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Based on myosin heavy chain (MHC) isoform, human skeletal muscle fi-
bers can be categorized into three fiber types, type I, IIa, IIx fibers, and 
each fiber type has different characteristics. Typical characteristics are 
difference in force production, shortening velocity, and fatigue resis-
tance. When the muscle is contract and stretched by a force that is 
greater than the force generated by the muscle, contraction-induced 
muscle damage frequently occurs. Several experimental models involv-
ing both human and animal have considered the susceptibility of differ-
ent muscle fiber type and part of muscles to eccentric induced muscle 
damage. General consensus is a greater susceptibility of fast-twitch fi-

ber or type II fiber to damage following eccentric contractions. However, 
the results from these previous efforts were not enough to conclude the 
susceptibility between each individual fiber types after eccentric con-
traction. Therefore, the purpose of this review is to explore detail limita-
tion and interpretation of previous studies, and review the recent study 
that eliminated the prior limitations, such as strain magnitude, lengthen-
ing velocity, fiber type heterogeneity, and muscle architecture issue. 
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INTRODUCTION

Muscle is a heterogeneous tissue, containing cells with different 
contractile properties, metabolic profiles, and fatigue resistance. 
Much of this diversity is correlated with the myosin heavy chain 
(MHC) isoform expressed by the cell. Small mammals express nine 
MHC isoforms of which four, type I or β, type IIa, type IIx, and 
type IIb, are expressed in adult limb muscles (Ennion et al., 1995; 
Smerdu et al., 1994). The type IIb isoform is not found in the limb 
muscles of large mammals, including humans. Human muscle fi-
bers can be categorized into three fiber types: type I, IIa, and IIx 
(Ennion et al., 1995; Smerdu et al., 1994). These isoform can also 
be co-expressed, resulting in hybrid fiber types: type I/IIa, and type 
IIa/IIx or even type I/IIa/IIx (Caiozzo et al., 2003; Pette and Staron, 
2001). Typical characteristics of fiber types are force production, 
and shortening velocity. Type IIa or IIx fiber produce higher force 
and contract faster than type I fibers, whereas type I fibers appear 
to be more fatigue resistant than other fiber types. Type IIx fiber 

contract and relax slightly faster than type IIa fibers, but both are 
faster than type I fiber.

As well known, an eccentric contraction is much more likely to 
injury a muscle compared to an isometric contraction or a contrac-
tion in which the force producing muscle shortens (Allen, 2001; 
Faulkner et al., 1993; Lieber and Friden, 2002; Proske and Allen, 
2005; Warren et al., 2001). It is also generally accepted that fast 
muscle fibers are more susceptible to eccentric contraction than 
slow muscle fibers (Friden et al., 1983; Jones et al., 1986; Lieber 
and Friden, 1988; Warren et al., 1994). This idea is based on his-
tological and functional experiments performed on human and an-
imal models. However, a critical appraisal of this body of work 
shows that the evidence supporting the idea that fast muscle fibers 
are more susceptible to eccentric injury is far from complete or 
conclusive. Therefore, in this review the detail limitation of previ-
ous work on distinct susceptibility on MHC isoform will be dis-
cussed first, and then recent work on differential susceptibility of 
MHC heterogeneity will be reviewed. 
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PREVIOUS STUDIES IN DISTINCT 
SUSCEPTIBILITY ON MHC ISOFORM

Studies on humans have reported a greater susceptibility of fast-
twitch fibers to damage (Asp et al., 1998; Friden et al., 1983; 
Jones et al., 1986). However, these studies have used indirect 
methods to quantify the muscle injury such as histological markers 
of damage (Friden et al., 1983) or the plasma creatine kinase (CK) 
concentration (Jones et al., 1986). Plasma CK concentration is fre-
quently used as an index of the muscle damage after eccentric con-
traction. However, no significant correlation was observed between 
CK concentration and muscle strength (Friden and Lieber, 2001). 
Another study investigated muscle glycogen content after eccen-
tric exercise, and it revealed type II fibers were predominantly re-
cruited (Asp et al., 1998). Thus the authors concluded a selective 
effect of eccentric contractions on type II fiber but it could not be 
readily accepted that the glycogen content represents the suscepti-
bility of muscle structure and functional to damage.

Functional approaches performed on isolated mouse muscle (so-
leus and extensor digitorum longus (EDL)) are limited by fiber 
type heterogeneity and muscle architectural differences. For in-
stance, mouse soleus muscles are not constituted with only slow fi-
ber types, and mouse EDL muscle express an extra MHC isoform, 
type IIb, which is not founded in human limb muscle (Ennion et 
al., 1995; Smerdu et al., 1994). Furthermore, its slow type I MHC 
isoform has a faster velocity than the human slow type I MHC 
(Widrick et al., 1997). Thus, these species differences could con-
found generalization of animal data to humans. Also, the differenc-
es of muscle architecture between mouse soleus and EDL muscle 
resulted in the differentiation of applied strain amount to each 
muscle, due to differences in the fiber length to muscle length ra-
tios of these muscles (Warren et al., 1994).

Studies using single muscle fibers, obtained from animals report 
that muscles comprised of predominantly fast fibers are preferen-
tially damaged (Brockett et al., 2002; Friden and Lieber, 1992; Li-
eber and Friden, 1988; Lynch et al., 2008; Macpherson et al., 
1996; Rader et al., 2007; Vijayan et al., 2001). Only three of these 
studies have directly examined muscle fiber function: two studies 
examined fibers from the predominately slow soleus and the pre-
dominately fast EDL of the rat (Lynch et al., 2008; Macpherson et 
al., 1996), and another study examined fibers from normal and 
congenitally clefted goat palates (Rader et al., 2007). Most of these 
studies have been performed using muscles from rodents. As dis-
cussed above, small mammals and humans do not express all of the 
same MHC isoforms. Sarcomere heterogeneity after eccentric con-

tractions was also measured with fiber type identification by sodi-
um dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 
(Patel et al., 2004). However, they used the pooled fiber bundles 
from the frog tibialis anterior muscle, which is comprised of two 
equal part of fastest amphibian muscle fiber type (Lutz et al., 
1998). Brockett (Brockett et al., 2002) also studied the vulnerabil-
ity of different motor units that consisted of mixed fiber types us-
ing the cat muscle without identifying the fiber types. None of 
these studies examined MHC isoform content and function in the 
same fibers, making it difficult to draw conclusions about damage 
to individual fiber types. 

Although most studies show greater susceptibility of fast-twitch 
fibers, a few studies report that slow-twitch, or type I fibers, were 
selectively damaged during eccentric contractions. Armstrong 
(Armstrong et al., 1983) showed that the deeply embedded slow-
twitch fibers were predominantly damaged after downhill running 
compare to level running. However, downhill running may prefer-
entially recruit the slow fiber type, and this may obscure which 
type is actually more susceptible. Another study indicated the in-
creased fragment rate in slow-twitch skeletal MHC through mag-
netic resonance imaging (Mair et al., 1992), and plasma creatine 
kinase (CK) concentration, which is not a highly correlated index 
of muscle damage. 

POTENTIAL MECHANISM OF PREFERENTIAL 
DAMAGE TO FAST TWITCH MUSCLE AFTER 
ECCENTRIC CONTRACTION

Even though there is no conclusive mechanism yet, several po-
tential mechanisms were proposed to explain the greater vulnera-
bility of fast-twitch fibers. One proposed mechanism was that fast-
twitch fibers fatigued faster than slow-twitch fiber, and the fast-
twitch fibers stay in rigor binding stage during cross-bridge cycle 
due to impaired ATP regeneration, which results in mechanical 
damage as these rigor fibers are stretched (Friden and Lieber, 
1992). However, this hypothesis does not hold up because studies 
report that fatigued muscle is less susceptible to damage or fatigue 
has no effect (Choi and Widrick, 2009; Friden and Lieber, 1992; 
Mair et al., 1996; Morgan et al., 2004) and other studies support 
the fatigued muscle is more resistible to eccentric-induced muscle 
injury (Nosaka and Clarkson, 1997). It has been suggested that the 
ultrastructural differences between type I and type II fibers explain 
the greater vulnerability of fast-twitch fibers to eccentric-induced 
muscle damage. Fast-twitch fibers have narrower Z-lines compared 
to slow-twitch fibers (Friden et al., 1983), which reflect fewer at-
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tachments for thick and thin filaments (Yamaguchi et al., 1985). 
Type II fibers contain smaller isoforms of the sarcomeric proteins 
myomesion and nebulin, which play a role in sarcomere assembly 
(Agarkova et al., 2004; Prado et al., 2005). Therefore, relatively 
greater stress is applied to the cytoskeleton of fast fiber, resulting in 
a higher susceptibility to damage. This phenomenon also con-
firmed from the reloaded human soleus fiber after 17 days of bed 
rest and spaceflight (Widrick et al., 1999). He found that the fi-
bers, have weak connections between sarcomeres were relatively 
weaker than fibers, have normal connection between sarcomeres, 
due to greater workload. Also, fast fibers express a lower molecular 
weight, and less elastic, titin isoform than slow fibers (Prado et al., 
2005) The less compliant titin in fast fibers may transmit greater 
stress during eccentric contractions (Horowits, 1992). 

Accordingly, it is widely accepted that fast-twitch, or type II fi-
bers tend to be more vulnerable to eccentric-induced muscle injury 
(Byrne et al., 2004; Proske and Morgan, 2001). However, none of 
above studies has investigated the relationship between fiber MHC 
isoform content and its susceptibility to eccentric contraction using 
single fiber preparation, isolated from human muscle, with the 
identification of fiber type. 

RECENT STUDIES IN DISTINCT 
SUSCEPTIBILITY ON MHC ISOFORM

Accordingly, it is clear that more data examining the relation-
ship between fiber type expression and susceptibility after eccentric 
contraction are required. Chemically skinned single muscle fiber 
preparations can avoid limitations of previous studies by allowing 
the investigator control over strain magnitude and velocity under 
standard experimental conditions of temperature, ionic strength 
and activating Ca2+ concentration. The issue of fiber type heteroge-
neity can also be overcome by identification of MHC isoforms in 
the same of single muscle fiber segments used for the physiological 
assays. 

There is a study that utilizes the single fiber approach to exam-
ine the differential susceptibility on MHC isoform (Choi and Wid-
rick, 2010). Ca2+-activated skinned muscle fiber segments, prepared 
from healthy untrained young subjects (25±2 yr, n=10) were 
subjected to standardized an eccentric contraction, in terms of 
strain magnitude (25% of fiber length) and lengthening velocity 
(50% of maximum shortening velocity). Maximal force was mea-
sured before and after a single eccentric or fixed-end contraction, 
and fiber MHC isoform contents were confirmed by gel electro-
phoresis. A model was developed using multiple linear regression 

to describe how each of major fiber type populations present in hu-
man limb muscle responds to a single eccentric contraction, The 
best model reveals a fiber type independent factor (pre-treatment 
force) and a fiber type dependent factor (MHC expressions) to the 
damage process. Regardless of fiber type, fiber generating greater 
pre-eccentric specific force showed greater post-eccentric force defi-
cits. When this pre-treatment force was controlled, fiber express-
ing type I or IIa MHC had identical force change to the eccentric 
contraction, whereas fiber co-expressing the type IIa and IIx MHC 
isoforms showed 3-folder greater force deficit. These results could 
be interpreted as evidence that the fastest MHC isoforms, in this 
case type IIx, were associated with greater damage. However, an 
equally valid interpretation would be that the co-expression of 
multiple MHC isoforms within the same fiber is the critical factor. 
Note 

However, a limitation of the skinned fiber approach is that fibers 
are studied in an artificial milieu (although one thought to repre-
sent the intracellular milieu). In addition, the skinning process 
may remove or allow efflux of structural (e.g. dystrophin) or enzy-
matic (e.g. calpain) proteins that may be involved in the damage 
process. Finally, fibers are maximally activated where in vivo, differ-
ent fiber types may be differentially recruited by the nervous sys-
tem, altering their apparent susceptibility to injury. Therefore, ad-
ditional studies need to address the response of living cells to in vivo 
eccentric exercise.

CONCLUSIONS

While most studies conclude that type II fibers are more suscep-
tible to eccentric-induced muscle injury, these finding are based on 
indirect measures of damage, conducted on muscles instead of fi-
bers, and if conducted on fibers, have not confirmed MHC isoform 
context by gel electrophoresis which provide a more accurate de-
termination of the fiber types including hybrid fiber (Glaser et al., 
2010; Pandorf et al., 2010). Since most muscles are heterogeneous 
in the fiber type composition, whole muscle or motor unit studies 
cannot effectively evaluate changes of function occurring in type I 
and type II fibers following eccentric contractions. However, recent 
single muscle fiber study found a single eccentric treatment (25% 
strain with 50% lengthening velocity) resulted in 9 kN/m2 (8.1%) 
and 12 kN/m2 (9.8%) of force drop compare to pre-treatment force 
for fibers expressing a single MHC isoform (I and IIa, respectively). 
However, hybrid fibers containing IIa and IIx MHC isoform 
showed 3-folders greater force deficit (38 kN/m2, 28.4%) than ei-
ther type I or type IIa fibers. These results indicate that human fast 
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hybrid fibers (IIa/IIx) are further sensitive to a standardized in vitro 
eccentric contraction. 
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