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Noninvasive blood-free full quantification of positron emission
tomography radioligand binding
Francesca Zanderigo1, R Todd Ogden2,3,4 and Ramin V Parsey5

Full quantification of a positron emission tomography (PET) radioligand binding to its target is preferred because it requires the
fewest assumptions, but generally involves measuring the concentration of free radioligand in the arterial plasma by collecting
blood samples from the subject’s radial artery during the scan, and performing metabolite analysis. This invasive, costly procedure
deters subjects’ participation, and requires specialized staff and equipment. Simultaneous estimation (SIME) can fully quantify
binding using only PET data from multiple brain regions and one individual anchor value, which is based on a single arterial blood
sample. Drawing this sample can still be challenging in clinical settings, particularly when using simultaneous PET/magnetic
resonance scanners. Here we propose a methodology for full quantification of binding that does not require any blood samples.
The methodology substitutes the SIME blood-based anchor with a value predicted using multiple linear regression of noninvasive,
easy-to-collect variables related to the radioligand blood concentration, and individual metabolism, such as injected dose, body
mass index, or body surface area. As a study case, we show here the methodology in comparison to analysis with full arterial-line
blood sampling in a cohort of 23 available scans with [11C]CUMI-101, a partial agonist of the serotonin 5-HT1A receptors.
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INTRODUCTION
Positron emission tomography (PET) is a nuclear imaging
technology that uses radioactively labeled molecules (radio-
ligands), that are injected into the body and bind, although not
exclusively, to a specific target, to quantify in vivo biologic
processes, such as blood flow, metabolism, and the distribution of
proteins in the brain. Positron emission tomography is an
invaluable tool to establish the genetic and cellular basis of brain
diseases.1–3

Fully quantitative PET measures a series of binding potentials
between radioligand and target to indirectly determine the
available amount of the target.1 These potentials are in various
ways related to the density of available target (Bmax) through the
affinity of the radioligand for the available binding sites1 (1/KD).
The binding potential called BPf (BPf = Bmax/KD) is the outcome
measure most directly related to the density of available target.1

Other binding potentials called BPp and nondisplaceable binding
potential BPND (BPp = fP × Bmax/KD; BPND = fND × Bmax/KD) each
include an additional term unrelated to the target density: the
radioligand plasma free fraction fP, and the radioligand intracer-
ebral free fraction fND, respectively.
Estimating BPf and BPp generally requires measuring the

concentration of free (unbound to plasma proteins) radioligand
in the arterial plasma (metabolite-corrected input function, cIF) by
collecting blood samples from the subject’s radial artery at several
times during the scan, measuring the radioligand concentration in
these samples, and performing a separate metabolite analysis to
determine the fraction of unmetabolized parent compound. This

invasive and costly procedure deters subjects’ participation, and
requires highly specialized medical staff and equipment. Non-
displaceable binding potential can be measured without taking
blood samples during scanning using reference region appro-
aches4–11 (RRAs). However, to be valid, RRAs require the existence
of a measurable, valid, and reliable reference region in the brain
that is devoid of the target, and for comparisons to be valid, its
properties must be independent of treatment effects and
groups.1,12 A region meeting these criteria has not yet been
identified, or might not exist, for many radioligands,13–18 including
[11C]CUMI-101 (CUMI), a partial agonist of the serotonin 5-HT1A
receptor, which is implicated in the pathophysiology of numerous
neuropsychiatric disorders.3 Even if such a region exists, identifica-
tion and validation can be difficult. Erroneously designating a
region as a reference results in biased estimates of the PET
outcomes,19–22 and the validity of resulting conclusions may be
called into question.
As an alternative, simultaneous estimation (SIME) can fully

quantify the radioligand total volume of distribution (VT), which
will subsequently allow estimation of any of the three binding
potentials.2 Simultaneous estimation only requires time-activity
curves from multiple brain regions along with one individual
‘anchor’ value to ensure model identifiability. This anchor value
may be based on a single arterial blood sample taken at some
time after the injection.2 Simultaneous estimation is based on a
certain parametric model for the cIF, and incorporates the param-
eters describing this model together with the parameters related
to VT and the binding potentials into an overall cost function
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involving multiple regions, which is then optimized during the
model fitting process. Because it still requires at least one
anchor point, SIME does not obviate the need to draw any blood
during the scanning. Although it is an improvement to draw only
one arterial sample, this procedure is still challenging in clinical
settings, particularly when using simultaneous PET/magnetic
resonance scanners.
Here we propose a new methodology for full quantification of

VT (and therefore binding potentials, specifically the BPf) that
obviates the need for any blood sampling. The methodology uses
multiple linear regression of noninvasive and easy-to-collect
variables, such as injected dose (ID), body mass index (BMI), and
body surface area (BSA), and can be trained with a limited number
of scans that have full blood sampling data available. We show
here the methodology in the study case of CUMI.

MATERIALS AND METHODS
Subjects
Data for this methodological paper were previously collected for other
independent studies. Twenty-three available scans with CUMI were
examined, including 18 acquired in a test–retest study3 (9 healthy controls,
2 scans each) and 5 other independently acquired patients with major
depressive disorder. The studies were performed in accordance with the
Declaration of Helsinki and The Institutional Review Boards of Columbia
University Medical Center and New York State Psychiatric Institute
approved the protocol. Subjects gave written informed consent after
receiving an explanation of the study.

Positron Emission Tomography Protocol
Radioligand preparation, emission data acquisition and reconstruction, and
determination and fit of the cIF were obtained as previously described for
CUMI.3,23 Briefly, a venous catheter was used to inject the radioligand, and
an arterial catheter to obtain arterial samples for measuring the input
function. Positron emission tomography was performed with the ECAT HR
+ (Siemens/CTI, Knoxville, TN, USA). A 10-minute transmission scan was
obtained before radioligand injection. At the end of the transmission scan,
CUMI was administered intravenously as a bolus over 30 seconds. Emission
data were collected in three-dimensional mode for 120minutes, with 21
frames of increasing duration: 3 at 20 seconds, 3 at 1 minute, 3 at 2
minutes, 2 at 5 minutes, and 10 at 10minutes. Images were reconstructed
to a 128× 128 matrix (pixel size of 2.5 × 2.5 mm2). Reconstruction was
performed with attenuation correction using the transmission data, and
scatter correction was performed using model-based scatter correction.24

The reconstruction filter and estimated image filter were Shepp 0.5 (2.5 full
width at half maximum), Z filter was all pass 0.4 (2.0 full width at half
maximum), and zoom factor was 4.0, leading to a final image resolution of
5.1 mm full width at half maximum at the center of the field of view.

Input Function Measurement and Metabolite Correction
Arterial samples were collected with an automated sampling system every
5 seconds for the first 2 minutes, and manually thereafter for a total of 31
samples. Centrifuged plasma samples were collected in 200mL aliquots,
and the radioactivity was measured in a well counter. After initial
extraction, the percentage of CUMI radioactivity in plasma was determined
by high-performance liquid chromatography.25 Six of these samples were
used to measure the unmetabolized parent compound fractions. These
fractions were then fitted with a Hill function.3,26 The final product of the
fitted unmetabolized fraction and the total plasma counts was fit with a
straight line from time zero to the plasma peak and the sum of three
exponentials from the peak to the end (see below for details on the
model). The fitted values were used as input to the analyses that are here
referred to as analyses with full blood sampling.

Image Analysis
Images were analyzed using Matlab Release 2013b (The MathWorks, MA,
USA) with extensions to FMRIB's linear image registration tool version 5.2
(ref. 27), brain extraction tool version 1.2 (ref. 28). Motion correction
was applied. Thirteen anatomic target regions were identified21,29 and
selected for their known high concentration of 5-HT1A receptors as

assessed with [11C]WAY-100635 (ref. 22) and CUMI:3 hippocampus,
entorhinal cortex, insula, posterior parahippocampal gyrus, temporal,
amygdala, medial prefrontal cortex, cingulate, orbital, dorsolateral
prefrontal cortex, parietal, raphe nucleus, and occipital. In addition, the
gray matter of the cerebellum (GCER) was selected as the reference
region.3

Simultaneous Estimation
Simultaneous estimation assumes a certain parametric model, common to
all the brain regions, for cIF, and incorporates the free parameters of the
model together with the parameters related to the binding into a single
cost function, which is optimized during the model fitting process.2 Here
the model is the same assumed to fit the cIF when full blood sampling data

are available: cIF t; yð Þ ¼ mt t<tpeak
A1e - α1t þ A2e - α2t þ A3e - α3t tZ tpeak

�
, with

tpeak the time of the cIF peak, and θ= (m;tpeak;A1;A2;A3;α1;α2;α3) the vector
of free parameters of the cIF model, which include the slope m of the
prepeak phase, and the scale (A1;A2;A3) and rate constants (α1;α2;α3) of the
three-exponential function after the peak. This model has been used
extensively in full arterial-line blood sampling PET studies. The cost
function that is optimized is then:

y; L1; ¼ ; LN; R1; ¼ ; R2ð Þ ¼
XN
i¼1

Xn
j¼1

wj Yij - f y tj ; Ri ; Li
� �� �2

þ v ANC - cIF s; yð Þ½ �2 ð1Þ
where f y t; Ri ; Lið Þ ¼ PK

k¼1 Like
- Rik t � cIF t; yð Þ is the compartment

model describing the radioligand kinetics1,12 in region i: K is the
number of tissue compartments (two-tissue compartment, K= 2,
for CUMI3), and the macroparameters Li= (Li1,…,Lik) and Ri= (Ri1,…,Rik)
depend on the rate constants (K1 through k4) of the particular
compartmental structure12 (for CUMI, L1 ¼ K1

k3þk4 - α2
α1 - α2

, L2 = K1− L1,

R1 ¼ α1 ¼ 1
2 k2 þ k3 þ k4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k3 þ k4ð Þ2 - 4k2k4

q� 	
,

R2 ¼ α2 ¼ 1
2 k2 þ k3 þ k4 -

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k3 þ k4ð Þ2 - 4k2k4

q� 	
). Yij is the measured

PET signal in region i at time tj; and (w1,…,wn) are a set of known weights,
which we take to be equal to the square root of the corresponding
scanning time frame durations.3 ANC represents the available (blood-based
or predicted) anchor at time s after injection, and the weight v, that we set
to be relatively large (i.e., 100 and 1,000; see details in the Results section),
ensures that the estimated cIF passes very close to the anchor point.2 In
the case of CUMI, we take s to be 60minutes after injection.30

As compared with the analysis with full blood sampling data, SIME
increases the number of unknown parameters that needs to be estimated
and, accordingly, the computational complexity required for optimization.
Therefore, SIME is here implemented with a robust optimization algorithm
known as simulated annealing,31 which is more suitable for complex
optimizations than standard nonlinear regression techniques, such as
those based on the Newton–Raphson algorithm. The name simulated
annealing comes from the analogy of annealing two materials by heating
at a high temperature and then slowly cooling them down. Following this
analogy, in the simulated annealing algorithm, the set of parameters is
treated as a state and the objective function Φ as the energy of the state.
The algorithm travels iteratively through the parameter space by randomly
choosing a new ‘candidate state’ (determined by a new set of parameters)
at each step. The new state is accepted with probability given by the

Metropolis criterion: P ΔΦð Þ ¼ 1; if ΔΦ�0
e -ΔΦ=T ; otherwise

�
, where ΔΦ is the

decrease in the value of Φ that would result from moving to the new

state and T, the temperature of the system, which is gradually decreased at
each step. At high temperature (corresponding to early steps in the algorithm),
the Metropolis criterion allows the algorithm to escape local minima by
sometimes accepting ‘uphill’ movements. As the temperature decreases, the
algorithm becomes gradually more selective for ‘downhill’ movements.
For this study, the simulated annealing algorithm was implemented

similar to that described by Wong et al,32 with initial temperature set to
T=100. Starting values for the parameters are chosen randomly,
constrained according to limits derived from results of modeling data
with full blood sampling. In particular, each parameter is constrained to be
positive, and its upper limit is set considerably higher than any of the
corresponding parameters estimated with full blood sampling data. The
choice of limits does not appreciably affect the results, because as part of
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the simulated annealing algorithm these limits are iteratively reduced until
convergence. For each of the iterations, the candidate state is calculated
by perturbing one current parameter value based on a uniform distribution
with a range that is specific to each parameter. This range is set to the
limits described above for the first set of iterations and is gradually
tightened as the algorithm progresses. The candidate parameter vector is
‘accepted’ (and thus replaces the previous parameter values) with
probability P(ΔΦ). This perturbation and acceptance/rejection step is
repeated 20 times for each parameter, and the algorithm works through
each parameter in turn. After one round of searches through all the
parameters, the algorithm adjusts the vector of ranges so that the
acceptance rate of new candidates is ~ 50%. After 10 rounds of adjusting
the range vector, the current value of the parameters is stored as an
intermediate solution and the temperature is decreased by a factor of 0.8.
The algorithm continues until the objective function evaluated at the last
four intermediate solutions differs by o10− 5. The maximum number of
iterations is set at 5 × 106, which is high enough to ensure that the
algorithm does not prematurely terminate.
Simulated annealing performance in terms of convergence can be

affected by factors such as initial temperature T, rate of cooling, and the
number of steps between cooling, but most importantly the kinetic
diversity of the brain regions that are simultaneously estimated.2,30 Here,
we automatically select the regions for SIME using a data-driven voxel-
based algorithm30 that determines five subject-specific regions via k-
means clustering of gray and white matter voxels. Computational time for
one study is on average ~ 15minutes when five regions are used for
optimization.

Blood-Based Anchor
One arterial blood sample, taken after injection of the radioligand at a time
that is optimized according to the radioligand in hand,2 is used to
determine the total radioactivity of the radioligand in the plasma, and the
corresponding unmetabolized fraction, following the same methodology
described above for the analysis with multiple blood samples. The product
of the total radioactivity of the radioligand in the plasma and the
corresponding unmetabolized fraction represents the cIF at that time.2 In
the case of CUMI, one sample is taken 60minutes after injection.30 The
sample may also be used to measure the radioligand free fraction in the
plasma (fP), necessary to calculate BPf.

1

Predicted Anchor
Simultaneous estimation can be performed completely blood free by
substituting the required anchor, heretofore based on a single arterial
blood sample, with its predicted value. The prediction is performed using
multiple linear regression, using as predictors noninvasive and easily
collectable variables and biometrics that are related to the radioligand
injection and the individual metabolism of each subject. We explored here
three simple variables: radioligand ID, and two aggregate measures
indicative of individual metabolism, BMI (BMI =weight[lbs] � 703/(height
[in]),2 ref. 33), and BSA (BSA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

weight lbs½ � � height in½ �=3131p
, ref. 34). An

initial dataset of scans with full arterial blood sampling data available is
randomly divided into selection and validation subsets. Different multiple
linear models of the noninvasive variables and biometrics are trained using
the selection subset, and their performance are compared with that of
analysis with full blood sampling data, to select the best predicting model.

Free Fraction Considerations
If the model is trained to predict anchor values that do not contain any
information relative to fP, the proposed methodology allows calculating
only VT and BPp. BPp is calculated as BPp = VT− VTref, with VTref the VT in the
reference region, assumed to represent the nonspecific binding of the
radioligand common across all regions.1,3 However, calculating BPf also
requires the determination of fP, as BPf = BPp/fP = (VT− VTref)/fP (ref. 1).
Alternatively, the model can be trained to predict an anchor equal to the
cIF at the time of sampling after injection multiplied by fP. It can be easily
proved mathematically that this alternative anchor allows estimating BPf.

Application to CUMI
We collected ID, and calculated BMI and BSA, for all the available scans.
First, we randomly divided the scans into model-selection (18 scans) and
model-validation (5 scans) groups, to have enough scans available to train

the predicting models, while excluding a few subjects from the training
process to realistically measure out-of-sample prediction errors. Then, we
randomly further divided the model-selection group into model-selection
training (12 scans) and model-selection testing (6 scans) subgroups,
repeating the subgrouping for a sufficiently high number of distinct
instances (50). In each of these 50 distinct instances, we trained three linear
models of ID, BMI, and/or BSA using the model-selection training group:

y ¼ b1 þ b2 � IDþ b3 � BMIþ ε ð2Þ

y ¼ b1 þ b2 � IDþ b3 � BSAþ ε ð3Þ

y ¼ b1 þ b2 � IDþ b3 � BMIþ b4 � BSAþ ε ð4Þ
where y is the vector of blood-based anchors (including or not fP), and ID,
BMI, and BSA are vectors containing the corresponding ID, BMI, and BSA
values, respectively. Each model contains a variable that is related to the
CUMI injection (ID), and at least one variable related to the metabolism of
each subject (BMI and or BSA). In each of the 50 runs, we compared the
performance of the models using the model-selection testing group using
correlation (r) between predicted and blood-based anchors, slope and
intercept of the regression analysis (blood-based anchors are designated
the independent variable), mean and standard deviation (s.d.) of the
difference between predicted and blood-based anchors, and Akaike
information criterion.35 The selected model in each case was finally trained
using the whole model–selection group, and applied to the model-
validation group initially set aside.

Comparison with Full Blood Sampling Analysis
For all scans, we ran SIME using blood-based and both versions of
predicted anchors, here called cIF60 and cIF60 � fP, respectively, since for
CUMI the sample is taken 60minutes after injection.30 To isolate the effect
of the predicted anchor values, the clusters extracted via k-means to run
SIME were kept the same for each subject across different SIME runs. The
predicted cIF was then used to determine the input function for the
likelihood estimation in graphical analysis36 (LEGA) to calculate VT for cIF60,
and BPf for cIF60 � fP, in the 13 target regions. Quantification of outcomes
was repeated using LEGA and the cIF obtained from full blood sampling,
after correction for metabolites and fitting as described above. Outcome
estimates obtained by SIME with blood-based or predicted anchors were
compared with the corresponding ones obtained by analysis with full
blood sampling data, based on correlation coefficient (r), slope and
intercept of the regression line (outcomes obtained with full arterial-line
data are designated the independent variable), and mean and s.d. of the
difference between outcomes estimated by SIME with blood-based or
predicted anchors and outcomes estimated with full arterial-line data.

RESULTS
Prediction of the Anchor
Injected dose, BMI, and BSA values and their statistics for the
subjects in the considered dataset are reported in Table 1. The five
scans used as model-validation group are highlighted. The two
models that include ID and either BMI or BSA (equations 2 and 3)
provide predicted anchor values very close to each other and also
close to the blood-derived ones. Increasing the number of
predictors from 2 (ID and either BMI or BSA) to 3 (model in
equation 4) increases the complexity of the prediction model and
its parameters identification, without providing further improve-
ments in the description of the data. Only the results relative to
the two simpler models (ID and either BMI or BSA) are therefore
presented here, while the results of the model that includes both
BMI and BSA are not shown.
According to the 50-model–selection testing instances, the

most accurate, precise, and parsimonious model to predict the
anchor cIF60 uses ID and BMI. For this model, Figure 1 (top) shows
the Bland–Altman plots37 of predicted minus blood-based cIF60
values versus blood-based cIF60 values in the 50-model–selection
testing instances within the model-selection group (vertical
clusters of points correspond to the 50 distinct instances of six
testing scans), the model-selection group, and the model-
validation group. Results in the middle column refer to the
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predictive model (as selected using the 50 distinct subgrouping
instances shown on the left column) trained using the whole
model–selection group (18 scans). Results in the right column

refer to the trained predictive model as applied to the model-
validation group (5 scans), that is initially set aside and never used
in the selection or training of the predictive model. No trends in
the prediction errors with the amplitude of the anchor to be
predicted can be noticed in the model-selection and model-
validation groups, although there is an underestimation of the
highest anchors in some of the 50-model-selection testing
instances. Corresponding mean and intervals of confidence of
the vertical axis of the Bland–Altman plots are reported in Table 2
(top), together with the numerical results (r, slope and intercept)
of the regression analysis between predicted and blood-based
anchors. The results for the other models (ID and BSA) are also
reported in Table 2. Correlation is high (40.95) and slope is close
to unity (40.91) for both the ID and BMI, and the ID and BSA
models in the model-selection and model-validation group.
According to the 50-model–selection testing instances, the best

model to predict the anchor cIF60 � fP uses ID and BSA instead
(Figure 1, bottom; Table 2, bottom). Also in this case, no trends in
the prediction errors with the amplitude of the anchor to be
predicted can be noticed in the model-selection and model-
validation groups. For both models, the prediction performance
only slightly worsens in terms of bias with respect to, and
correlation with, the blood-based anchors in all the groups.

Outcomes Quantification: Comparison with Full Blood Sampling
Simultaneous estimation with blood-based anchor. For all scans,
cIF was calculated using SIME and the blood-based anchor; the
regions used to estimate cIF were three out of five clusters
extracted, automatically selected based on the area under the
curve of the average (over all voxels in the cluster) time-activity
curve.30 The weight v was 100, as previously suggested for SIME.2

This cIF was then used as input function for LEGA. Figure 2
displays the Bland–Altman plots37 of outcome measures esti-
mated with the cIF calculated using SIME minus the same
outcome measures estimated with cIF from full blood sampling (y-
axis) versus the outcome measures estimated with cIF from full
blood sampling (x-axis) in all the 13 target regions and the GCER
(only for VT; BPf is zero by definition in the reference region).
Points corresponding to different regions are shown in different

Table 1. ID, BMI, and BSA values and their statistics for the subjects in
the considered dataset

Scan # ID BMI BSA

1 12.49 30.04 1.89
2 15.69 30.04 1.89
3 3.53 26.31 1.85
4 7.75 26.31 1.85
5 6.31 23.29 1.70
6 10.65 23.29 1.70
7 6.76 25.10 2.02
8 7.58 25.10 2.02
9 3.29 25.09 1.89
10 15.38 23.63 1.88
11 10.81 23.63 1.88
12 11.4 28.89 2.03
13 12.27 28.89 2.03
14 9.5 24.21 1.78
15 4.15 24.21 1.78
16 6.05 23.99 1.97
17 7.05 23.99 1.97
18 12.49 28.71 1.76
19 13.75 28.71 1.76
20 3.48 23.03 1.62
21 7.20 21.41 1.79
22 4.32 30.18 1.81
23 14.48 26.70 2.22
Min 3.29 21.41 1.62
Max 15.69 30.18 2.22
Mean 8.97 25.86 1.87
Median 7.75 25.10 1.88
s.d. 4.02 2.65 0.14

BMI, body mass index; BSA, body surface area; ID, injected dose. ID is
measured in μCi, BMI in lb/in2, and BSA in (lb � in)0.5. The five scans used as
model-validation group are highlighted.

Figure 1. Top panel: Bland–Altman plots of predicted minus blood-based cIF60 values versus blood-based cIF60 values in the 50-model–
selection testing instances (cluster of points correspond to the 50 different instances of 6 testing scans) within the model-selection group
(left), the model-selection group (middle), and the model-validation group (right); mean and intervals of confidence of the vertical axis are
reported in each plot. Bottom panel: corresponding results for cIF60 � fP. cIF, metabolite-corrected input function; fp, plasma free fraction.
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colors. No trends in the estimation errors with the amplitude of
the outcome measure to be estimated can be noticed. Numerical
results (r, slope and intercept) of the regression analysis between
outcome measures estimated with SIME (in this case with blood-
based anchors) and outcome measures estimated with full blood
sampling are reported in Table 3. Correlation with estimates from
full blood sampling is high (40.91) for all outcomes, and the bias
found for the VT values decreases for BPf (slope is 0.929 and 0.986
for VT and BPf, respectively).

Simultaneous estimation with predicted anchor cIF60. For all scans,
cIF was calculated using SIME and the predicted anchor cIF60, the
same three regions and weight v used with the blood-based
anchors. This cIF was then used as input for LEGA. Figure 3 (top)
shows the Bland–Altman plots37 of VT values estimated with the
cIF calculated using SIME (with predicted anchors cIF60) minus the
same outcome measures estimated with cIF from full blood
sampling (y-axis) versus the VT values estimated with cIF from full
blood sampling (x-axis) in all the 13 target regions and the GCER.
Points corresponding to different regions are shown in different
colors. Results are reported separately for the model-selection
(left) and the model-validation (right) groups. A tendency to
underestimate the highest values of VT is visible in both groups,

which is confirmed by the slope values of the regression analysis
between outcome measures estimated with SIME (in this case
with predicted anchors cIF60) and outcome measures estimated
with full blood sampling reported in Table 3. Although the bias
increases and the correlation decreases as compared with SIME
with blood-based anchors, the blood-free estimation of the
outcomes is still close to the one obtained with full blood
sampling for both groups.

Simultaneous estimation with predicted anchor cIF60 � fP. For all
scans, cIF was calculated using SIME and the predicted anchor
cIF60 � fP; the regions were all of the five clusters extracted via
k-means, to ensure stability in the solutions with this alternative
anchor; a weight v of 1,000 was determined to be optimal for this
anchor. Figure 3 (bottom) displays the Bland–Altman plots37 of BPf
values estimated with the cIF calculated using SIME (in this case
with predicted anchors cIF60 � fP) minus the same outcome
measures estimated with cIF from full blood sampling (y-axis)
versus the BPf values estimated with cIF from full blood sampling
(x-axis) in all the 13 target regions (BPf is zero by definition in the
reference region, GCER). Points corresponding to different regions
are shown in different colors. Results are reported separately for
the model-selection (left) and the model-validation (right) groups.
The bias decreases and correlation improves with respect to the VT
case, although performance is still inferior to the one of SIME with
blood-based anchors (Table 3). The blood-free estimation of the
outcomes is, however, still close to that obtained using full blood
sampling for both groups.
We note no particular convergence issues in the simulated

annealing for the dataset here presented.

DISCUSSION
We present a methodology to fully quantify both VT and BPf with
sufficient accuracy without the need for any blood samples, and
showed its application to the radioligand CUMI. The methodology
combines SIME with multiple linear regression of noninvasive and
easy-to-collect measurements, such as ID, BMI, and BSA, to predict
the individual SIME anchor value, which otherwise must be based
on blood samples.
BMI and BSA are simple nonlinear models of weight (W) and

height (H). We investigated (results not shown) potential benefits
of using W and H (rather than BMI or BSA) as separate predictors,
and considered 10 different linear models of ID, W, and/or H along
with some basic nonlinear transformations of W and H, with
increasing number of free parameters. Results suggest that indeed
it is possible to predict the anchors needed by SIME by training
directly with transformed values of H and W rather than using BMI
and BSA. This could potentially give better performance for certain
radioligands and/or populations of subjects. However, the advan-
tage of BMI and BSA is that they already aggregate both H and W
in a single predictor, and therefore allow the use of more
parsimonious (i.e., fewer free parameters) models for the
prediction of the anchors than when H and W are treated as
separate predictors. Furthermore, BMI and BSA have a physiologic
meaning, as they are proxies for the volume into which the dose
of radioligand is distributed across when injected; therefore, they
can reasonably be expected to be linearly related to the anchor
point, as opposed to various arbitrary nonlinear transformations of
H and W.
In our proposed methodology, each predictive model is trained

using a limited number of scans with arterial blood samples
available (here 12), and then applied to all remaining scans. An
intrinsic limitation is the unpredictable behavior in a new set of
data if the range of values of the independent variables of the
model are significantly different from the range of values the
model was trained with. In the specific study case, if the values of
ID, BMI, and BSA in the new dataset are significantly different from

Table 2. Numerical comparison between blood-based and predicted
anchors with the models ID–BSA and ID–BMI for the anchors cIF60
(top) and cIF60 � fP (bottom)

Model-selection
testing

Model
selection

Model
validation

cIF60
ID–BMI
Slope 0.887 0.917 0.990
Intercept 0.003 0.003 0.000
r 0.930 0.958 0.953
Mean − 0.0011 0.0000 − 0.0002
s.d. 0.0062 0.0050 0.0044
Mean + 1.96*s.d. 0.0112 0.0098 0.0084
Mean − 1.96*s.d. − 0.0133 − 0.0097 − 0.0088

ID–BSA
Slope 0.875 0.918 0.984
Intercept 0.004 0.003 0.000
r 0.928 0.959 0.954
Mean − 0.0010 0.0000 − 0.0001
s.d. 0.0063 0.0049 0.0043
Mean + 1.96*s.d. 0.0114 0.0097 0.0084
Mean − 1.96*s.d. − 0.0133 − 0.0097 − 0.0085

cIF60*fP
ID–BMI
Slope 0.816 0.875 1.006
Intercept 0.002 0.001 − 0.001
r 0.880 0.936 0.909
Mean − 0.0005 0.0000 − 0.0007
s.d. 0.0025 0.0019 0.0023
Mean + 1.96*s.d. 0.0044 0.0037 0.0038
Mean − 1.96*s.d. − 0.0054 − 0.0037 − 0.0052

ID–BSA
Slope 0.832 0.858 0.811
Intercept 0.002 0.002 0.001
r 0.884 0.926 0.944
Mean − 0.0002 0.0000 − 0.0005
s.d. 0.0025 0.0020 0.0017
Mean + 1.96*s.d. 0.0046 0.0039 0.0028
Mean − 1.96*s.d. − 0.0050 − 0.0039 − 0.0038

BMI, body mass index; BSA, body surface area; cIF, metabolite-corrected
input function; fP, radioligand-free fraction in the plasma; ID, injected dose;
r, correlation coefficient.
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those used to train the model, which can be easily assessed for
each new subject before the beginning of the scan, it would be
advisable to draw one blood sample at 60 minutes after injection,
to ensure higher accuracy in the quantification of the binding
potentials. This sample could also be used to help train the model
to predict future observations (anchors for future subjects) with
higher accuracy. Higher accuracy could also be obtained by
considering measures as predictors that are even more specific
than BMI and BSA to metabolism and body shape, such as the
waist-to-hip ratio.
Higher accuracy (as compared with full blood sampling) could

also be achieved by considering more predicted anchors. The
emphasis on using only one anchor point for SIME was originally
supported by the fact that, mathematically, only one anchor per
subject is necessary, and that, in terms of subjects’ comfort, there
is a significant difference between drawing only one arterial blood

sample and drawing multiple samples, to the point that, if
multiple samples would be needed, the advantages of using SIME
(as compared with complete sampling of the input function)
would almost disappear. However, in the new prediction-based
approach proposed here, several anchors per subject, at different
times of sampling, could potentially be predicted as long as blood
data to train the predictive models are available. Each anchor
point would be predicted from the noninvasive variables with
some error, and therefore adding one or more predicted anchors
could help in improving the accuracy of SIME. Predicting multiple
anchors from noninvasive variables could also be useful, for
example, for methodologies other than SIME, such as some of the
image-derived input function approaches, which still need more
than one blood sample to scale/correct the recovered input
function.38 To put this into practice, however, careful investigation
of the relative weights associated (in estimating the final input
function) with each of the predicted anchors per subject would be
needed.
Another limitation of the proposed study is that 18 of our

available CUMI scans correspond to 9 subjects, each recorded
twice in a test–retest setup. Nonindependence of the measure-
ments would need to be taken into account in the correlation
analyses, if we were making inference (e.g., computing a P-value)
on the correlation coefficients. Despite it being computed on
nonindependent data, we regard the correlation coefficient (r) as a
reasonable measure, especially because we are only comparing it
with other correlation coefficients computed under identical
circumstances. The reason we did not consider, for example, only
the baseline scan for each of the subjects in the test–retest in our
dataset is to maintain a sample size large enough to allow for the
proposed two-level cross-validation. Furthermore, we note that,
although BMI and BSA values are the same for the test and retest
scan of each subject, the value of ID, one of the predictors of the
anchor for SIME, will generally be different for each scan. Also, the
five scans (see Table 1) that constitute the model-validation group
(that realistically measure out-of-sample prediction errors, as they
are never used in the training of the predictive models) involved
five independent subjects.
A further limitation of this study is that, in the absence of a

specific model that relates biometrics and metabolite-corrected
concentration of radioligand in the plasma, it is not possible to
test the methodology on simulated data.

Figure 2. Bland–Altman plots of outcome measures (VT, left; BPf, right) estimated for all scans using LEGA with the cIF calculated using SIME
(with blood-based anchors) minus the same outcome measures estimated with cIF from full blood sampling (y-axis), versus the outcome
measures estimated with cIF from full blood sampling (x-axis) in all the 13 target regions and the GCER (only for VT; BPf is zero by definition in
the reference region). Mean and intervals of confidence of the vertical axis are reported in each plot. Points corresponding to different regions
are shown in different colors. BPf, binding potential; cIF, metabolite-corrected input function; GCER, gray matter of the cerebellum; LEGA,
likelihood estimation in graphical analysis; SIME, simultaneous estimation; VT, volume of distribution.

Table 3. Numerical results (r, slope and intercept) of the regression
analysis between outcome measures estimated with SIME (with blood-
based or predicted anchors) and outcome measures estimated with
full blood sampling

VT BPf

Blood-based anchor
Slope 0.929 0.986
Intercept 1.582 0.637
r 0.916 0.949

Predicted anchor
Model-selection group
Slope 0.772 0.842
Intercept 2.838 0.762
r 0.764 0.937

Model-validation group
Slope 0.722 0.836
Intercept 4.073 1.597
r 0.828 0.883

BPf, binding potential; r, correlation coefficient; SIME, simultaneous
estimation; VT, volume of distribution.
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Even with these limitations, and although using SIME with
anchor based on only one arterial blood sample already provides a
minimally invasive accurate quantification of the binding poten-
tials (Figure 2), there are several experimental settings that would
make drawing even that one sample particularly challenging (e.g.,
novel PET/magnetic resonance imaging scanners). In such a
situation, substituting the blood-based anchor with a prediction
based on noninvasive variables, while maintaining accuracy in the
estimation of outcomes of interest, allows fully quantifying the
binding absolutely blood free. This quantification is sufficiently
close to the quantification with full arterial-line sampling analysis,
especially when the binding potential BPf (Figure 3) is considered.
In the case of CUMI, BPf, which most researchers regard as most

closely reflecting in vivo measurements of Bmax and KD and results
obtained in vitro,1 represents the ideal outcome.3 In the case of
CUMI, RRAs may be also accurately applied11 because of the
relatively low percentage of specific binding and high nonspecific
binding in the cerebellum, estimated to be 0.09 mL/cm3 based on
our in vitro and in vivo studies using [11C]WAY-100635 (ref. 3).
However, this still remains to be validated experimentally.
Furthermore, although RRAs work satisfactorily for CUMI,11 they

only allow estimation of the BPND
1,12. Nondisplaceable binding

potential is only linearly related to Bmax and KD through fND,
typically assumed to be equal in receptor-rich and receptor-free
regions. Furthermore, effective use of BPND as an outcome
measure depends most heavily on the assumption that the
nondisplaceable uptake is independent of subject groups or
treatment effects.1 Therefore for CUMI,11 the blood-free metho-
dology here proposed should be preferred over RRAs.
It could be argued that, even the calculation of BPf as

BPf = (VT− VTref)/fP could be biased if the reference region selected
to estimate VTref is not an actual reference region. We are currently
investigating the extension of SIME to estimate the VTref without
need for specifying a reference region.
The methodology proposed here maintains high levels of

accuracy in the quantification of the binding to the target
receptors, while performing a PET scan more cost-effective and
less challenging logistically, at the same time diminishing the
burden on the subjects. The methodology can pave the way to a
broader use of PET in the investigation of brain diseases, and
potentially as a screening tool for clinical diagnosis and per-
sonalized treatment.

Figure 3. Top panel: Bland–Altman plots of VT values estimated using LEGA with the cIF calculated using SIME (with predicted anchors cIF60)
minus the same outcome measures estimated using LEGA with cIF from full blood sampling (y-axis), versus the VT values estimated with cIF
from full blood sampling (x-axis) for the model-selection group (18 scans, left) and model-validation group 5 scans, right) in all the 13 target
regions and the GCER. Bottom panel: Bland–Altman plots of BPf values estimated using LEGA with the cIF calculated using SIME (with
predicted anchors cIF60 � fP) minus the same outcome measures estimated using LEGA with cIF from full blood sampling (y-axis), versus the BPf
values estimated with cIF from full blood sampling (x-axis) in all the 13 target regions (BPf is zero by definition in the reference region, GCER)
for the model-selection group (left) and model-validation group (right). Mean and intervals of confidence of the vertical axis are reported in
each plot. Points corresponding to different regions are shown in different colors. BPf, binding potential; cIF, metabolite-corrected input
function; GCER, gray matter of the cerebellum; LEGA, likelihood estimation in graphical analysis; SIME, simultaneous estimation; VT, volume of
distribution.
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The results presented here are the first step of an incremental
development of the methodology, whose several aspects would
benefit from further investigation. The current implementation of
SIME considers very relaxed boundaries for the values that the
parameters describing cIF can assume. If this allows for more
flexibility in describing any possible cIF curve on the one hand, it
also increases the likelihood of obtaining locally instead of globally
optimal solutions for the estimated cIF on the other. The accuracy
of the estimates could be therefore improved by adding more
stringent, subject-specific, and data-driven boundaries for the cIF
parameters. Also, the model here adopted to describe the cIF
contains a discontinuity at the time of the curve peak, and although
it has been used extensively in full arterial-line blood sampling
situations, within SIME it can generate solutions that do not seem
reasonable physiologically. This can lead to increased inaccuracy in
the quantification of the binding potentials. It would be valuable to
consider alternative models for the cIF, including those commonly
adopted for pharmacokinetic analysis,39 and assessing advantages
and disadvantages of increasing/decreasing the number of free
parameters in the cIF model.
Given that each of the available blood data point that we use

for training the predictive model is also measured with some
noise, it would also be valuable to determine in each subject an
‘optimal’ anchor, independent of the available blood data, and
that is defined as the anchor value that would provide nearly
the same estimation of a certain outcome measure (e.g., the
radioligand VT) as the traditional analysis with full arterial blood
sampling data. This can help achieve higher accuracy with SIME,
and is part of our planned future investigation.
Future directions of investigation also include the assessment of

the precision of the outcome estimates obtained by SIME, which
involves bootstrapping of the single blood-based or predicted
anchor.40 This could be accomplished for each bootstrap sample
in a ‘parametric’ bootstrap manner by simulating a single random
variable representing the error in predicting the anchor point
based on the fitted model. An estimate for the variance of this
random variable can be taken from the mean squared error of the
regression using the training data.
Future investigations will also involve the validation of the

proposed approach on independent sets of data, and the
validation and extension of the proposed methodology to other
PET radioligands.

CONCLUSIONS
It is possible to fully quantify PET outcome measures such as VT
and binding potentials without drawing any blood samples from
the subject. The proposed methodology, here applied to CUMI as
a test case, can be extended to other radioligands, after
assessment of its performance in terms of precision and general-
ization flexibility.
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