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Abstract
Microparticles, also called microvesicles, are submicron extracellular vesicles produced by

plasma membrane budding and shedding recognized as key actors in numerous physio

(patho)logical processes. Since they can be released by virtually any cell lineages and are

retrieved in biological fluids, microparticles appear as potent biomarkers. However, the

small dimensions of microparticles and soluble factors present in body fluids can consider-

ably impede their quantification. Here, flow cytometry with improved methodology for micro-

particle resolution was used to detect microparticles of human and mouse species

generated from platelets, red blood cells, endothelial cells, apoptotic thymocytes and cells

from the male reproductive tract. A family of soluble proteins, the secreted phospholipases

A2 (sPLA2), comprises enzymes concomitantly expressed with microparticles in biological

fluids and that catalyze the hydrolysis of membrane phospholipids. As sPLA2 can hydrolyze

phosphatidylserine, a phospholipid frequently used to assess microparticles, and might

even clear microparticles, we further considered the impact of relevant sPLA2 enzymes,

sPLA2 group IIA, V and X, on microparticle quantification. We observed that if enriched in

fluids, certain sPLA2 enzymes impair the quantification of microparticles depending on the

species studied, the source of microparticles and the means of detection employed (surface

phosphatidylserine or protein antigen detection). This study provides analytical
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considerations for appropriate interpretation of microparticle cytofluorometric measure-

ments in biological samples containing sPLA2 enzymes.

Introduction
Extracellular vesicles (EV) are small membrane vesicles derived from cells upon activation or
apoptosis. The classification of EVs is mostly based on their size, composition and most impor-
tantly on their process of release. Exosomes (50–100nm in diameter) are stored in cells and are
liberated by exocytosis of multivesicular bodies. Apoptotic bodies (1000–5000nm in diameter)
and microparticles (100–1000nm in diameter) are produced by plasma membrane budding
during apoptosis and cell activation, respectively [1].

The release of microparticles (MP) implicates an increase of intracellular calcium and rear-
rangement of the cytoskeleton [2]. During this process, membrane asymmetry is generally lost,
leading to the exposure of phosphatidylserine (PS) normally present only in the inner leaflet of
the membrane bilayer. Functionally, the exposed PS is implicated in the promotion of the coag-
ulation cascade [2, 3] and rapid (<10 minutes to some hours) clearance of MPs in blood circu-
lation [4, 5, 6], mostly through its recognition by lactadherin and developmental endothelial
locus-1 (Del-1) [7, 8]. Intriguingly, MPs in blood and in the synovial fluid of patients with
rheumatoid arthritis (RA), an autoimmune inflammatory disease affecting the joints, are fre-
quently deprived of surface PS [9, 10, 11, 12]. However, how MPs maintain membrane asym-
metry in these conditions remains to be elucidated.

Apart from PS, MPs also express surface antigens and transport cargo (e.g. mRNA, micro-
RNA, proteins) [1, 13] that originate from the donor cell, suggesting that different MPs might
play distinct functions depending on the cell they are derived from. To date, MPs have been de-
scribed as key actors in intercellular communication, as effectors in thrombosis, immunology,
inflammation, reproduction, atherosclerosis, autoimmune diseases and cancer [13, 14, 15, 16,
17]. Thus, their precise detection in diverse biological fluids is crucial for the development of
biomarkers and the comprehension of their functional activities.

Flow cytometry is the most widely used approach for the detection of MPs. However, stud-
ies showed that MPs smaller than approximately 0.5mm in diameter were not efficiently re-
solved by these technologies [18, 19, 20]. Multiple smaller MPs can be in fact detected
simultaneously and are erroneously considered as single MP [19]. This process, referred to as
swarm or coincidence detection, remains useful for the detection of smaller MPs, but it biases
MP quantification and leads to misinterpretations of observations based on MP multi-color la-
beling. High sensitivity flow cytometers have been developed [12, 21, 22, 23, 24, 25, 26, 27, 28]
and provide sufficient size resolution for the identification of MP subtypes, such as MPs deco-
rated with autoantibodies and those containing organelles [12, 22]. However, as with conven-
tional flow cytometers, protein aggregates [29, 30] and potentially other factors present in
biological samples may interfere in measurements performed with novel generation flow
cytometers.

A family of small (≈14kDa) soluble proteins, the calcium-dependent secreted phospholi-
pases A2 (sPLA2), comprises enzymes that catalyze the hydrolysis of membrane phospholipids
at position sn-2, producing free fatty acids and lysophospholipids [31, 32]. Currently,
10 human sPLA2s (11 in mice) have been described and classified in different groups accord-
ing to their sequence homology, structure and number and position of disulphide bounds
[32]. The different sPLA2 enzymes play non-redundant physio- and pathological roles in
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dietary lipid digestion, reproduction, coagulation, anti-microbial defense, asthma, allergy,
atherosclerosis, RA, and cancer [32]. sPLA2s from the groups IIA, V and X are among the
most abundant and active enzymes [33] and present distinct substrate specificity, supporting
the notion that they might not be isozymes [33, 34, 35, 36]. For instance, sPLA2 IIA (like
most sPLA2s) shows a strong preference for anionic phospholipids like PS, whereas sPLA2

V and X are unique among sPLA2s as they display significant activity on anionic and zwitter-
ionic phospholipids, such as those expressed on surface of intact cells [31, 32, 33].
Consistent with their respective preference for anionic vs zwitterionic phospholipids, sPLA2 V
and X, and not sPLA2 IIA, can efficiently release fatty acids from the plasma membrane of in-
tact cells [32]. sPLA2 IIA, on the other hand, is highly potent at hydrolyzing Gram+ bacteria
[31, 32] (rich in surface phosphatidylglycerol) and can utilize MPs produced by red blood cell
(RBC), platelets and whole blood cells as substrate [22, 37]. As these enzymes are secreted,
they can also interact with cells through binding to receptors, proteoglycans or other binding
proteins [38, 39, 40]. Thus, there exist different sPLA2 enzymes, and their functions might be
dictated by their substrate specificity, interaction with receptors and cellular/organ
expression.

sPLA2s are secreted by numerous cellular lineages including platelets, neutrophils, macro-
phages, endothelial cells and fibroblasts [31, 32, 41]. sPLA2s and MPs are detected in most, if
not all, biological fluids, including blood/plasma, bronchoalveolar lavages, cerebrospinal
fluid, saliva, semen, synovial fluid, tears and urine, suggesting that a potential interaction be-
tween MPs and sPLA2s might occur in vivo [14, 16, 17, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51].
MP quantification generally involves probes that recognize surface PS (such as annexin-V)
and surface cell lineage antigens (using fluorochrome-conjugated antibodies). Accordingly,
it was suggested that annexin-V probes were inappropriate for the detection of MPs in
sPLA2s-containing fluids [52], and several authors also suggested that sPLA2s could clear MPs
[15, 16, 51, 53, 54, 55, 56, 57, 58]. However, whether exposition of MPs to sPLA2s promotes
MP clearance or impacts PS recognition by annexin-V probes has never been formally
assessed.

In the present study, we aimed to determine the impact of some of the most abundant,
and thereby the best-described sPLA2s, namely sPLA2 group IIA, V and X, on MP quantifica-
tion. Since murine and human sPLA2s might display different affinities toward MPs, we
used recombinant murine and human sPLA2s and conducted mechanistic investigations by
using inactive sPLA2 mutants. Similarly, we surmised that, depending on their cellular source,
MPs might harbor distinct components (lipids and receptors) with different affinities for
sPLA2s, which might impact hydrolysis. Thus, we used MPs from platelets, RBC, endothelial
cells, apoptotic thymocytes and cells from the male reproductive tract, all from human and
mouse species, for our analyses. Using the most advanced flow cytometric methods for the de-
tection and quantification of MPs, we made the observation that sPLA2 enzymes utilize MPs
as substrate, and thereby impair the quantification of MPs differently depending on 1) the
sPLA2 group implicated, 2) the species studied (human or mouse), 3) the cellular source of
MPs and 4) the means of detection employed (annexin-V or antigen recognition by
antibodies).

Our study provides comprehensive considerations for the detection of MPs of different cel-
lular lineages using high sensitivity flow cytometry. Moreover, considering that MPs and
sPLA2s are often concomitantly present in biological fluids and cells culture supernatants, our
observations suggest that the modulation of certain types of MPs should be interpreted with
caution, especially if sPLA2s are overexpressed, and might provide mechanistic insights on the
contribution of sPLA2 in the biological functions of MPs.

Microparticle Detection by Flow Cytometry

PLOS ONE | DOI:10.1371/journal.pone.0116812 January 14, 2015 3 / 27



Materials and Methods

Ethic statement
Human blood cells were obtained from citrated blood of healthy volunteers under an approved
institutional review board protocol (Comité Éthique de la Recherche du CHU de Québec). The
donors gave their written consent and this consent procedure was approved by the Comité
Éthique de la Recherche du CHU de Québec.

Human thymuses from newborns and young children were obtained under an approved in-
stitutional review board protocol (Comité Éthique de la Recherche du CHU de Québec) follow-
ing written consent (approved by the Comité Éthique de la Recherche du CHU de Québec) of
the family after a cardiac surgery (CHU de Quebec).

Human epididymidal tissues from a 52-year-old donor were obtained through the trans-
plantation program Québec Transplant (Quebec City, Canada) following written consents of
the family. The donor had no known pathologies that could affect reproductive functions. Ex-
periments were conducted according to the policies for the Human Studies with the approval
of the ethical committee of the Institutional Review Board of the Centre Hospitalier Universi-
taire de Québec (CHUQ protocol 09.04.006).

Semen samples were obtained in our institution’s clinical andrology laboratory by mastur-
bation from healthy volunteer donors under an approved institutional review board protocol
(Comité Éthique de la Recherche du CHU de Québec). The donors gave their written consent,
which was approved by the Comité Éthique de la Recherche du CHU de Québec.

In this study, Guidelines of the Canadian Council on Animal Care were followed in a proto-
col approved by the Animal Welfare committee at Laval University. Cardiac punctures were
performed under isoflurane anesthesia, Thymus harvesting was performed after an isoflurane
anesthesia followed by euthanasia with CO2 and all efforts were made to minimize suffering.

This study was reviewed and approved by our institutional review board (Comité Éthique
de la Recherche du CHU de Québec) before its initiation.

Production and Isolation of platelet MPs
Citrated blood was transferred to 50 ml tubes (BD Falcon) and was centrifuged 10 minutes
at 282g (room temperature (RT)) without brake. The platelet-rich plasma was harvested and
1/5 volume of acid citrate dextrose (ACD) and 1/50 volume of EDTA were added. The PRP
was then centrifuged 5 minutes at 400g (RT) and the supernatant was harvested and further
centrifuged 5 minutes at 1300g (RT). The supernatant was discarded, the pellet was resus-
pended in 2ml of Tyrode’s buffer pH 6.5 and 13ml of Tyrode’s buffer pH 7.4 were added to the
homogeneous preparation of platelets. The platelets were counted and diluted at 100x106 plate-
lets/ml with Tyrode’s buffer pH 7.4 containing 5mM of CaCl2. The platelets were stimulated
15 hours with 0.5mg/ml of collagen (collagen reagent Horm suspension from Nycomed), 2
hours with 0.5 Unit/ml of thrombin (from bovine serum, Sigma) or 1mg/ml of heat aggregated
human IgG (HA-IgG) at RT. Human HA-IgG were obtained by incubating human IgG
(Sigma) 1 hour at 63°C. Platelet activation was stopped by addition of 20mM of EDTA and the
preparation was centrifuged 10 minutes at 2000g (RT) twice to eliminate remnant platelets.
The supernatant was collected and centrifuged 90 minutes at 18 000g (18°c) using swinging
buckets, the supernatant was discarded and the pellet (containing platelet MPs) was resus-
pended in 100ml of Tyrode’s buffer containing 5mM of CaCl2. MPs were conserved in aliquots
at -80°c prior utilization. When fluorescent platelet MPs were required, human platelets were
incubated in presence of 1mM cell tracker CMFDA (5-chloromethylfluorescein diacetate,

Microparticle Detection by Flow Cytometry

PLOS ONE | DOI:10.1371/journal.pone.0116812 January 14, 2015 4 / 27



Invitrogen, ON, Canada) for 15 minutes in the dark according to the manufacturer protocols,
washed and then stimulated as described above.

Mouse platelets were obtained from blood of CD41-YFP mice from our animal housing fa-
cility [59]. Mouse blood was obtained by cardiac puncture in syringe (1ml 25g 5/8 from BD)
preloaded with 200ml of ACD. The blood was then transferred to an eppendorf tube containing
350ml of Tyrode’s buffer pH 6.5. The blood was centrifuged 3 minutes at 600g (RT), the PRP
was collected and centrifuged 2 minutes at 400g (RT). The PRP was conserved and centrifuged
5 minutes at 1300g (RT). The supernatant was discarded, the pellet (containing the platelets)
was quickly resuspended with 500ml of Tyrode’s buffer pH 6.5 and 14.5ml of Tyrode’s buffer
pH 7.4 were added. The platelets were counted and diluted at 100x106 platelets/ml with Tyr-
ode’s buffer pH 7.4 containing 5mM of CaCl2. The platelets were stimulated overnight with
0.5mg/ml of collagen (collagen reagent Horm suspension from Nycomed) at RT. Platelet activa-
tion was stopped by addition of 20mM of EDTA and the preparation was centrifuged twice 10
minutes at 2000g (RT) to eliminate remnant platelets. The supernatant was harvested and cen-
trifuged 90 minutes at 18000g (18°c) using swinging buckets, the supernatant was discarded
and the pellet (containing the platelet MPs) was resuspended in 100ml of Tyrode’s buffer con-
taining 5mM of CaCl2. MPs were aliquoted and kept at -80°c prior utilization.

Production and isolation of erythrocyte MPs
Citrated blood was transferred to 50 ml tubes (BD Falcon) and was centrifuged 10 minutes at
282g (room temperature (RT)) without brake to stop the centrifugation. The PRP and the
buffy coat were eliminated, 200ml of the erythrocyte fraction was added in 50 ml of distilled
water (filtered on 0.22mm) for 10 minutes, and then 5.5ml of PBS 10x (filtered on 0.22mm)
were added to stop the hypotonic reaction. Mouse erythrocytes were obtained from blood of
C57BL/6J purchased from the Jackson Laboratory. The blood was collected by a cardiac punc-
ture in syringe (1ml 25g 5/8 from BD) containing 200ml of ACD and then transferred to an
eppendorf tube containing 350ml of Tyrode’s buffer pH 6.5. For mouse erythrocytes, blood
(from 2 mouse donors) in a 15 ml tube (BD Falcon) was centrifuged 10 minutes at 282g (RT),
then the PRP and the buffy coat were eliminated. Production of mouse erythrocyte MPs was
performed as for human erythrocytes. Supernatants containing MPs were aliquoted and frozen
at -80°c.

Production and isolation of endothelial cell MPs
HUVEC (Clonetic, San diego, CA) and EOMA (ATCC CRL-2586) endothelial cells were cul-
tured in complete medium until confluence. HUVEC were cultured in EGM-2MV complete
medium (Clonetics) and EOMA cells were cultured in DMEM containing 10% of FBS. The
cells were washed twice in serum-free medium and then incubated 15 minutes at 37°c with
pre-warmed serum-free medium containing 1mMCMFDA. After 15 minutes, the dye working
solution was removed and the cells washed twice with serum-free medium. Then, the cells were
incubated 24h at 37°c with complete medium containing 10ng/ml of TNFα (R&D system; 210-
TA). The supernatants were collected and centrifuged 10 minutes at 800g to eliminate cells and
apoptotic bodies. Supernatants containing MPs were aliquoted and frozen at -80°c.

Production and isolation of thymocyte MPs
Human thymuses from newborns and young children were used as a source of thymocytes.
Mouse thymuses were obtained from 4–6 week old C57BL/6J mice. Human and mouse thy-
muses were crushed through 70 mm nylon cell strainer (BD Falcon) and thymocytes were col-
lected in RPMI 1640 (Wisent). Before seeding, human and mouse thymocytes were incubated
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in presence of 1mM cell tracker CMFDA in RPMI without FBS for 15 minutes in the dark and
washed twice with PBS 1X. Human and mouse thymocytes were seeded at 5.106 cells/ml in
12 ml of RPMI 1640 (Wisent) with 5% FBS in 25 cm2 flasks (BD Falcon). After 24 hours, super-
natants were collected and centrifuged 10 minutes at 800g to eliminate cells, debris and larger
apoptotic bodies. Supernatant containing MPs were then collected, aliquoted and kept at -80°c.

Preparation of epididymosomes
Human epididymides were removed under artificial circulation to preserve organ assigned for
transplantation and tissue’s integrity. Mouse epididymides were obtained from six C57BL/6J
mice (8 to 10 week old). Epididymides were kept on ice until harvest of epididymal fluid con-
taining extracellular vesicles, these latest being referred to as epididymosomes [17]. Intralum-
inal perfusion technique was adapted as already described [60]. In brief, after removal of the
connective tissues from the middle cauda epididymidis, a small incision was made to allow the
insertion of a catheter into the isolated tubule. The lumen of the tubule was perfused with PBS
(137 mMNaCl, 3 mM KCl, 8 mM Na2HPO4, and 1.5 mM KH2PO4) at a rate of 10 ml/min
under the control of a syringe pump. The perfusate was collected through the vas deferens
until a clear, sperm-free fluid was obtained. Epididymal fluid was separated from spermatozoa
by centrifugation at 700 x g for 10 min at 4°C. Supernatant was further centrifuged twice at
3000 x g for 20 min at 4°C to remove cellular debris. Final supernatant was stored at -80°C
until flow cytometry analysis.

Preparation of prostasomes
Semen samples were obtained by masturbation from healthy volunteer donors. Between two
and five days of sexual abstinence were required before semen collection. A pool of three
semen samples that met the World Health Organization’s reference values for semen analysis
were included in the study. Once collected, samples were liquefied at room temperature and
seminal plasma was separated from spermatozoa by centrifugation at 800 x g for 10 min at 4°C.
Seminal plasma was further centrifuged twice at 3000 x g for 20 min at 4°C and supernatant
containing prostasomes was frozen at -80°C until flow cytometry analysis.

Human synovial fluids analysis
Human knee synovial fluids from confirmed RA patients were obtained and analyzed by time-
resolved fluorescence immunoassays to determine the concentration of the sPLA2s, as already
described [43].

Reagents and antibodies
Fluorescent Sky Blue polystyrene microspheres were obtained from Spherotech (IL, USA). Var-
ious sizes were used: 0.04 to 0.09 mm (mean, 0.09 mm), 0.4 to 0.6 mm (mean, 0,45 mm), 0.7 to
0.9 (mean, 0.84 mm), 2.5 to 4.5 mm (mean, 3.2 mm). Yellow-green FluoSpheres carboxylate-
modified microspheres of 1mm were obtained from Invitrogen Molecular Probes (Oregon,
USA). To process the data quantitatively, polystyrene microsphere (15mm diameter; Poly-
sciences, PA, USA) were added to each tubes.

Incubation of MPs with sPLA2 enzymes
Mouse and human MPs (5x106, quantified by flow cytometry on the basis of annexin-V bind-
ing) were incubated in 100ml of PBS 1X (filtered on 0.22mm pore size membrane (Fisher Scien-
tific, ON, Canada)) containing 0.1 and 1mg/ml of mouse or human recombinant sPLA2 IIA, V,
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X, mouse inactive mutant sPLA2 X H48Q or human inactive mutant sPLA2 V H48Q at 37°c
for 1 and 6 hours. Control samples (without sPLA2) were also incubated 1 or 6 hours at 37°c.
When sPLA2 activity endogenously expressed in mouse plasma was assayed, 5x106 human
CMFDA+ platelet MPs were incubated in 100ml of plasma free platelets (PFP) from C57BL6 or
transgenic mice expressing the human sPLA2 IIA [61] at 37°c for 6 hours.

Platelet free plasma preparation
Mouse blood (from C57BL6 or transgenic mice expressing human sPLA2 IIA) was obtained by
cardiac puncture in syringe (1ml 25g 5/8 from BD) preloaded with 200ml of ACD. The blood
was then transferred to an eppendorf tube containing 350ml of Tyrode’s buffer pH 6.5 and cen-
trifuged 20 minutes at 2500g. The platelet poor plasma was collected and centrifuged 2 minutes
at 13000g. The PFP was collected and stored at -80°c.

MP labeling
After incubation with sPLA2, fluorescent probe-conjugated annexin-V and antibodies directed
against surface markers (all from BD Biosciences) were used to label MPs. Antibodies and
annexin-V were incubated 30 minutes with MPs at RT. PE rat anti-mouse CD4 (clone RM4–5)
was used at 4ng/ml, APC rat anti-mouse CD31 (clone MEC 13.3) was used at 4ng/ml, PE rat
anti-mouse CD41 (clone MWReg 30) was used at 1ng/ml, APC rat anti-mouse TER-119/ery-
throid cells (clone TER-119) was used at 2ng/ml, PE-Cy7 mouse anti-human CD3 (clone SK7)
was used at 4ng/ml, Alexa-fluor 647 mouse anti-human CD31 (clone WM59) was diluted 1/50,
APC mouse anti-human CD41a (clone HIP8) was diluted 1/50, FITC mouse anti-human
CD235a (clone GA-R2 (HIR2)) was used at 5ng/ml, Brillant Violet 421 mouse anti-human
CD13 (clone WM15) was diluted 1/50. FITC-, APC- and V450- annexin-V were diluted 1/50.
For all conditions, more than 5,000 annexin-V+ MPs were acquired in control samples (i.e.
without sPLA2).

Flow cytometry analyses
All the buffers were filtered on a 0.22mm pore size membrane (Fisher Scientific, ON, Canada).
A forward scatter (FSC) coupled to a photomultiplier tube (PMT) ‘small particles option’
(FSC-PMT) (rather than the usual diode [23]) with a 488nm solid state, 100mW output blue
laser (rather than the conventional 20 mW), a 633 nm HeNe, 20mW output red laser and a
405nm solid state diode, 50mW output violet laser were mounted on the FACS Canto II Special
Order Research Product used for this study (BD Biosciences, ON, Canada). The high sensitivity
flow cytometer is equipped with FSC-PMT and a Fourier optical transformation unit reducing
the background noise and increasing the angle of diffusion to 25.8° (not 9° as for conventional
FSC diode). All these improvements allow the detection of smaller particles. Flow cytometer
performance tracking was performed daily (before all analyzes) using the BD cytometer setup
and tracking beads (BD Biosciences, San Jose, CA, USA) to monitor the constant performance
over time. The chosen parameters were optimal to detect microspheres from 100 to 1000 nm
simultaneously on the FSC-PMT. The fluorescence was used as trigger signal and the positive
fluorescent events were portrayed in a SSC/FSC-PMT graph. The MP gate of detection was de-
signed according to the acquisition of Sky blue and yellow-green microspheres of mean diame-
ter of 90, 450, 840, 1000 and 3200 nm. For SSC, the assigned voltage was 407 Volts and the
threshold was 200. For FSC-PMT, the assigned voltage was 363 Volts and the threshold was 0.
MPs were acquired at low speed at a rate of approximately 10ml/min. Each antibody was incu-
bated in PBS 1X alone, in absence of MP preparation or sample, and acquired to determine the
background noise, if any.
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Recombinant phospholipase A2 enzymes
Human and mouse recombinant enzymes were produced as already described [33].

Statistical analyses
All data are mean� SEM. Statistical significance between 2 groups was determined using un-
paired Student t tests. All the statistical analyses were performed using Prism software 4.00
(GraphPad Software, CA, USA).

Results

Optimization of high sensitivity flow cytometric methods for the detection
of MPs
We focused our study on EVs that could be reliably detected by high sensitivity flow cytometry.
MPs are widely described as EVs ranging from 100 to 1000 nm, expressing PS, and exposing
specific surface markers originating from their cellular origin. Using these properties, we can
detect MPs cytofluorometrically using annexin-V (which recognizes PS) and specific antibod-
ies against surface markers directly coupled to fluorochromes. Furthermore, fluorescent MPs
can be produced using CellTracker 5-chloromethylfluorescein diacetate (CMFDA), a probe
that freely passes through cellular membrane and subsequently converted to a fluorescent cell-
impermeant product by cytosolic esterases. By activating cells pre-loaded with this reagent, the
fluorescence is encapsulated within MPs, permitting their detection [12]. Rather than using
CMFDA as intracellular fluorescent marker for mouse platelets, we used platelets isolated from
yellow fluorescent protein (YFP)-CD41 transgenic mice [59]. In these mice, platelets express
YFP, which is present within MPs. We thus verified the impact of sPLA2s on these various
types of MP labelling.

Due to the small size of MPs, conventional flow cytometry is not optimal for the detection
and quantification of MPs. However, most recent improvements in this technology have signif-
icantly enhanced the investigators’ capabilities to detect and more efficiently quantify MPs [12,
22, 23, 27, 28]. In our studies, we used a high sensitivity flow cytometer small particle option
equipped with a more powerful blue laser (100mW rather than 20mW) and a Fourier bar that
provides lower background and noise and increases the angle of diffusion and a photomulti-
plier tube (PMT) coupled to the forward scatter (FSC)[12, 21, 22].

In a first set of experiments, we optimized the settings of the flow cytometer using fluores-
cent microspheres of defined dimensions to create a gate (MP gate) in which particles with rel-
ative dimensions ranging from approximately 100 to 1000 nm are expected (Fig. 1A,B). As
microspheres have a different refractive index than biological MPs and cells [18, 19], they may
behave differently depending on the type of flow cytometer used and its optical units. Thus, for
the setting of the upper limit of the MP gate, we also included a preparation of unactivated
platelets (i.e. not containing MPs) (Fig. 1C). We found that we could resolve all the tested mi-
crospheres (Fig. 1A,B). Consistent with the expected diameter of human platelets (mean diam-
eter between 2 and 5mm), platelets were detected similarly to the 3.2mmmicrospheres, and
were readily distinguishable from the 1mmmicrospheres and those smaller (Fig. 1C). While
factors such as size, shape, surface roughness, granularity and angle of collection affect light
scattering, scatter intensity of smaller particles, especially those smaller in diameter than the
wavelength of light (here 488nm), is greatly dependent on the refractive index [18]. The lower
limit of the MP gate was thus arbitrary set, based on the detection of the smaller microspheres
and recognizing the limitations of this approach. As expected, high sensitivity flow cytometry
also efficiently detected annexin-V+-, CD41+-, CMFDA+—and YFP+-MPs (Fig. 1D and S1
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Figure 1. Optimization of flow cytometric methods for the detection of MPs. (A, B) Acquisition of fluorescent microspheres of 100nm (Blue), 450nm
(pink), 840nm (green), 1000nm (red), 3200nm (orange) in diameter on a flow cytometer Canto II modified with a FSC-PMT small particles option. (B) A MP
gate including particles from 100 to 1000nm in diameter based on the microsphere sizes (FSC-PMT-H) is presented and used to detect MPs. (C) Portrayal of
relative size of human platelets detected with fluorochrome-conjugated antibodies directed against CD41. (D) FSC-PMT/SSC portrayal of platelet MPs
detected with annexin-V and fluorochrome-conjugated antibodies directed against CD41 in absence of treatment (control). (E) A known concentration of
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Fig). Notably, all the platelet MPs (positive for annexin-V, CD41, CMFDA and YFP) were con-
tained within the designed MP gate (Fig. 1D and S1 Fig.).

To confirm that the MPs contained within the MP gate were genuine MPs and not protein
aggregates (formed by complexes of annexin-V or fluorochrome-conjugated antibodies), we
verified the MP membrane sensitivity to detergent using a well-reported assay [29]. In this
test, the membrane moiety of MPs is dissolved by TritonX-100 while protein aggregates re-
main intact [9, 12, 29]. Since annexin-V recognizes PS in a calcium dependent manner, we
further confirmed its specific recognition of MPs by chelating Ca2+ ions. Using these opti-
mized methods to detect MPs after adding a known number of fluorescent polystyrene micro-
spheres (15 mm in diameter) to each tube to quantitatively process the data (Fig. 1E), we
demonstrate the specificity of our measurements as more than 98% of the MPs detected
using annexin-V or an antibody against CD41 were eliminated by detergent treatment (Fig.
1D, F, H). Moreover, annexin-V failed to recognize MPs in presence of 50mM EDTA (Fig. 1D,
G, I). Using the same conditions, we verified our capabilities to detect MPs from RBC, endo-
thelial cells, apoptotic thymocytes and from epithelial cells of the male reproductive tract (see
S2–S5 Figs.).

Coincidental detection of multiple MPs (called swarm detection) allows detection of smaller
MPs when present at sufficient concentration, but compromises their accurate quantification
and prohibits usage of simultaneous multi-marker labeling [19, 62]. To determine the involve-
ment of swarm detection in our experimental conditions, we analyzed a mixture of fluorescent
microspheres (sky blue, 0.22 and 0.45mm in diameter) and green fluorescent CMFDA+ platelet
MPs (Fig. 2A–B). We found that both types of microspheres were readily distinguishable from
green fluorescent MPs, and that no MPs displayed both labels simultaneously. Furthermore,
platelet MPs labeled with a fluorescent green dye were efficiently resolved and discriminated
from RBCMPs labeled with an anti-TER 119 antibody (Fig. 2C) confirming the absence of sig-
nificant coincidence detection in our cytofluorometric conditions.

Next, to validate our quantitative strategies, we performed serial dilutions of CMFDA-
labelled platelet MPs and determined their concentration and mean fluorescence intensity
(MFI). In principle, if swarm detection does not interfere in cytofluorometric measurements,
MP concentrations should be reduced accordingly to dilution factors while the MFI should re-
main constant. Notably, MP concentrations were consistently reduced with their respective
dilution factors although they expressed constant fluorescence intensity (Fig. 2 D–F).

Impact of sPLA2s on platelet MPs
Having confirmed our methodological approaches for the quantification of MPs, we aimed to
determine the impact of soluble factors present in biological fluids potentially interfering in
MP detection. Platelet MPs are the most abundant MPs circulating in the bloodstream and are
involved in many physiological and pathological processes [9]. Since platelet MPs and sPLA2s

auto-fluorescent polystyrene microspheres (15 µm in diameter) was added in each tube and a determined number of beads was acquired in the counting
bead gate to quantitatively process the data. (F, G) FSC-PMT/SSC portrayal of platelet MPs detected with annexin-V and fluorochrome-conjugated
antibodies directed against CD41 and treated with 0.05% triton (F) and 50µMEDTA (G). Total annexin-V+ events are detected in the pink gate (middle panel)
and the quantity of annexin-V+ MPs is determined in the Annexin-V MP gate (upper panel). Total CD41+ events are detected in the blue gate (middle panel)
and the quantity of CD41+ MPs is determined in the CD41MP gate (lower panel). Data are representative of 5 independent experiments. (H) Triton sensitivity
of the platelet MPs detected using fluorochrome-conjugated annexin-V (left panel) and fluorochrome-conjugated antibodies directed against CD41 (right
panel) is presented as % of untreated (control). (I) EDTA sensitivity of annexin-V (left panel) and CD41 (right panel) labeling is presented as % of untreated
(control). Data are representative of 5 independent experiments.

doi:10.1371/journal.pone.0116812.g001
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Figure 2. Study of swarm detection in high sensitivity flow cytometry. (A) A mixture of CMFDA- and CMFDA+ platelet MPs (CMFDA- and +) and sky blue
beads (220 nm in diameter) were analyzed alone (left and middle panel respectively) or mixed (right panel) and their detection resolved on the basis of
fluorescence. (B) CMFDA- and + platelet MPs and sky blue beads (450 nm in diameter) were analyzed alone (left and middle panel respectively) or mixed
(right panel) prior to detection on the basis of fluorescence. (C) CMFDA+ platelet MPs and RBCMPs labeled with antibodies directed against TER 119 are
analyzed alone (left and middle panel respectively) or mixed (right panel). (D, E, F) CMFDA+ platelet MPs were diluted serially thrice (2-fold dilution) and
analyzed by high sensitivity flow cytometry to determine their concentration (D), the CMFDA-height (H) mean of fluorescence (E) and the CMFDA-Hmedian
of fluorescence (F) are presented. Data are mean� SEM of 5 independent experiments. BKD = Background noise.

doi:10.1371/journal.pone.0116812.g002
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are present simultaneously in blood circulation, this prompted us to determine if sPLA2 en-
zymes might affect their detection and quantification.

MPs derived from human and mouse platelets were incubated with various concentrations
of sPLA2 IIA, V and X of human and mouse species, respectively. While none of the sPLA2s
tested could affect the detection of MPs when an intracellular tracker (CMFDA or YFP) or an-
tibodies against CD41 were used (Fig. 3A–B left and middle panel), we observed that human
and mouse sPLA2 V and X dose and time dependently reduced the number of annexin-V+

MPs (Fig. 3A–B right panel). Surprisingly, whereas mouse sPLA2 IIA efficiently decreased the
number of annexin-V+ MPs, human sPLA2 IIA had no significant impact (Fig. 3A–B right
panel). Since human sPLA2 IIA efficiently hydrolyzed membranes from E. coli (S6 Fig), this
confirmed that the discrepancy between the action of murine and human sPLA2 IIA was not
due to incorrect folding of the recombinant human enzyme. Thus, all the sPLA2s enzymes test-
ed, except human sPLA2 IIA, impact the recognition of platelet MPs by annexin-V, but none of
them clear platelet MPs.

To determine whether this action was due to PS hydrolysis or membrane masking by
sPLA2s, platelet MPs were incubated with inactive mutant sPLA2s (sPLA2 V H48Q and sPLA2

X H48Q) [63]. No decrease of annexin-V+ MPs was observed in presence of the inactive mu-
tants, suggesting that sPLA2s impede the detection of MPs by annexin-V probes through PS
hydrolysis (Fig. 3A–B right panel).

Depending on the platelet trigger, platelet MPs express distinct platelet content [64].
This prompted us to verify whether sPLA2s could impact platelet MP detection differently
depending on the stimuli implicated. We thus incubated human platelet MPs generated
under 3 types of stimulation (i.e. collagen, thrombin and heat aggregated-IgG (HA-IgG)) and
verified their susceptibility to human sPLA2 enzymes. Although each type of platelet MPs
were equally poorly susceptible to sPLA2 enzymes when present at low concentration
(0.1 mg/ml), higher concentrations of sPLA2 V and X revealed their modest, but significant,
preference for collagen-induced platelet MPs compared to MPs produced using thrombin and
HA-IgG (Fig. 3C). Thus, although the platelet activation pathway only modestly affects the
impact of sPLA2 V and X on annexin-V labelling, it did not alter sPLA2 IIA impact on platelet
MP detection.

We next investigated whether the presence of plasma might influence the activity of sPLA2

IIA toward platelet MPs, thereby affecting their detection. The platelet-free plasma (PFP) ob-
tained from transgenic mice overexpressing human sPLA2 IIA (>1mg/ml in serum) [65] was
used for these experiments and we included the PFP from C57BL6 mice (which naturally lack
sPLA2 IIA) [66] as control. We observed that the expression of annexin-V and CD41 markers
on CMFDA-labeled platelet MPs incubated in plasma of C57BL6 and transgenic sPLA2 IIA
mice remained constant, even when exogenous recombinant human sPLA2 IIA was added to
the test tubes (Fig. 3D), suggesting that plasma does not influence the impact of sPLA2 IIA on
detection of platelet MPs.

MPs, especially those of platelet origin, and sPLA2 IIA (average 1mg/ml, and up to 2.3 mg/
ml) are abundant in the synovial fluid of patients with RA [14, 43]. sPLA2s V and X are also
present but at lower levels (approximately 11.1ng/ml and 0.36ng/ml, respectively) [43]. While
annexin-V is frequently used to detect MPs in RA synovial fluid, we measured the concentra-
tions of platelet MPs and of sPLA2 IIA present simultaneously in RA patients. Consistent with
our findings made in vitro, we observed no significant correlation (negative nor positive) be-
tween the concentrations of human sPLA2 IIA and MPs (Fig. 3E). Thus, our ex vivo experi-
ments confirm that human platelet MPs can be detected successfully in biological fluids, even
in presence of high levels of human sPLA2 IIA.
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Figure 3. Impact of human andmouse sPLA2s on platelet MPs. (A) MPs from human platelets (stimulated with collagen) labeled with the CMFDA cell
tracker were incubated for 1 and 6 hours at 37°c in absence or in presence of indicated concentrations of human recombinant sPLA2 IIA, V, X, or 1µg/ml of
the inactive mutant V H48Q. Fluorochrome-conjugated antibodies directed against CD41 and fluorochrome-conjugated annexin-V were used to assess the
quantities of CMFDA+ MPs (left panel), of CD41+ MPs (middle panel), of annexin-V+ MPs (right panel) and were compared to the untreated conditions (dotted
line). Data are mean� SEM of 5 independent experiments presented as % of untreated (control) (B) MPs frommouse platelets (stimulated with collagen),
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Impact of sPLA2s on MPs from erythrocytes
Erythrocytes are the most abundant cellular lineage present in blood where they generate MPs,
possibly to eliminate modified antigens and to prevent the exposure of dangerous molecules
[67]. After platelet MPs, erythrocyte-derived MPs are the second most abundant in blood cir-
culation [9]. Thus, we aimed to evaluate the action of sPLA2s on erythrocyte-derived MPs.

Human and mouse erythrocyte-derived MPs were incubated with human and mouse
sPLA2s, respectively. We observed that none of sPLA2s could impact the detection of erythro-
cyte MPs when antibodies against CD235a (human) or TER119 (mouse) were used (Fig. 4A–
B left panel). However, human sPLA2 V and X (but not IIA) and mouse sPLA2 IIA and X
(but not V), induced a time and concentration dependent reduction of annexin-V+ MPs,
which occurred through PS hydrolysis since inactive mutants failed to induce this decrease
(Fig. 4A–B right panel). Thus, mouse sPLA2 IIA, human sPLA2 V and sPLA2 X (human and
mouse) hydrolyze the PS exposed on erythrocytes MPs, but none of them consume erythro-
cyte MPs.

Impact of sPLA2s on MPs from endothelial cells
Endothelial cells are perfectly localized to release MPs in the bloodstream under physiological
conditions or in pathologies such as atherosclerosis [68, 69]. Furthermore, sPLA2 IIA, V and X
contribute in atherosclerosis, and endothelial cells constitutively express sPLA2 V [31, 32, 70].
As endothelial cell MPs and sPLA2 are simultaneously present in blood, we examined the ac-
tion of sPLA2s on endothelial cell MPs.

We observed that none of the sPLA2s tested could impact the detection of endothelial cell
MPs when an intracellular dye or antibodies against the CD31 were used (Fig. 5A–B left and
middle panel). However, all the sPLAs tested induced a significant drop in annexin-V+ MPs,
through PS hydrolysis (Fig. 5A–B right panel). Together, these results suggest that sPLA2s
cannot clear endothelial cell-derived MPs but can use the exposed PS as substrate, thereby in-
terfering in their detection through annexin-V.

Impact of sPLA2s on MPs from apoptotic thymocytes
We next aimed to verify whether sPLA2s could use apoptotic cell-derived MPs as substrate,
thereby impacting their detection and quantification. The thymus is a central immune organ
where the positive and negative selection of T lymphocytes takes place [71]. During this selec-
tion process, the majority of the thymocytes are eliminated by apoptosis (about 95–97% of thy-
mocytes die by apoptosis) [72]. Thymocytes, like other apoptotic cells, release MPs [73].

identified using YFP as fluorescent tracker, were incubated 1 and 6 hours at 37°c, in absence or in presence of indicated concentrations of mouse
recombinant sPLA2 IIA, V, X, or 1µg/ml of the inactive mutant X H48Q. Fluorochrome-conjugated antibodies directed against CD41 and fluorochrome-
conjugated annexin-V were used to determine the concentrations of YFP+ MPs (left panel), of CD41+ MPs (middle panel), of annexin-V+ MPs (right panel)
and then compared to the untreated conditions (dotted line). Data are mean� SEM of 5 independent experiments presented as % of untreated (control). (C)
MPs from human platelets labeled with the CMFDA cell tracker and obtained following stimulation with collagen, thrombin or HA-IgG were incubated 6 hours
at 37°c in absence or in presence of indicated concentration of human recombinant sPLA2 IIA, V and X and 1µg/ml of the inactive mutant sPLA2 V H48Q.
Fluorochrome-conjugated antibodies directed against CD41 and fluorochrome-conjugated annexin-V were used to assess the quantities of CMFDA+ MPs
(left panel), of CD41+ MPs (middle panel), of annexin-V+ MPs (right panel) and then compared to the untreated conditions (dotted line). Data are mean�
SEM of 3 independent experiments presented as % of untreated (control). (D) MPs from human platelets (stimulated with collagen) labeled with the CMFDA
cell tracker were incubated 6 hours at 37°c in PFP of C57BL6 (supplemented or not with 1µg/ml of recombinant human sPLA2 IIA) or transgenic mice
expressing the human sPLA2 IIA (Tg). Fluorochrome-conjugated antibodies directed against CD41 and fluorochrome-conjugated annexin-V were used to
assess the quantities of CMFDA+ MPs (left panel), of CMFDA+ CD41+ MPs (middle panel) and CMFDA+ annexin-V+ MPs (right panel). Data are mean�
SEM of 3 independent experiments. (E) Concentrations of Annexin-V+ MPs and CD41+ MPs present in the synovial fluids of RA patients determined by high
sensitivity flow cytometry and correlated to the concentration of human sPLA2 IIA assayed (in the same synovial fluids) by time-resolved
immunofluorescence analysis. * P< .05; # P< .01; § P< .001.

doi:10.1371/journal.pone.0116812.g003
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Moreover, sPLA2 IIA, V and X are expressed in the thymus [74, 75]. Thus, we addressed the ef-
fect of sPLA2s on human and mouse thymocyte MPs.

Using apoptotic thymocytes isolated from the thymus of human newborns that underwent
thymectomies, we found that human sPLA2 V and X efficiently reduced the number of
annexin-V+ MPs, CD3+ MPs (Fig. 6A middle and right panel) and CD4+ MPs (S7 Fig)
through the sPLA2 catalytic activity, pointing to a potential role of these sPLA2s in clearance of
human thymocyte MPs. sPLA2 IIA had only a modest, but significant, impact on the number
of annexin-V+ MPs. None of the sPLA2s tested could impact the detection of MPs when the in-
tracellular dye CMFDA was used (Fig. 6A left panel).

We made different observations in mice. We found that none of the mouse sPLA2s had an
effect on detection of mouse thymocyte MPs when an intracellular dye or an antibody against
surface antigen was used (Fig. 6B left and middle panel). Furthermore, we observed that all
the murine sPLA2s tested were highly potent at hydrolyzing PS, thereby interfering in the
quantification of murine annexin-V+ thymocyte MPs (Fig. 6B right panel).

Taken together, our data suggest that human sPLA2 V and X, but not the murine enzymes,
can efficiently clear human thymocyte MPs. Our results also demonstrate that all the sPLA2s
tested can efficiently hydrolyze PS on surface of apoptotic thymocyte MPs.

Figure 4. Impact of human andmouse sPLA2s on erythrocyte MPs. (A) MPs from human erythrocytes
were incubated for 1 and 6 hours at 37°c in absence or in presence of indicated concentrations of human
recombinant sPLA2 IIA, V, X, or 1µg/ml of the inactive mutant V H48Q. Fluorochrome-conjugated antibodies
directed against CD235a and fluorochrome-conjugated annexin-V were used to assess the quantities of
CD235a+ MPs (left panel), of annexin-V+ MPs (right panel) and were compared to the untreated conditions
(dotted line). Data are mean� SEM of 5 independent experiments presented as % of untreated (control) (B)
MPs frommouse erythrocytes were incubated 1 and 6 hours at 37°c, in absence or in presence of indicated
concentrations of mouse recombinant sPLA2 IIA, V, X, or 1µg/ml of the inactive mutant X H48Q.
Fluorochrome-conjugated antibodies directed against TER 119 and fluorochrome-conjugated annexin-V
were used to determine the concentrations of TER 119+ MPs (left panel) and annexin-V+ MPs (right panel)
and then compared to the untreated conditions (dotted line). Data are mean� SEM of 5 independent
experiments presented as % of untreated (control). * P< .05; # P< .01; § P< .001.

doi:10.1371/journal.pone.0116812.g004
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Impact of sPLA2s on MPs from the male reproductive tract
In the epididymal fluid, MPs called epididymosomes convey microRNAs and play key roles in
post-testicular maturation of spermatozoa [17, 60]. Moreover, sPLA2 IIA, V and X are also ex-
pressed in this fluid where they contribute to sperm maturation [47, 76, 77]. We thus deter-
mined the impact of sPLA2s on the detection of MPs present in the epididymal fluid.

For these studies, we used the endogenous MPs present in epididymal fluid, and thus the in-
tracellular dye could not be included to our assays. Furthermore, the markers CD9 and CD63
(detected in epididymosomes by proteomic approaches) did not give satisfying results and, de-
spite numerous tests, we failed to identify a specific surface marker for epididymosomes. Given
the limited amount of material available and the aforementioned reasons, we focused our at-
tention on the impact of the various sPLA2s on MP detection via annexin-V. We found that all
the sPLA2s tested, except human sPLA2 IIA, could decrease the number of annexin-V+ MPs.
Murine and human sPLA2 X were by far the most potent enzymes at hydrolyzing the PS on
epididymosomes (Fig. 7A–B).

We also tested the impact of sPLA2s on another type of MPs present in seminal fluid: the
prostasomes. Prostasomes are MPs released by the prostate and are involved in sperm motility
and acrosome reaction [78]. We observed that in presence of sPLA2 V and X, but not IIA, the
quantities of annexin-V+ MPs detected decreased (Fig. 7C right panel). When an antibody
against the aminopeptidase expressed on prostasomes (CD13) was used [79, 80], no decrease
of CD13+ prostasomes was observed (Fig. 7C left panel), suggesting that prostasomes are not

Figure 5. Impact of human andmouse sPLA2s on endothelial cell MPs. (A) MPs from HUVEC labeled with the CMFDA cell tracker were incubated for 1
and 6 hours at 37°c in absence or in presence of indicated concentrations of human recombinant sPLA2 IIA, V, X, or 1µg/ml of the inactive mutant V H48Q.
Fluorochrome-conjugated antibodies directed against CD31 and fluorochrome-conjugated annexin-V were used to assess the quantities of CMFDA+ MPs
(left panel), of CD31+ MPs (middle panel), of annexin-V+ MPs (right panel) and were compared to the untreated conditions (dotted line). Data are mean�
SEM of 5 independent experiments presented as % of untreated (control) (B) MPs frommouse EOMA cells labeled with the CMFDA cell tracker were
incubated 1 and 6 hours at 37°c, in absence or in presence of indicated concentrations of mouse recombinant sPLA2 IIA, V, X, or 1µg/ml of the inactive
mutant X H48Q. Fluorochrome-conjugated antibodies directed against CD31 and fluorochrome-conjugated annexin-V were used to determine the
concentrations of CMFDA+ MPs (left panel), of CD31+ MPs (middle panel), of annexin-V+ MPs (right panel) and then compared to the untreated conditions
(dotted line). Data are mean� SEM of 5 independent experiments presented as % of untreated (control). # P< .01; § P< .001.

doi:10.1371/journal.pone.0116812.g005
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cleared by these sPLA2s. Thus, we demonstrate that sPLA2 V and X efficiently hydrolyze the PS
on MPs present in the seminal fluid.

Discussion
The interest toward the understanding of MP functions in biology and usage of MPs as potent
biomarkers is growing rapidly. Hence, it becomes necessary to improve the methods of detec-
tion of MPs and to comprehend the factor(s) that might impede their detection. Our observa-
tions validate high sensitivity flow cytometry for the detection of MPs derived from various
cellular lineages. Furthermore, we shed light on the impact of sPLA2s, which are concomitantly
expressed with MPs in biological fluids, on quantification and detection of microparticles. We
demonstrate that sPLA2 enzymes can use MPs as substrate and thereby might impair their
quantification if expressed in sufficient concentrations. Importantly, this action by sPLA2 de-
pends on the sPLA2 groups implicated, the species studied (human or mouse), the cellular
source of MPs and the means of detection employed (annexin-V or antigen recognition by an-
tibodies) (recapitulated in Table 1).

The use of artificial microspheres for size calibration of the FSC remains imperfect as beads
and cellular MPs display different refractive index [18, 19]. Notably, it was demonstrated that
depending on type of flow cytometer used, beads are differently resolved by the FSC [20, 27,
28, 81, 82]. In this present study, we used high sensitivity flow cytometry combined with poly-
styrene beads for the creation of a MP gate. This approach was successfully used to resolve, on
the FSC-PMT axis, MPs from organelle-containing MPs and MPs decorated with autoantibod-
ies [12, 22]. Although this approach can be useful as reference particles to aid in the standardi-
zation of instrument setup, we acknowledge its potential limitations, as it cannot determine the

Figure 6. Impact of sPLA2s on MPs from apoptotic thymocytes. (A) MPs from human apoptotic thymocytes labeled with the CMFDA cell tracker were
incubated for 1 and 6 hours at 37°c in absence or in presence of indicated concentrations of human recombinant sPLA2 IIA, V, X, or 1µg/ml of the inactive
mutant V H48Q. Fluorochrome-conjugated antibodies directed against CD3 and fluorochrome-conjugated annexin-V were used to assess the quantities of
CMFDA+ MPs (left panel), of CD3+ MPs (middle panel), of annexin-V+ MPs (right panel) and were compared to the untreated conditions (dotted line). Data
are mean� SEM of 5 independent experiments presented as % of untreated (control) (B) MPs frommouse apoptotic thymocytes labeled with the CMFDA
cell tracker were incubated 1 and 6 hours at 37°c, in absence or in presence of indicated concentrations of mouse recombinant sPLA2 IIA, V, X, or 1µg/ml of
the inactive mutant X H48Q. Fluorochrome-conjugated antibodies directed against CD4 and fluorochrome-conjugated annexin-V were used to determine the
concentrations of CMFDA+ MPs (left panel), of CD4+ MPs (middle panel), of annexin-V+ MPs (right panel) and then compared to the untreated conditions
(dotted line). Data are mean� SEM of 5 independent experiments presented as % of untreated (control). * P< .05; # P< .01; § P< .001.

doi:10.1371/journal.pone.0116812.g006
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size of MPs. The development of calibration vesicles having a refractive index similar to cellular
MPs is needed to improve the detection and thus the comprehension of MP physio(patho)logi-
cal functions.

Mammalian sPLA2s have been described nearly 2 decades ago. They efficiently utilize RBC,
platelet and whole blood cell MPs as substrate from which they release lysophospholipids [36].
Accordingly, several investigators prudently interpreted their MP quantifications, which might
have been altered by the presence of sPLA2s [15, 16, 51, 53, 54, 55, 56, 57, 58]. Given that
sPLA2s are overexpressed in the synovial fluid of RA patients, pioneer investigations suggested
that annexin-V probes could not be used to detect MPs in these conditions [52]. However, no
studies had formally assessed whether sPLA2s could actually interfere in the detection of MPs.
Surprisingly, our observations demonstrate that, to precisely assess MP quantifications, the cel-
lular origin of the MPs measured and the identity/concentration of the sPLA2 group(s) present
both have to be considered. The co-expression in RA synovial fluid of sPLA2 IIA [43] and of
platelet MPs [14], which were previously efficiently detected using annexin-V conjugated
probes [12, 14, 29, 30], prompted our evaluation of MPs and sPLA2-IIA in these conditions.
Consistent with our observations, which revealed that the detection of platelet MPs is unaffect-
ed by sPLA2 IIA, we confirmed that annexin-V can be efficiently utilized in body fluids rich in

Figure 7. Impact of sPLA2s on MPs from themale reproductive tract. (A) Human epididymosomes were
incubated 6 hours at 37°c in absence or in presence of 1µg/ml of human recombinant sPLA2 IIA, V, X.
Fluorochrome-conjugated annexin-V was used to assess the quantities of annexin-V+ MPs and were
compared to the untreated conditions (dotted line). Data are mean� SEM of 3 independent experiments
presented as % of untreated (control). (B) Mouse epididymosomes were incubated 6 hours at 37°c in
absence or in presence of 1µg/ml of mouse recombinant sPLA2 IIA, V, X. Fluorochrome-conjugated annexin-
V was used to assess the quantities of annexin-V+ MPs and were compared to the untreated conditions
(dotted line). Data are mean� SEM of 4 independent experiments presented as % of untreated (control). (C)
Human prostasomes were incubated 6 hours at 37°c in absence or in presence of 1µg/ml of human
recombinant sPLA2 IIA, V, X. Fluorochrome-conjugated antibodies directed against CD13 and fluorochrome-
conjugated annexin-V were used to determine the concentrations of CD13+ MPs (left panel), of annexin-V+

MPs (right panel) and were compared to the untreated conditions (dotted line). Data are mean� SEM of 4
independent experiments presented as % of untreated (control) * P< .05; # P< .01; § P< .001.

doi:10.1371/journal.pone.0116812.g007
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sPLA2 IIA when the concentration of platelet MPs is assessed. Nonetheless, whether sPLA2s
might impact MP production and half-life, and thereby indirectly affect MP concentrations
in vivo remains to be established.

Based on our observations, we recommend using a combination of at least two different
markers of MPs for flow cytometric analyses (i.e. annexin-V, surface antigens, commercial
dyes and transgenic expression of fluorescent proteins). Indeed, sPLA2s occasionally interfered
in MP quantifications based solely on annexin-V, while the surface antigen detection using an-
tibodies and the dyes were rather resistant, suggesting that sPLA2 enzymes, even at high con-
centrations, do not consume MPs. The only exception is the MPs originating from apoptotic

Table 1. Impact of human and mouse sPLA2s on detection of MPs from different cell origins.

Species Mean of detection sPLA2 IIA sPLA2 V sPLA2 X

Platelets Human (Collagen) Intracellular tracker - - -

Antibody (CD41) - - -

Annexin-V - + +

Human (Thrombin) Intracellular tracker - - -

Antibody (CD41) - - -

Annexin-V - + +

Human (HA-IgG) Intracellular tracker - - -

Antibody (CD41) - - -

Annexin-V - + +

Mouse (Collagen) Intracellular tracker - - -

Antibody (CD41) - - -

Annexin-V ++ ++ ++

Erythrocytes Human Antibody (CD235a) - - -

Annexin-V - + ++

Mouse Antibody (TER-119) - - -

Annexin-V + - +

Endothelial cells Human Intracellular tracker - - -

Antibody (CD31) - - -

Annexin-V + +++ ++

Mouse Intracellular tracker - - -

Antibody (CD31) - - -

Annexin-V +++ ++ ++

Thymocytes Human Intracellular tracker - - -

Antibody (CD3) - + +

Annexin-V + ++ +

Mouse Intracellular tracker - - -

Antibody (CD4) - - -

Annexin-V ++ ++ ++

Epididymosomes Human Annexin-V - + +

Mouse Annexin-V + + +

Prostasomes Human Antibody (CD13) - - -

Annexin-V - + +

(-) No significant impact on detection

(+) Significant impact on detection

(++) Impact on detection within 6h at 0.1µg/ml and within 1h at 1µg/ml (� 75% of control and � 50% of control, respectively)

(+++) Important impact on detection within 1h at 0.1µg/ml (� 75% of control)

doi:10.1371/journal.pone.0116812.t001
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thymocytes, which appeared to be cleared by sPLA2 V and X as PS, CD3 and CD4 were elimi-
nated from MP surface. These findings further suggest that a physiological function of sPLA2

(group V and X) might be the clearance of the apoptotic thymocyte MPs that are constantly
produced in the thymus during the selection of mature T cells.

Depending on their origin, all the MPs were not equally susceptible to sPLA2 treatments,
which points to specific regulatory mechanisms expressed by MPs themselves. We also hypoth-
esize that the stimulus behind the generation of MPs might have an impact on MP susceptibili-
ty to sPLA2. Indeed, as different platelet stimuli induce distinct MP protein content, we
speculate that the surface lipid composition might also differ depending on the MP trigger
[64]. Similarly, depending on their group (sPLA2 IIA, V or X) and species of origin (mouse vs
human), sPLA2s displayed distinct activities on MPs. These observations support the notion
that the different sPLA2 groups are not isozymes and might play non-redundant biological
roles, and suggest that the murine and human sPLA2s might not necessarily be orthologous en-
zymes. It is important to note that rather high concentrations of sPLA2 (1mg/ml) were some-
times needed to impact MP detection. The concentration of sPLA2s in diverse biological fluids
such as blood, tears, synovial and seminal fluids has been previously reported [43, 83, 84, 85,
86]. In these studies, sPLA2 IIA was the only enzyme assayed and its concentration ranged
from 0.001 to 15 mg/ml. These concentrations are rarely present in vivo, and have been detected
so far only in the blood of septic patients, in synovial fluid of RA patients, in tears and seminal
fluids [43, 84, 85, 87]. More studies are thus needed to specifically determine the concentra-
tions of the different sPLA2 groups in biological fluids in healthy and pathological conditions
and to determine the actual significance of the impact of sPLA2s on MP assessment.

The hydrolysis of PS by certain sPLA2 groups might provide an explanation for the
annexin-V negative MPs present in plasma visualized using cryo-electron microscopy [9, 10,
11, 12]. Furthermore, this action might be highly relevant in the biology of MPs. Indeed, stud-
ies have demonstrated the importance of PS in the rapid clearance of MPs (<10 minutes to
some hours) from blood circulation [4, 5, 6], notably through interactions with lactadherin and
developmental endothelial locus-1 (Del-1) [7, 8]. The action of sPLA2s, through the hydrolysis
of PS, might increase MP half-life in circulation, thereby allowing them to deliver their content
(e.g. microRNA, mRNA, proteins) in recipient target cells [13, 88]. Furthermore, PS expressed
by MPs is a well-recognized procoagulant factor capable of promoting the assembly of compo-
nents of the clotting cascade [3, 89, 90]. Thus, sPLA2s-mediated PS hydrolysis might also regu-
late coagulation. In addition, the hydrolysis of phospholipids at the sn-2 position generates
lysophospholipids and free fatty acids [31, 32], which can be metabolized into potent lipid me-
diators, relevant to several physio—and pathological conditions.

Precise detection and quantification of MPs in biological fluids and cell supernatants is cru-
cial for the utilization of MPs as biomarker and the understanding of their functions. Previous
studies defined the most appropriate pre-analytical conditions for optimal isolation of MPs
[64, 91, 92, 93]. Others demonstrated that protein aggregates could interfere in cytofluoro-
metric analyses of MPs [29]. Herein, we reveal the impact of a family of enzymes co-expressed
with MPs in diverse biological fluids and capable of potentially altering MP detection. Using
the most recent approaches available in cytofluorometry our study provides precious informa-
tion for the interpretation of MP quantifications and will contribute to the delineation of the
functions of MPs in biology.

Supporting Information
S1 Fig. Detection of CMFDA+ human platelets MPs and YFP+ mouse platelets MPs using
high sensitivity flow cytometry. (A) FSC-PMT and SSC portrayal of CMFDA+ platelet MPs
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from unlabeled (as control) and CMFDA+ human platelets. Total CMFDA+ particles are in-
cluded in the green gate (left and middle panel) and the quantity of CMFDA+ MPs was deter-
mined in the CMFDAMP gate (right panel). Data are representative of 5 independent
experiments. (B) FSC-PMT and SSC portrayal of YFP+ platelet MPs from unlabeled and YFP
mouse platelets. Total YFP+ events are presented in the green gate (left and middle panel) and
the quantity of YFP+ MPs was determined in the YFP MP gate (right panel). Data are represen-
tative of 5 independent experiments.
(TIF)

S2 Fig. Detection of erythrocyte MPs and sensitivity to Triton and EDTA treatments. (A, B,
C) FSC-PMT and SSC portrayal of erythrocyte MPs detected using annexin-V and an antibody
against CD235a in absence of treatment (control) (A), and in presence of 0.05% Triton (B) and
50mM EDTA (C). Total annexin-V+ events are comprised in the pink gate (middle panel) and
the quantity of annexin-V+ MPs was determined in the annexin-V MP gate (upper panel).
Total CD235a+ events are presented in the green gate (middle panel) and the quantity of
CD235a+ MPs was determined in the CD235a MP gate (lower panel). Data are representative
of 5 independent experiments. (D) Triton sensitivity of the erythrocyte MPs detected using
annexin-V (left panel) and anti-CD235a (right panel) presented as % of untreated (control).
(E) EDTA sensitivity of annexin-V (left panel) and CD235a (right panel) labeling presented as
% of untreated (control). Data are representative of 5 independent experiments.
(TIF)

S3 Fig. Detection of HUVECMPs and sensitivity to Triton and EDTA treatments. (A, B, C)
FSC-PMT/SSC portrayal of HUVECMPs detected with fluorochrome-conjugated annexin-V
and antibody against CD31 in absence of treatment (control) (A), and treated with 0.05% triton
(B) and 50mM EDTA (C). Total annexin-V+ events are included in the pink gate (middle
panel) and the quantity of annexin-V+ MPs was determined in the annexin-V MP gate (upper
panel). Total CD31+ events are included in the orange gate (middle panel) and the quantity of
CD31+ MPs was determined in the CD31 MP gate (lower panel). Data are representative of 5
independent experiments. (D) Triton sensitivity of the HUVECMPs detected using annexin-V
(left panel) and anti-CD31 (right panel) presented as % of untreated (control). (E) EDTA sensi-
tivity of annexin-V (left panel) and CD31 (right panel) labeling presented as % of untreated
(control). Data are representative of 5 independent experiments. (F) Portrayal of CMFDA+

HUVECMPs and MPs from unlabeled HUVEC. Total CMFDA+ events are included in the
green gate (left and middle panel) and the quantity of CMFDA+ MPs was determined in the
CMFDAMP gate (right panel). Data are representative of 5 independent experiments.
(TIF)

S4 Fig. Detection of apoptotic thymocyte MPs and sensitivity to Triton and EDTA treat-
ments. (A, B, C) Portrayal of human apoptotic thymocyte MPs detected with fluorochrome-
conjugated annexin-V and antibody against CD3 in absence of treatment (control) (A), and
treated with 0.05% triton (B) and 50mM EDTA (C). Total annexin-V+ events are included in
the pink gate (middle panel) and the quantity of annexin-V+ MPs was determined in the
Annexin-V MP gate (upper panel). Total CD3+ events are detected in the red gate (middle
panel) and the quantity of CD3+ MPs is determined in the CD3 MP gate (lower panel). Data
are representative of 5 independent experiments. (D) Triton sensitivity of the human apoptotic
thymocyte MPs detected using annexin-V (left panel) and anti-CD3 (right panel) presented as
% of untreated (control). (E) EDTA sensitivity of annexin-V (left panel) and CD3 (right panel)
labeling presented as % of untreated (control). Data are representative of 5 independent experi-
ments. (F) Portrayal of CMFDA+ thymocyte MPs from unlabeled and CMFDA-labeled
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thymocyte. Total CMFDA+ events are presented in the green gate (left and middle panel) and
the quantity of CMFDA+ MPs was determined in the CMFDAMP gate (right panel). Data are
representative of 5 independent experiments.
(TIF)

S5 Fig. Detection of epididymosomes and detergent treatment. (A, B) FSC-PMT/SSC por-
trayal of human epididymosomes detected with fluorochrome-conjugated annexin-V in ab-
sence of treatment (control) (A), and treated with 0.05% triton (B). Total annexin-V+ events
are comprised in the pink gate (middle panel) and the quantity of annexin-V+ MPs was deter-
mined in the Annexin-V MP gate (upper panel). Data are representative of 3 independent ex-
periments. (C) Triton sensitivity of the human epididymosomes detected using fluorochrome-
conjugated annexin-V presented as % of untreated (control). Data are representative of 3 inde-
pendent experiments
(TIF)

S6 Fig. Enzymatic activities of human sPLA2 IIA, V and X on E. Colimembranes. The as-
says of human sPLA2s enzymatic activities were carried out using [3H]-oleic acid radiolabeled
E. coli membranes. After incubation with sPLA2s, the supernatant containing released radiola-
beled oleate was submitted to scintillation counting.
(TIF)

S7 Fig. Impact of human sPLA2s on CD4+ MPs from human apoptotic thymocytes.MPs
from human apoptotic thymocytes were incubated for 1 hours at 37°c in absence or in presence
of 1mg/ml of human recombinant sPLA2 IIA, V, X and V H48Q (inactive mutant). Fluoro-
chrome-conjugated antibodies against CD4 were used to assess the quantities of CD4+ MPs
and were compared to the untreated conditions (dotted line). Data are mean� SEM of 5 inde-
pendent experiments presented as % of untreated (control). § P< .001.
(TIF)
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