM, Montreal, QC, Canada). Eight week-old B6 males were adminis-
tered 3 weekly doses of ENU (90 mg/kg) by intraperitoneal injection.
Mutagenized G0 males were bred with wild-type (WT) B10 females to
generate G1 offspring, which were backcrossed again with B10 females
(G2 offspring). Two G2 females per pedigree were backcrossed with their
G1 father to generate G3 mice for phenotyping. Homozygous ThemisI23N

G3 mice were intercrossed to produce a stable mouse line.
Parasites and infections. P. berghei ANKA parasites from the Malaria

Reference and Research Reagent Resource Center were maintained as
frozen stocks at �80°C. Blood parasitemia was determined on thin blood
smears stained with Diff-Quik reagents. Seven-week-old G3 mice were
intravenously (i.v.) infected with 106 pRBCs. Mice were monitored three
times daily for the appearance of neurological symptoms. In other exper-
iments, mice were infected (i.v.) with 5 � 105 Plasmodium chabaudi AS
pRBCs and blood parasitemia was monitored over time. Plasmodium
strains were provided by Mary M. Stevenson (McGill University Health
Center Research Institute, Montreal, QC, Canada).

Genomic analyses. Melvin G3 mice were genotyped by using a panel
of 193 single nucleotide polymorphism markers informative for parental
B6 versus B10 strains (16). Linkage analysis was performed with the R/qtl
software package by using the binary model, where survival past day 13
(ECM resistance versus susceptibility) was used as a phenotype to detect
linkage. Whole-exome sequencing of two ECM-resistant Melvin G3 mice
was carried out. Exome capture was performed with a SureSelect Mouse
All Exon kit (Agilent Technologies) and parallel sequencing on an Illu-
mina HiSeq 2000 (100-bp paired-end reads). Reads were aligned with
genome assembly mouse/July 2007 (NCBI37/mm9) by using the Bur-
rows-Wheeler alignment tool (17), and coverage was assessed with BED-
Tools (18). Variants were called by using Samtools pileup and varFilter
(17) and annotated with ANNOVAR (19). The Themis mutation was
genotyped by PCR (primers 5=-CCACCCCCATGTGTTTCTAC-3= and
5=-CACTTTGTTTGCTGGGTGTG-3=), followed by sequencing of the
PCR product.

RT-qPCR. Reverse transcriptase quantitative PCR (RT-qPCR) was per-
formed with primers 5=-TGAAATCCAAGGTGTGCTGA-3= and 5=-CGTC
CGTAGACAGCAACTGA-3=. Themis mRNA was expressed relative to the
hypoxanthine phosphoribosyltransferase (HPRT) reference control.

Protein expression in transfected cells. A full-length WT Themis
cDNA was PCR amplified from a B6 thymus mRNA template with prim-
ers 5=-ACTGGAATTCCCACCATGGCTTTATCTCTGGAAG-3= and 5=-

CAGTCTCGAGTCACAGTGGTGCTTGCGG-3=. Restriction sites for
EcoRI (GAATTC) and XhoI (CTCGAG) were introduced into the prim-
ers to facilitate cloning into expression plasmid pcDNA3. A full-length
ThemisI23N mutant was generated by site-directed mutagenesis with
primers 5=-CCTGACTGGTTTTCTAGGA-3= and 5=-TCCTAGAAAACC
AGTCAGG-3=. HEK293 (ATCC CRL-1573) cells were transfected with
Lipofectamine 2000 reagent (Life Technologies), followed by selection in
Geneticin (G418, 500 �g/ml; Invitrogen). Protein expression was moni-
tored by immunoblotting with an anti-THEMIS antibody (3D4; R. H.
Schwartz, NIH). For protein stability studies, stably transfected cells were
incubated with cycloheximide (CHX; 20 �g/ml). Cells were lysed in 50
mM Tris (pH 7.5)–150 mM NaCl–1% Triton X-100 – 0.1% sodium do-
decyl sulfate (SDS) supplemented with protease/phosphatase inhibitors.

THEMIS tyrosine phosphorylation. HEK293T (ATCC CRL-3216)
cells (3 � 106) were cotransfected with WT or ThemisI23N constructs and
either the WT or a hyperactive F505 Lck variant (André Veillette, IRCM,
Montreal, QC, Canada), and 24 h later, cells were lysed in 50 mM Tris (pH
7.5)–150 mM NaCl–1% Triton X-100 – 0.1% SDS. THEMIS was immu-
noprecipitated (IP) with anti-THEMIS antibody (16 h, 4°C) and then
captured with protein G agarose beads. IP products were separated on gel
and then immunoblotted with a mouse antiphosphotyrosine antibody
(P-Tyr-100; Cell Signaling Technology) and a horseradish peroxidase-
conjugated anti-mouse TrueBlot ULTRA IgG secondary antibody (eBio-
science). Blots were reprobed with anti-THEMIS antibody, and blots of
whole-cell lysate were probed with anti-LCK antibody (André Veillette)
to validate the efficiency of immunoprecipitation and transfection, re-
spectively.

Evans blue dye extravasation. P. berghei ANKA-infected mice (day 6
postinfection) were injected (i.v.) with 0.2 ml of 1% Evans blue dye (Sig-
ma-Aldrich, Oakville, Canada). One hour later, mice were exsanguinated
and perfused with phosphate-buffered saline. Brains were excised and
incubated with 1 ml of dimethyl formamide for 48 h to extract the Evans
blue dye from the tissues. Optical density at 610 nm was measured, and
measurements were converted into micrograms of dye extravasated per
gram of tissue.

Immunophenotyping. Thymus and spleen cells (1 � 108 to 2 � 108)
were stained with anti-CD4 –phycoerythrin (PE)/Cy7 and anti-CD8 –PE,
and doubly negative (DN; CD4� CD8�), doubly positive (DP; CD4�

CD8�), CD4 singly positive (CD4�; CD4� CD8�), and CD8 singly pos-
itive (CD8�; CD4� CD8�) T cells were isolated with a fluorescence-acti-
vated cell sorter (FACS). Leukocytes infiltrating the brains of infected
animals were isolated as previously described (20). Thymus and spleen
cells from control and P. berghei ANKA-infected mice were analyzed
by FACS by using markers of lymphoid cells (anti-CD45–allophycocya-
nin [APC]-efluor780, anti-CD8 –Bv421, anti-CD4 –PE, anti-TCR�–fluo-
rescein isothiocyanate [FITC]) and myeloid cells (anti-CD45–APC-
efluor780, anti-CD11b–APC, anti-Ly6G–FITC). All of the antibodies
used were purchased from BioLegend. Viable leukocytes were gated as
CD45� cells in the spleen and thymus and as CD45hi cells in the brain.
Spleen cells were stimulated with either CD3/CD28 (eBioscience) or IL-
12p70/IL-18 (BioLegend) for 48 h; this was followed by measurement of
TNF-� and IFN-� by enzyme-linked immunosorbent assay (ELISA; Bio-
Legend). Cytokines were also measured in sera of naive and P. berghei
ANKA-infected mice.

Infection with M. tuberculosis. Eight-week-old mice were infected via
the aerosol route with 	200 CFU of Mycobacterium tuberculosis H37Rv.
Bacterial replication was determined by colony counts on organ homog-
enates. Histological analysis of the lung caudal lobe was performed with
formalin-fixed sections stained with hematoxylin and eosin (H&E) or
stained for acid-fast bacilli with Ziehl-Neelsen stain.

RESULTS

We used ENU mutagenesis in mice to identify genes that, when
inactivated, protect against lethal ECM induced by P. berghei
ANKA infection (21, 22). In this screening, G3 offspring were
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generated (Fig. 1A) and infected with P. berghei ANKA. ECM-
susceptible B6 and B10 controls develop fatal neurological symp-
toms (paralysis, tremors, and seizures) between days 5 and 8
postinfection. Conversely, P. berghei ANKA-infected G3 mice that
do not develop cerebral symptoms and survive beyond day 13 are
considered ECM resistant. Mating of G1 male Melvin mice with
two G2 females produced G3 mice, 19% of which were ECM re-
sistant (8/34 pups; Fig. 1B). Linkage analysis revealed a linkage
peak on chromosome 10 (Chr10; logarithm of odds [LOD],
	8.63; position, 27.6 Mb) (Fig. 1C). Haplotype analysis of ECM-
resistant mice showed enrichment for homozygosity of B6-de-
rived alleles (A; from ENU-treated G0) on proximal Chr10, while
ECM-susceptible mice displayed enrichment for homozygosity of
WT B10 alleles (B) (Fig. 1D). This suggests that ECM resistance in
the Melvin pedigree is caused by homozygosity for an ENU muta-
tion on proximal Chr10.

Whole-exome sequencing of two ECM-resistant G3 mice
identified an ENU-associated homozygous mutation under the
linkage peak on Chr10. The T-to-A transversion in exon 1 of
Themis causes a change from isoleucine (I) to asparagine (N) at
position 23 (I23N) of the cysteine-containing, all-� in The-
mis-1 (CABIT-1) domain of THEMIS (Fig. 2A). I23 is invariant in

the THEMIS family, and the I23N substitution is nonconserva-
tive, suggesting that it is likely to be pathological (Fig. 2A). Geno-
type-phenotype correlations in additional Melvin-derived mice
validated that homozygosity for I23N (ThemisI23N) is fully protec-
tive against ECM, while heterozygosity is mildly protective, and all
WT mice are ECM susceptible (Fig. 2B). The ECM resistance phe-
notype of ThemisI23N mice is independent of P. berghei ANKA
blood parasitemia between days 1 and 6 (Fig. 2C). In addition,
challenging mice with P. chabaudi AS, a malarial parasite whose
pathogenesis is limited to blood stage replication without cerebral
disease, indicates that ThemisI23N has no effect on the ability of
mice to control replication (days 4 to 9) and eradicate (days 9 to 12
and 14 to 18) blood stage parasites (Fig. 2D).

THEMIS is a 73-kDa protein expressed in the thymus, spleen,
and lymph nodes (23–25). We found that expression of THEMIS
protein was very low in the thymi of homozygous ThemisI23N mu-
tant mice, while heterozygous mutants showed expression levels
similar to those of B6 or 129S1/SvImJ WT mice (Fig. 3A). Expres-
sion of the THEMISI23N variant was extremely low in sorted CD4�

CD8� DP thymic lymphocytes, and was undetectable in all other
sorted T cell populations from the thymus or spleen (Fig. 3B). We
found that the mutation had no effect on mRNA expression in
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sorted T cells (Fig. 3C). To investigate a possible effect of the
mutation on protein stability, HEK293 cells stably expressing the
WT or ThemisI23N variants were treated with CHX and analyzed
by immunoblotting (Fig. 3D and E). The THEMISI23N variant
shows a half-life drastically shorter (estimated at 	6 h) than that
of the WT (�12 h), strongly suggesting that the I23N mutation
impairs protein stability, resulting in low levels of THEMISI23N

expression in vivo.
We investigated the effect of the ThemisI23N mutation on the

number and function of T cells, both at steady state and during
infection. FACS analysis indicated a significant depletion of singly
positive CD4� (**, P 
 0.0026) and CD8� (*, P 
 0.0335) T cell
compartments in the thymi of ThemisI23N mice compared to those
of WT mice (Fig. 4A and C). Depletion of singly positive T cells
was also evident in splenic CD4� (**, P 
 0.0069) and CD8� (*,
P 
 0.0152) cells (Fig. 4B and D). Such depletion of CD4� and
CD8� T cells has been reported for null mutant alleles at Themis
(23–27), suggesting that I23N is a complete loss-of-function allele.
The effect of the ThemisI23N mutation on the number and function
of T cells was investigated at day 5 after P. berghei ANKA infection,
a time at which peripheral T cells become activated (7). P. berghei

ANKA infection caused a significant increase in the number of
CD4� splenic T cells in both mutant and WT mice; however, the
total number and relative frequency of CD4� T cells were much
greater in the control than in the mutant (**, P 
 0.0079) (Fig. 5A
and B). We observed reduced IFN-� production in vitro by
ThemisI23N mutant splenocytes from P. berghei ANKA-infected
mice upon T cell receptor activation via anti-CD3/CD28 stimula-
tion (**, P 
 0.0012) or following incubation with IL-12/IL-18
(**, P 
 0.0022) (Fig. 5C). Decreased IFN-� production by mu-
tant splenocytes in vitro was paralleled in vivo by lower levels of
serum IFN-� in infected mutant mice (*, P 
 0.0147) (Fig. 5E).
Similarly, splenocytes from ThemisI23N mutants produced signif-
icantly less TNF-� in response to stimulation with anti-CD3/
CD28 (*, P 
 0.0154). Neuroinflammation in ECM is associated
with breakdown of the BBB (28, 29). An Evans blue dye extrava-
sation assay was used to assess the BBB integrity of P. berghei
ANKA-infected mice. As opposed to the brains of P. berghei
ANKA-infected B6 controls that cannot exclude the blue dye, the
brains of ThemisI23N mutants remained unstained, indicating an
intact BBB (Fig. 5G). By flow cytometry analysis, we observed less
cellular infiltration of CD45hi leukocytes, CD45hi Ly6G�/CD11b�
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neutrophils, and CD45hi CD4� and CD8� T cells in the brains of
ThemisI23N-infected mice than in those of controls (Fig. 5H).
Hence, ECM resistance in ThemisI23N mice is concomitant to re-
duced numbers of CD4� and CD8� T cells, reduced proinflam-

matory cytokine production during infection, and preservation of
BBB integrity.

THEMIS participates in T cell receptor signaling, and its activ-
ity is regulated by the CD4 and CD8 glycoprotein-associated
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FIG 4 ThemisI23N mutants show a defect in thymocyte development. Thymocytes and splenocytes from WT and ThemisI23N mutant mice (n 
 3/group) were
stained with anti-CD45–APC efluor780, anti-CD4 –PE, and anti-CD8 –Bv421 and analyzed by flow cytometry. (A, B) Representative FACS plots showing
CD4-versus-CD8 profiles expressed as a percentage of viable CD45� thymic (A) and splenic (B) cells. (C) Total numbers of T cell populations from the thymus.
ThemisI23N mice have significantly lower numbers of CD4� T cells (**, P 
 0.0026) and CD8� T cells (*, P 
 0.0335) in the thymus than WT mice do. (D) Total
numbers of T cells from the spleen. ThemisI23N mice have a significantly lower number of peripheral CD4� T cells (**, P 
 0.0069) and CD8� T cells (*, P 

0.0152) than WT mice do. Data are expressed as means  standard deviations for each group and represent data from two independent experiments. Statistical
analysis was performed by two-tailed unpaired Student t test.
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tyrosine kinase LCK (30–33). We examined the coupling of
THEMIS and LCK in the pathogenesis of ECM. We first examined
LCK-mediated tyrosine phosphorylation of WT and THEMISI23N

variant mice in vitro (Fig. 6A). Hyperactive LCKF505Y tyrosine
phosphorylated WT and THEMISI23N mice with similar efficien-
cies. Furthermore, we examined the requirement of LCK for neu-
roinflammation in the ECM model. Lck�/� mice challenged with
P. berghei ANKA were resistant to ECM (Fig. 6B), ultimately suc-
cumbing to hyperparasitemia later in infection (days 18 to 21),
similarly to ECM-resistant ThemisI23N homozygous mice. We also

conducted genetic complementation studies with mice that are
doubly heterozygous mice for loss-of-function mutations at The-
mis and Lck (ThemisI23N/�:Lck�/�). P. berghei ANKA-infected
ThemisI23N/�:Lck�/� doubly heterozygous mice showed greater
ECM resistance (43% survival) than mice that are heterozygous
mice for ThemisI23N/� alone (16% survival), although this differ-
ence did not reach statistical significance (P 
 0.088, log rank
statistical test) (Fig. 6B). However, P. berghei ANKA-infected
ThemisI23N/�:Lck�/� doubly heterozygous mice are ECM resis-
tant, unlike B6 WT controls (**, P 
 0.006). Taken together, these

FIG 5 Immunophenotyping of ThemisI23N mutants following P. berghei ANKA infection. Control B6 and ThemisI23N mutant mice were infected with P. berghei
ANKA, and 5 days later, the function of peripheral (spleen) T cells was examined. FACS analysis indicates a lower proportion (A) and absolute number (B) of
CD45�CD4� T cells in P. berghei ANKA-infected ThemisI23N mutants than in B6 WT controls (**, P 
 0.0079; n 
 3). (C) Splenocytes from P. berghei
ANKA-infected ThemisI23N mice produce significantly less IFN-� ex vivo in response to stimulation with anti-CD3/anti-CD8 or with IL-12/IL-18 (**, P 
 0.0012
and P 
 0.0022, respectively) than WT B6 controls. Unstim., unstimulated. (D) Same as panel C, but TNF-� was measured in culture supernatant. (E, F) Serum
cytokines were measured by ELISA and show less circulating IFN-� (*, P 
 0.0147) in ThemisI23N mutants than in B6 controls. Data are expressed as means 
standard deviations for each group and represent data from two independent experiments. Statistical analysis was performed with the two-tailed unpaired
Student t test. (G) Evans blue extravasation assay to assess integrity of the BBB of P. berghei ANKA-infected (Inf.) WT (B6 or 129S1/SvImJ) and ThemisI23N mutant
mice. Six days following infection, mice were injected with Evans blue dye. The dye was extracted from the brain tissues, and the optical density at 610 nm was measured.
Measurements were converted into micrograms of dye extravasated per gram of tissue. Brains from ThemisI23N mutants remained unstained by Evans blue (***, P 

0.0003). Naive WT mice, n 
 3; P. berghei ANKA-infected B6 mice, n 
 3; P. berghei ANKA-infected ThemisI23N mice, n 
 8. Data are expressed as means 
standard deviations for each group and represent data from two independent experiments. Statistical analysis was performed with the two-tailed unpaired
Student t test. (H) Five days following P. berghei ANKA infection, infiltrating leukocytes were isolated by Percoll gradient from brain homogenates and analyzed
by FACS. Representative FACS plots of cellular infiltration in the brain indicate reduced infiltration of CD45hi leukocytes, CD45� CD11b� Ly6G� neutrophils,
CD45� CD4� T cells, and CD45� CD8� T cells in the brains of ThemisI23N mutants. Data are expressed as mean percentages  the standard deviations and
represent data from two independent experiments. Statistical analysis was performed by two-tailed unpaired Student t test. SSC, side scatter; FSC, forward scatter.
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results show that LCK and THEMIS are individually required for
pathological inflammation during ECM, with possible functional
coupling between the two proteins.

Proinflammatory Th1 cytokines produced by T cells are required
for protection against intracellular infections (15). We evaluated the
response of ThemisI23N mice to infection with M. tuberculosis. Mice
were infected with low-dose aerosol M. tuberculosis, and bacterial
replication was assessed in the lungs, spleen, mesenteric lymph nodes
(MLN), and liver at days 35, 60, and 90 postinfection (Fig. 7A).
ThemisI23N mutants displayed 5- to 10-fold greater M. tuberculosis
replication than controls. Histological analysis of M. tuberculosis-
infected B6 lungs identified typical small mononuclear accumula-
tions in the background of a normal lung alveolar network, while
large segments of ThemisI23N mutant lungs were consolidated with
extensive infiltration of leukocytes and with areas of necrosis (Fig.
7B). Increased microbial burden in the inflammatory lesions present
in the ThemisI23N mutants was also evident upon staining for acid-fast
bacilli (Fig. 7B). Together, these results indicate that Themis is re-
quired for protection against mycobacterial infections.

DISCUSSION

We have identified an I23N mutation in THEMIS that causes re-
sistance to CM. In summary, the I23N mutation is phenotypically

expressed as (i) decreased protein stability, (ii) reduced CD4� and
CD8� T cell numbers in the thymus and spleen, (iii) decreased
proinflammatory cytokine (IFN-�, TNF-�) production by T cells
at steady state and during infection, (iv) retention of BBB integ-
rity, and (v) emergence of susceptibility to pulmonary tuberculo-
sis. THEMIS acts as a regulator of positive selection of thymic
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FIG 6 LCK protein tyrosine kinase mutants are resistant to ECM. (A) Plas-
mids encoding either the WT or the ThemisI23N variant were cotransfected
with either an LckWT or a hyperactive LckF505Y plasmid into HEK293T cells.
THEMIS protein was immunoprecipitated (IP) from total cell lysate and as-
sessed for tyrosine phosphorylation by immunoblotting with an antiphospho-
tyrosine (p-Tyr) antibody. LCK (56 kDa) was assessed in total cell lysate to
ensure successful cotransfection. In the presence of hyperactive LckF505, both
WT and mutant THEMIS proteins are subjected to tyrosine phosphorylation.
(B) Survival of Lck knockouts (Lck�/�; n 
 12), Themis heterozygous mice
(ThemisI23N/�; n 
 18), Themis-Lck doubly heterozygous mutants
(ThemisI23N/�:Lck�/�; n 
 14), and B6 WT controls (n 
 12) following infec-
tion with P. berghei ANKA. The log rank statistical test indicated significantly
greater CM resistance of the Themis-Lck doubly heterozygous mice than of WT
B6 (**, P 
 0.006) and suggests resistance greater than that of ThemisI23N/�

mice, although this difference did not reach statistical significance (P 
 0.088).

FIG 7 Loss of THEMIS function causes susceptibility to tuberculosis. (A)
Control B6 and ThemisI23N mutants were infected with 200 CFU of M. tuber-
culosis H37Rv by the aerosol route, and 35, 60, and 90 days postinfection,
organs were harvested and microbial replication was determined by CFU
counting. Each group contained five mice, and statistical significance was es-
timated by the two-tailed unpaired Student t test (*, P � 0.05; **, P � 0.01; ***,
P � 0.001). MLN, mesenteric lymph nodes. (B) Histological analysis of M.
tuberculosis-infected lungs from B6 controls and ThemisI23N mutants at day 90
postinfection by H&E staining and visualization of acid-fast bacilli by Ziehl-
Neelsen staining.
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lymphocytes from CD4� CD8� DP cells to mature singly positive
CD4� and CD8� cells (23–27). Mice lacking CD8� T cells or their
secreted products (TCR�� [34], TAP-1 [35], �2-microglobulin
[36], and perforin [37]) or mice deficient in CD4� T cells (34, 35,
38) are ECM resistant. The effect of the ThemisI23N mutation on
thymic T cell maturation and peripheral T cell activity is similar to
those described for null mutations in Themis (23–27). Hence,
studies in models of infectious diseases with our ThemisI23N mu-
tant provide insight and are generally reflective of loss of THEMIS
function. Additional work is necessary to confirm that THEMIS is
specifically required for the proinflammatory function of periph-
eral T cells, independent of its role in T cell development.

The CM-protective effect of ThemisI23N may reflect the essen-
tial role of T cell receptor (TCR) signaling in the intrathymic de-
velopment of functional T cell repertoires. Indeed, studies with
mice lacking TCR structural components (34, 35) or downstream
signaling molecules such as LCK (30), LAT (39), GRB2 (40),
TESPA1 (41), and ITK (42) show severe defects in T cell develop-
ment with significant immunodeficiency (reviewed in reference
43). LCK acts immediately downstream of the TCR, and upon its
activation, it phosphorylates THEMIS (31–33). Phosphorylated
THEMIS has been proposed to interact with additional members
of the TCR signalosome to propagate TCR proximal signaling
(44). In this study, we show that Lck�/� mutant mice are, like
ThemisI23N mice, resistant to the development of ECM. In addi-
tion, genetic complementation studies with mice that are doubly
heterozygous mice for loss-of-function mutations in Themis and
Lck (ThemisI23N/�:Lck�/�) also display increased resistance to
ECM, unlike singly heterozygous control mice. These data estab-
lish that THEMIS and LCK are both required for neuroinflamma-
tion.

THEMIS has two amino-terminal globular CABIT domains
(CABIT-1 and CABIT-2) that are predicted to form an extended
�-sandwich-like fold or a dyad of six-stranded �-barrel units (23,
24, 44). Though the CABIT structural motifs have been identified
by sequence conservation, their structure-function relationships
have yet to be clearly defined. Recent studies have shown that
deletion of a part of the CABIT-1 domain (�150-174) in mouse
THEMIS causes a defect in T cell development (45). We show that
the I23N mutation in the CABIT-1 domain causes protein insta-
bility in primary thymic cells and in transfected cells, suggesting
that I23N may cause misfolding of the protein, which is conse-
quently targeted for degradation. Hence, integrity of the CABIT-1
domain is required for THEMIS protein stability.

Finally, genome-wide association studies have recently identi-
fied THEMIS (6p22.33) as a candidate gene for the Chr6 locus
associated with celiac disease in humans (Chr6; positions, 127.99
to 128.38 Mb, CRCh37/hg19) (46–48). Duodenal mucosa from
active celiac patients showed higher THEMIS gene expression
than that of patients undergoing effective treatment or that of
healthy controls (2, 49). THEMIS was also recently identified as a
risk factor for multiple sclerosis (50). The demonstration herein
that Themis elimination protects against neuroinflammation in
mice validates the proposed role of THEMIS in pathological in-
flammation in humans. Furthermore, the association of THEMIS
with different inflammatory diseases that affect different anatom-
ical sites and that follow different pathogeneses, places THEMIS as
one of the core “inflammatory” genes that regulate common as-
pects of pathological inflammation in vivo and that participate in
the etiology of these different inflammatory diseases.
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