
Journal of Advanced Research (2014) 5, 463–472
Cairo University

Journal of Advanced Research
ORIGINAL ARTICLE
Capturing security requirements for software

systems
Abbreviations: AF, abuse frame; SPF, security problem frame;

PF, problem frame; SR, security requirement; AR, anti-requirement.
* Corresponding author. Tel.: +202 2615 2974.

E-mail addresses: sherif@aucegypt.edu (S. El-Kassas).

Peer review under responsibility of Cairo University.

Production and hosting by Elsevier

2090-1232 ª 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University.

http://dx.doi.org/10.1016/j.jare.2014.03.001
Hassan El-Hadary, Sherif El-Kassas *
Department of Computer Science & Engineering, The American University in Cairo, Egypt
A R T I C L E I N F O A B S T R A C T
Article history:

Received 6 October 2013

Received in revised form 1 March 2014

Accepted 3 March 2014

Available online 12 March 2014

Keywords:

Application security

Security requirements engineering

Security threat modeling

Problem frames
Security is often an afterthought during software development. Realizing security early,

especially in the requirement phase, is important so that security problems can be tackled early

enough before going further in the process and avoid rework. A more effective approach for

security requirement engineering is needed to provide a more systematic way for eliciting

adequate security requirements. This paper proposes a methodology for security requirement

elicitation based on problem frames. The methodology aims at early integration of security with

software development. The main goal of the methodology is to assist developers elicit adequate

security requirements in a more systematic way during the requirement engineering process. A

security catalog, based on the problem frames, is constructed in order to help identifying secu-

rity requirements with the aid of previous security knowledge. Abuse frames are used to model

threats while security problem frames are used to model security requirements. We have made

use of evaluation criteria to evaluate the resulting security requirements concentrating on

conflicts identification among requirements. We have shown that more complete security

requirements can be elicited by such methodology in addition to the assistance offered to

developers to elicit security requirements in a more systematic way.

ª 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University.
Introduction

During the last decade, software systems security has become
an increasingly growing concern due to the large number of
incidents and attacks targeting software systems [1]. Attackers

exploit software vulnerabilities and cause threats to the sys-
tems such as stealing sensitive information, manipulating data

and causing denial of service. One of the grand challenges in
information security is to develop tools and principles that al-
low construction of large-scale systems for important security

critical applications such as e-banking systems and electronic
voting systems [2].

Secure software development includes integrating security
in different phases of the software development lifecycle

(SDLC) such as requirements, design, implementation and
testing. Early consideration for security in requirement phase
helps in tackling security problems before further proceeding

in the process and in turn avoid rework [3]. Several
approaches have been proposed that upgrade previous
requirement engineering approaches to let it support security

such as goal oriented [4], agent oriented [5] and UML use
case based [6].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jare.2014.03.001&domain=pdf
mailto:hassanhadary@aucegypt.edu
http://dx.doi.org/10.1016/j.jare.2014.03.001
http://dx.doi.org/10.1016/j.jare.2014.03.001
http://dx.doi.org/10.1016/j.jare.2014.03.001

464 H. El-Hadary and S. El-Kassas
In order to integrate security with requirement engineering,
we have to consider security requirements. The basic task of
security requirement engineering is to identify and document

requirements needed for developing secure software system.
Satisfying such security requirements should lead to more
secure software system [7]. We adopted the definition that con-

siders security requirements as constraints on the functionality
of the system focusing on what should be achieved. We agree
that the security requirements should be expressed as positive

statements and not negative statements. Expressing require-
ments in such way can help in verifying its satisfaction [7].
Security requirements can be elicited by analyzing the assets
to be protected and the threats from which these assets should

be protected [8].
Security requirements need to be adequate as possible. They

need to be explicit, precise, complete and non-conflicting with

other requirements [4]. However, knowledge of security is a ba-
sic necessity prior to practicing security requirement engineer-
ing. The analyst should have background on how to identify

and analyze the system assets, threats, vulnerabilities and
requirements. One of the challenges for secure software sys-
tems development is to assist developers in performing security

requirements engineering [9]. A more effective approach for
security requirement engineering is needed to provide a more
systematic way for eliciting adequate security requirements.

Problem frames [10] are means that can be used to reuse

previous knowledge in modeling software problems in the
requirement engineering process. Several approaches provide
solutions to adapt security while following a problem frames

based requirement engineering process such as abuse frames
[11] and security problem frames [12]. Problem frames are
used in different frameworks for identifying security require-

ments such as Haley’s approaches [7,13]. However, we have a
gap between such approaches. No integration is presented in
the literature that bridges them together although they com-

plement each other. This paper proposes a methodology for
security requirement elicitation that provides a more system-
atic way for software developers in order to elicit adequate
security requirements while following a problem frames based

requirement engineering process. The methodology considers
security while eliciting the requirements of software systems
using problem frames. The main goal of the methodology

is to assist developers to elicit adequate security requirements
during the requirement engineering process with the aid of
previous security knowledge. A security catalog, based on

problem frames, is constructed for this purpose. The scope
of the methodology is limited to the requirements phase in
the SDLC, and is not intended to cover security through
the entire SDLC.

This paper is organized as follows. Section ‘‘Related work’’
discusses related approaches for security requirement elicita-
tion. Section ‘‘Methodology’’ presents our proposed method-

ology for security requirement elicitation. Section ‘‘Results
and discussion’’ compares results of applying our methodology
with two related methodologies. Section ‘‘Conclusion’’ sum-

marizes our work and suggests areas for future work.
Related work

Different requirement engineering approaches are updated in
order to consider security such as UML use cases [6,14,8],
agent oriented [5,15], goal based [4,16] and problem frames
based requirement engineering [7,12,17]. New models are
introduced to represent threats that can be exploited by the

attackers such as attack trees [18], misuse cases [6], anti-models
[4] and abuse frames [11]. Moreover, threats classification and
analysis techniques are introduced such as STRIDE and

DREAD [19]. Thus, the approaches are updated to consider
threats and elicit security requirements that mitigate such threats.

Moreover, reusing security knowledge is tackled in different

approaches in order to assist software developers in eliciting
security requirements in a systematic way. For example,
security problem frames [12], misuse cases templates [3], and
anti-models patterns [20] are used to form generic model based

catalogs which are not specified for a particular application.
Thus, the developer can make reuse of such generic models
and templates during elaborating threats and security

requirements.
Our methodology is mainly based on problem frames. In

Section ‘‘Problem frames,’’ we will cover problems frames

and approaches that integrated security with problem frames.

Problem frames

Problem frames [10] are means that can be used in the require-

ment engineering process to describe software development
problems. They can help in analyzing problems to be solved
where interaction between the software and domains in the

system context is described. Problem frames are useful in
requirements engineering because they help in decomposing
the system context into simpler subproblems which are

mapped to well-known problem classes [21]. Thus, problem
frames provide helpful means to reuse previous knowledge in
modeling software problems including security related
problems.

Different approaches provide solutions to integrate security
while using problem frames based requirement engineering
process. Abuse frames [11] and security problem frames [12]

are means for modeling security problems. Moreover, problem
frames are utilized in different frameworks for eliciting security
requirements. For example, Haley’s approaches [7,13] made

use of problem frames in order to identify vulnerabilities and
elicit security requirements.
Methodology

The proposed methodology aims at early integration of secu-
rity with software development. It considers security while elic-

iting the requirements of software systems using problem
frames. The methodology aims at identifying security require-
ments with the aid of previous security knowledge through
constructing a security catalog for this purpose. The security

catalog consists of problem frame models for threats and the
corresponding security requirements. Threats are modeled
using abuse frames while security requirements are modeled

using security problem frames.
Section ‘‘The methodology steps’’ describes the methodol-

ogy steps while giving examples for applying the methodology

on a software banking system. Section ‘‘Methodology itera-
tions and outputs’’ elaborates how the methodology iterates
through its steps. Section ‘‘Security catalog’’ illustrates the
structure and the contents of the security catalog used

throughout the methodology.

Capturing security requirements for software systems 465
The methodology steps

The methodology iterates through the following steps:

1. System modeling.
2. Assets identification.
3. Threats and vulnerabilities identification.

4. Security requirements elicitation.
5. Security requirements evaluation.

A flow chart for the methodology is shown in Fig. 1. We

will apply the methodology on a simple software banking sys-
tem to explain the steps:

Step 1: System modeling

In this step, we will use problem frames to model the problem
context of the system and to decompose it into subproblems.
The output of this step will be the problem context diagram

in addition to the problem frame diagrams representing the
functional requirements of the system. Fig. 2 represents the
cd Approach steps

Step 1: System Modeling

Step 3: Threats and
vulnerabilities

identification (Using
Catalog)

Step 4: Security R
Elicitation (Usi

Step 2: Asset identification

Finish

[F

[No vulnerabilities]

[Found vulnerabilities]

Fig. 1 Flow chart for the
problem context diagram while Fig. 3 represents the problem
frame diagram for a simple software bank system.

Step 2: Assets identification

After modeling the system, we will specify the assets in the sys-
tem.We can follow the technique used in previous studies [7,13]
where assets are identified by checking the domains of the sub-

problems constructed in the first step of the methodology. For
example, if we are modeling a software banking system, we
can have the domain Account Information in two subproblems:

one for editing account information and another one for viewing
account information. Suchdomain represents an asset because it
requires preserving security concerns such as confidentiality,

integrity, availability, accountability and authenticity.

Step 3: Threats and vulnerabilities identification

After identifying the assets of the system, we will identify the

threats that can harm such assets. The threats will describe
what the attacker can do in order to violate the security
concerns of the system. We will search for threats in the
equirements
ng Catalog)

Step 5: Security
Requirements Evaluation

ound problems]

proposed methodology.

Bank
customer

 Bank
 Machine

Account
Info

Bank
Staff

Fig. 2 Problem context diagram for a simple software bank

system.

a: AI!{Content of account info}
b: BS!{EnterAccountNo,EnterAmount}
c:AEM!{update Amount} AI!{RetrieveAmount}

Requirement: Bank operator edits account info by crediting funds

Account
Info

c

Bank
Staff

a

b b

 Account
 Editing Requirement

Fig. 3 PF1: Crediting funds to account subproblem frame

diagram [33].

a: AI!{Account amount modified}
c: AEM!{Modify account information}
b: ATT!{Execute commands to modify account info without authorization}

AR: Attacker makes modifications to account information without authorization

Account
Info. c

 Attacker

a

b b

 Account
 Editing

 Machine
AR

Fig. 4 AF1: Tampering account information abuse frame

diagram.

466 H. El-Hadary and S. El-Kassas
security catalog. Such catalog is constructed from threats,
modeled by abuse frames [11] and corresponding security
requirements modeled by security problem frames [12]. The

security catalog contents are illustrated in Section ‘‘Security
catalog.’’

We will check whether any of the threats in the catalog can
cause vulnerability in the system. A vulnerability is a weakness

in the system that maybe exploited by an attacker [13]. Mainly,
vulnerabilities are caused if the system allows the threats to oc-
cur. Such threats can cause harm to the system because they

violate any of its security concerns (confidentiality, integrity,
availability, accountability and authenticity). We will make
use of Haley’s approach [7,13] to identify vulnerabilities where

threats are crosscut with functional requirements we have
modeled in step 1. This is because threats are related to assets
which are represented by domains in the subproblems. For
example, the tampering data threat found in the security cata-

log is concerned with unauthorized modifications to stored
data such as account information. After crosscutting such
threat with the subproblem ‘‘PF1: Crediting funds to account’’

represented by the problem frame diagram in Fig. 3, we can
find that the attacker can perform manipulation to account
information which represents our asset. Such threat can cause

a vulnerability because the current model of the subproblem
does not include a mitigation for it.

After identifying threats that can cause vulnerabilities, we

will instantiate the abuse frames [11] that model the discovered
threats. Abuse frames will be instantiated by substituting the
domains, phenomena and interfaces in order to meet the con-
text of the system. For example, Fig. 4 shows the instantiated
abuse frame (AF) diagram ‘‘AF1: Tampering account infor-
mation’’ that models the tampering threat affecting the ac-
count editing subproblem in a software banking system. In

such diagram, the Attacker domain represents the malicious
user who can exploit the vulnerability in the machine Account
Editing Machine.

In some cases, we might need some design assumptions in
order to identify if there exists any vulnerabilities. For exam-
ple, we might need to know how the data are transferred from

domain to another in order to identify whether the threat of
disclosing transmitted data is applicable. If the designer an-
nounced that the transmission medium is encrypted and se-

cure, we can ignore the threat.
The output of step 3 will be composed of instantiated abuse

frames or abuse frame diagrams modeling the threats causing
vulnerabilities in the system. Abuse frames help us identify

the scope of the threats affecting the system. It helps the devel-
oper in identifying which subproblems are vulnerable.

Step 4: Security requirements elicitation

In this step, we will model the security requirements that are
intended to mitigate the threats causing vulnerabilities. We will
model such security requirements using security problem

frames [12] that are available in the security catalog. The secu-
rity catalog will be used to retrieve the appropriate security
problem frames corresponding to threats identified in step 3.

Such security problem frames are generic, and thus need to
be instantiated to the system context we are modeling. We will
instantiate such security problem frames by modifying its do-

mains, phenomena, interfaces, and security requirements.
The output of such step will be security problem frames dia-
grams that model the security requirements. The requirements
will be in the form of constraints on the functionality of the

system focusing on what should be achieved.
For example, the corresponding security problem frame for

the tampering threat in the catalog is ‘‘Integrity preserving of

stored data.’’ We will instantiate such security problem frame
to model the security requirement that meets with the context
of the system. The instantiated security problem frame (SPF)

will be ‘‘SPF1: Integrity preserving of account information’’
shown in Fig. 5. In such figure, we have the Authorized Bank
staff and Unauthorized User domains to represent the possible

users of the system. The security requirement constrains credit-
ing fund to accounts to be allowed only to authorizedBank staff.

In some cases, we might have difficulties in instantiating the
security problem frame. For example, domains of the security

a: AI!{Content of account info.}
b: ABS!{Enter Identity , Commands to update content of account info.}
c: UU!{Enter Identity , Commands to update content of account info.}
d: IPM!{Update content of account info.}

SR: Modification or creation of account information is allowed only to
authorized bank staff and not allowed to unauthorized users

Account
Info

SR

d

Authorized
Bank Staff

a

b b

Unauthorized
user

cc

 Integrity
 Preserving

Machine

Fig. 5 SPF1: Integrity preserving of account info.

Capturing security requirements for software systems 467
problem frame may not match with the context of the system

or the catalog may not include an appropriate security prob-
lem frame. In this case, we will follow the technique used in
Haley’s approach [13] to elicit the security requirements. We

will update the problem frame diagram of the subproblem to
consider security. We will constrain the requirements in order
to mitigate the threats.

Trust assumptions might be used in order to mitigate dis-
covered threats. Such assumptions state the analyst’s beliefs
that the properties of system domains can be trusted to an
acceptable level that makes the system safe from vulnerabili-

ties. By using a trust assumption, the analyst is putting bounds
on the problem that the system must solve [13]. Trust assump-
tions are used only if the analyst is unable to go further

through the problem because it is believed to be solved in an-
other context [13]. For example, we can have Authentication
Data domain that saves the credentials of the users. It can be

given that such domain is under the responsibility of the IT
department and that they are secure. These assurances can
be given as trust assumptions.

Step 5: Security requirements evaluation

We will adopt a checklist from [22] in order to evaluate the
resulting security requirements. Such criteria list the software

assurance community concepts of goodness for security
requirements. The criteria aim at providing good security
requirements that are feasible, unambiguous and non-conflict-
ing with other requirements.

We will also utilize a systematic approach inspired from [23]
in order to identify conflicts between requirements. In order to
check for conflicts between security requirements itself or be-

tween security requirements and functional requirements, we
need to check how the common domains between the subprob-
lems are constrained. We need to check whether there exist any

conflicts in the constraints applied on such domains in the sub-
problems of the system. For example, we can have two con-
flicting requirements in a system for banking services. The

first subproblem has a requirement that constrains the domain
Account info to be edited by bank customers while another
subproblem has a requirement that constrains the Account info
domain to be prohibited from editing by bank customers. In
this case, we have two subproblems that cause two conflicting
constraints on the same domain. Any discovery of deficiencies
in the requirements should return us to step 4 in order to refine

the requirements and resolve the conflicts or ambiguity.

Methodology iterations and outputs

As shown in Fig. 1, the methodology iterates through its
steps. Iteration starts from step 1 till reaching step 5. In each
iteration, the subproblems frame diagrams may be updated to

elaborate more domains in the system, and thus new assets in
the system may be revealed that require new security require-
ments. For example, after eliciting security requirements in

step 4, we can have new security problem frames, and thus
new assets and threats may be elaborated. The iterations will
stop when we do not find threats and vulnerabilities in the
system.

The output of the approach is expected to be a group of
(security) problem frame diagrams representing the subprob-
lems that model functional or security requirements. Such

requirements should ensure that the system to be developed
is secure assuming that they will be satisfied in the further
stages of software development. The output subproblems of

the methodology will be an input to the composition stage in
the problem frames based approach for software development.
In our work, we are focusing on decomposing the system prob-
lem into subproblems while composing such subproblems to-

gether can be considered in future work.

Security catalog

Our proposed security catalog contains security models for
threats and the corresponding security requirements. Abuse
frames [11] are used to model threats while security problem

frames [12] are used to model security requirements.
Such catalog is intended to be generic. It is not limited to

specific domain context, and thus it can be customized and

instantiated according to context of the software system to
be modeled.

Catalog contents: Threats

The threats in the catalog will be modeled by abuse frames
[11]. Abuse frames represent security threats that can be
exploited by attackers or malicious users in specific problem

context. Such threats will describe what the attacker can do
in order to violate the security concerns of the system. We
will utilize abuse frames because it has the advantage of
bounding the scope of security problems. Thus, threat

analysis can be performed on specific subproblems so that
we can know what threats can affect which asset domains
in which subproblems.

We introduce new abuse frames for commonly known
threats. Such threats are classified by the categories of
STRIDE [19] (spoofing, tampering, repudiation, information

disclosure, denial of service and elevation of privilege). Such
threat representation and classification can help the developer
when using the catalog. We are not claiming to cover all pos-
sible threats that can affect software systems. However,

STRIDE can assist us cover a wide range of threats that can
violate the security concerns such as confidentiality, integrity,
availability, accountability and authenticity.

a: SD!{Content of stored data}
b: AU!{Enter identity , Commands to update content of stored data}
c: UU!{Enter identity , Commands to update content of stored data}
d: IPM!{Update content of stored data}

SR: Modification or creation of stored data is allowed only to authorized
users and not allowed to unauthorized users

Stored
Data

SR

d

Authorized
User

a

b b

Unauthorized
user

c c

 Integrity
 Preserving

Machine

Fig. 7 SPF: Integrity preserving of stored data.

Table 1 Example of security catalog item.

Threat

Category: Tampering

Title: Tampering stored data

Abuse frame Fig. 6

Security requirement

Security concern: Integrity

Title: Integrity preserving of stored data

Security problem frame Fig. 7

Threat

Category: Tampering

Title: Tampering stored data

Abuse frame Fig. 6

Security requirement

Security concern: Integrity

Title: Integrity preserving of stored data

Security problem frame Fig. 7

a
a

Salary
Info.

e

f

f

Campus
Network

468 H. El-Hadary and S. El-Kassas
An example for a threat in the catalog is shown in Fig. 6
where the abuse frame (AF) ‘‘AF: Tampering stored data’’ is
shown. A vulnerable Editing machine that is concerned with

editing operations is being threatened by a tampering threat.
The threat in Fig. 6 is a generic threat where the attacker mod-
ifies the stored data without authorization. The abuse frame

used in representing such threat shows the interface between
the system and the attacker. For example, the connecting line
between the Editing machine and the Attacker (ATT) domain

represents the interface having the notation ATT!{Commands

to edit Content of Stored data}. Such notation denotes that
the Attacker (ATT) domain is trying to make unauthorized
editing to the Stored Data domain. The arrow headed dashed

line that connects the anti-requirement (AR) and Stored Data
domain represents a requirement reference having the notation
SD!{Content of stored info. after attack}. Such notation de-

notes that the anti-requirement (AR) constrains the properties
of the Stored Data (SD) domain after executing the attack.
Such anti-requirement constrains the content of stored info

to be modified by the Attacker domain without authorization.

Catalog contents: Security requirements

In this paper, we will adapt the definition of security require-

ments that represents positive statements representing con-
straints on the system behavior. We will adapt security
problem frames [12] in order to model security requirements.

Security problem frames help model known security prob-
lems and represent the security requirements needed to miti-
gate threats. We will utilize some previously made security

problem frames in addition to new ones that we introduce.
For example, the security problem frame (SPF) ‘‘SPF: Integ-
rity-preserving stored data’’ shown in Fig. 7 (inspired from
[24]) represents a security requirement that is concerned with

preserving the integrity of the stored information. Such secu-
rity requirement mitigates the threat modeled by the abuse
frame ‘‘AF: Tampering stored data’’ in Fig. 6 because the

security requirement allows only authorized users to modify
the stored data and prohibits unauthorized users from
modifying it.

The interfaces in Fig. 7 show how the Authorized user and
Unauthorized user domains interact with the Integrity Preserving
Machine. For example, the connecting line between the Integrity
Preserving Machine (IPM) and the Unauthorized user (UU)

domain represents the interface having the notation UU!{Enter

identity, Commands to update content of stored data}. Such
notation denotes that the Unauthorized user domain performs
a: SD!{Content of stored info. after attack}
b: ATT!{Commands to edit Content of Stored data}
c: EM!{Update content of stored data}

AR: Attacker makes modifications to stored data without authorization

Stored
Data c

Attacker

a

b b

 Editing
 Machine AR

Fig. 6 AF: Tampering stored data.

a: SDM!{Read content of salary info, Send authentication data}
b: AH!{Enter identity, Request display}
c: SDM!{update content of display data}
d: DD!{Content of display data}
e: AD!{content of authentication data}
f: SI!{Content of salary info}

SR: Authorized HR staff only is allowed to view salary information.

Authorized
HR

b
b

Display Data

d
c

 Salary
 Display
Machine

Authentication
Data SR

Fig. 8 SPF2: Confidentiality preserving of salary information.

Table 2 Results of first iteration during applying our methodology on the HR system.

Step Results

System modeling Problem frames:

‘‘PF1: Salary Info editing’’

Requirement: Salary info is edited by users

‘‘PF2: Salary Info display’’

Requirement: Salary information is displayed to users

Identify assets Assets:

Salary Information

Identify threats and

vulnerabilities

Abuse frames diagrams:

‘‘AF1: Information disclosure of salary information’’

AR: Salary information is displayed to attackers without authorization

‘‘AF2: Tampering Salary information’’

AR: Attacker makes modifications to salary information without

authorization

Identify security

requirements

‘‘SPF1: Integrity preserving of salary information’’

SR: Modification or creation of salary information is allowed only to

authorized HR staff and not allowed to unauthorized users

‘‘SPF2: Confidentiality preserving of salary information’’

SR: Authorized HR staff only is allowed to view salary information

Security

requirements

evaluation

The requirements complete each other and do not cause conflicts

Table 3 Results of second iteration during applying our methodology on the HR system.

Step Results

System modeling The security problem frame diagrams SPF1 and SPF2 will be modified by adding the

domains Campus Network and Authentication Data to give more elaboration on the

system as shown in Fig. 8

Identify assets Assets:

– Authentication Data

Identify threats and vulnerabilities Abuse frames:

‘‘AF3: Information disclosure of transmitted salary information and authentication data’’

AR: Salary information and authentication data are displayed to attackers while being transmitted

‘‘AF4: Spoofing a HR staff’’

AR: Attacker impersonates authorized HR staff and claims to be a valid accepted HR staff

AF5: Repudiation of salary info editing’’

AR: Attacker makes changes to salary and denies performing it

Identify security requirements The security requirement in SPF1 will be as follows:

SR: Modification or creation of salary information is allowed only to authorized HR staff

and not allowed to unauthorized users and the data sent over the campus network should not be

understandable by eavesdroppers

The security requirement in SPF2 will be as follows:

SR: Authorized HR staff only is allowed to view salary information and the data sent over

the campus network should not be understandable by eavesdroppers

Security requirements evaluation The requirements complete each other and do not cause conflicts

Capturing security requirements for software systems 469
the operations of entering the identity and requesting to update
the stored data. The security requirement (SR) references the

Authorized User domain and the Unauthorized user domain in
the requirement description. It constrains the contents of the
Stored Data domain to be modified only by authorized users

and not by unauthorized users.

Table 4 Results of third iteration during applying our methodology on the HR system.

Step Results

System modeling The domain Campus Network is updated to be Encrypted Network in an attempt to add a design

solution to satisfy the security requirement that constrains the data sent over the campus network

to be understandable by eavesdroppers.

Identify assets Assets:

No new assets

Identify threats and vulnerabilities The threat described in AF3 is still applicable and can cause vulnerability because we are not sure

if encryption keys are secure

Identify security requirements The following trust assumptions are added:

– Encryption Network domain uses secure encryption keys.

– Authentication Data is secure

Security requirements evaluation The requirements complete each other and do not cause conflicts

470 H. El-Hadary and S. El-Kassas
Security requirements will be categorized by security con-
cerns. Such security concerns can be described as confidential-

ity, integrity, availability, accountability and authenticity.
Table 1 shows an example of a catalog item where each

threat is linked with a corresponding security requirement.

Results and discussion

In this section, we compared our proposed methodology with

two security requirement elicitation methodologies that are
based on problem frames [12,13]. We have selected to compare
with others [12,13] because our proposed methodology is

inspired from such methodologies in the way of making use
of problem frames in identifying vulnerabilities and eliciting
security requirements in the system. We showed that the
security requirements are more complete when following the

systematic steps of our proposed methodology (see Fig. 8).

Comparing with Haley’s methodology

We have applied our proposed methodology on the case study
presented in [13] where Haley’s approach is applied. Such case
study is concerned with modeling security requirements for a

Human Resources System. We have selected to compare with
Haley’s methodology because it is related to our methodology.
Table 5 The comparison results with Haley’s methodology.

Haley’s methodology results

Security requirements:

SR1: only HR staff can edit or view salary information

SR2: information passing over the network must not be

understandable by an eavesdropper

The proposed methodology results

Security requirements:

SR1: Authorized HR staff only is allowed to view salary information

and the data sent over the campus network should not be

understandable by eavesdroppers

SR2: Modification or creation of salary information is allowed only

to authorized HR staff and not allowed to unauthorized users and the

data sent over the campus network should not be understandable by

eavesdroppers

SR3: Modification of salary information should be logged

SR4: The security validation state is accepted only if the user using

identity of a HR staff is actually a HR staff
We have applied the methodology according to the steps out-
lined in Section ‘‘Methodology’’ in order to model security

requirements for the asset ‘‘Salary information’’ in the system.
Tables 2–4 outline the results of each methodology iteration.

We have compared our results with those of Haley’s meth-

odology. The results showed that more threats are considered.
This led to covering more security requirements. As shown in
Table 5, the security requirement SR3 is suggested to constrain

the modification of salary information to be logged to preserve
the accountability security concern. Furthermore, the security
requirement SR4 is proposed to ensure the validity of the HR
staff identity during authentication to preserve the authenticity

concern. Thus, more complete security requirements are elic-
ited. We can argue that utilizing the security catalog enabled
eliciting threats more systematically because of the assistance

and suggestions provided by the catalog. The security catalog
helped the elicitation of more effective security requirements
that canmitigate and counter the threats because of considering

more security concerns such as accountability and authenticity.

Comparing with security problem frames based approach

In this section, we will show the results of applying our pro-
posed methodology on the case study presented in [12] where
SEPP (Security Engineering Process using Patterns) is applied.
Table 6 The comparison results with SEPP methodology.

SEPP methodology results

Security requirements:

SR1: Access is granted for the authentic user and access is denied for

the Malicious subject

SR2: Malicious subject should not be able to derive sent data and

received data during data transmission

SR3: Sent data equals Received data or if not, a modification by

Malicious subject is detected using Transmitted data

The proposed methodology results

Security requirements:

SR1: The security validation state is accepted only if the user using

identity is the one he claims to be

SR2: Transmitted screen data should be not understandable by

attackers

SR3: Any modification to Transmitted screen data should be detected

SR4: Screen Data should be available for sending and displaying

SR5: Screen data changing and sending by users should be logged

Capturing security requirements for software systems 471
Such approach utilizes security problem frames to model secu-
rity requirements. The case study on which SEPP is applied
models security requirements for a Remote Display System.

The case study presented in [12] is mainly concerned with mod-
eling a secure Remote Display System. The system allows its
users to view and control a computing desktop environment

not only on the PC (Personal Computer) where it is running,
but also from a PDA (Personal Digital Assistant) over a Blue-
tooth connection. Table 6 lists the results of applying such

methodology in addition to the results of applying our meth-
odology on the same case study in order to elaborate the
advantages of the proposed methodology.

As shown in Table 6, we took into consideration more

threats and this led to covering more security requirements.
The security requirement SR4 is proposed to ensure availabil-
ity of the remote display service. Moreover, the security

requirement SR5 is suggested to log the remote display re-
quests of the users in order to preserve the accountability secu-
rity concern and mitigate the repudiation threat. Such security

requirements are not covered when applying the SEPP ap-
proach. Thus, more complete security requirements are elicited
when following our methodology because of considering more

security concerns such as accountability.
Conclusions

We have suggested a methodology that integrates security with
requirement engineering process based on problem frames.
The proposed methodology is a result of our own contribution
in addition to the integration of many useful approaches. We

will list a summary of our contributions:

� We have developed a methodology that enables discovering

threats and eliciting its countermeasure security require-
ments in a systematic way.
� We have proposed a problem frames based security catalog

that combines threats with corresponding security require-
ments in order to assist the analyst elicit security require-
ments by reusing security knowledge.

� We have utilized abuse frames [11] in order to construct dif-
ferent generic threats under different categories that helped
in constructing a generic model based security catalog. Such
approach helped in bounding the scope of security

problems.
� We have made use of security problem frames [12] to model
known security problems and represent the security

requirements needed to mitigate threats in the security
catalog.
� We have adapted from Haley et al. [13] the way of utilizing

problem frames in identifying vulnerabilities in the system
by crosscutting threats with the system requirements.
� We have made use of evaluation criteria [22] to evaluate the
resulting security requirements concentrating on conflicts

identification between requirements.

We have compared our methodology with other relevant

methodologies to demonstrate the benefits of using the meth-
odology presented in this paper. First, we compared with Ha-
ley’s approach, a case study which is applied to a human

resource system [13]. Two more security requirements are
elicited when applying our methodology. Such security
requirements considered the accountability and authenticity
security concerns. Second, we applied the methodology on
the case study presented in Hatebur et al. [12] where security

problem frames based approach is used to model security
requirements for a secure Remote Display System. Two more
security requirements are elicited when applying our method-

ology. Such security requirements considered the accountabil-
ity and availability security concerns. Thus, we have shown
that more complete security requirements can be elicited by

such methodology in addition to the assistance offered to
developers to elicit security requirements in a more systematic
way.

Future work

More empirical studies on large scale software systems are
needed to evaluate the methodology. We can apply the meth-

odology on more case studies by wide range of software devel-
opers having different levels of security knowledge.

Moreover, we can adapt a formal framework into the meth-

odology instead of its informal language dependency. Repre-
senting the requirements formally can help in achieving
preciseness and automation.

Furthermore, adapting a risk analysis approach in the
methodology can be beneficial. Such step can be used in order
to evaluate the risk of the threats before mitigating it. Such ap-
proach will help us prioritize threats accurately and identify its

severity in addition to identifying the best approach to mitigate
such threats.

Finally, the security catalog used in the methodology can be

extended to support more generic threats and security require-
ments. Covering more categories in addition to covering more
domains can help expand the security catalog and make it

more complete. Such extension can enhance the methodology
and let it assist in capturing more complete security
requirements.

Conflict of interest

The authors have declared no conflict of interest.
References

[1] Internet Storm Center Statistics. <https://isc.sans.edu/

submissions.html>.

[2] Grand Research Challenges in Information Security &

Assurance. CRA; November 2003, <http://www.cra.org/

Activities/grand.challenges/security/home.html>.

[3] Sindre G, Firesmith DG, Opdahl AL. A reuse-based approach

to determining security requirements. In: Proceedings of the 9th

international workshop on requirements engineering:

foundation for software quality (REFSQ’03); 2003.

[4] van Lamsweerde A. Elaborating security requirements by

construction of intentional anti-models. In: Proceedings of the

26th Int’l Conf Software Eng (ICSE 04). IEEE CS Press; 2004.

[5] Liu L, Yu E, Mylopoulos J. Security and privacy requirements

analysis within a social setting. In: Proceeding of RE’03; 2003. p.

151–61.

[6] Sindre G, Opdahl AL. Eliciting security requirements with

misuse cases. Requirements Eng 2005;10(1):34–44.

[7] Haley CB, Moffett JD, Laney R, Nuseibeh B. Security

requirements engineering: a framework for representation and

analysis. IEEE Trans Software Eng 2008;34(1):133–53.

https://isc.sans.edu/submissions.html
https://isc.sans.edu/submissions.html
http://www.cra.org/Activities/grand.challenges/security/home.html
http://www.cra.org/Activities/grand.challenges/security/home.html
http://refhub.elsevier.com/S2090-1232(14)00033-2/h0030
http://refhub.elsevier.com/S2090-1232(14)00033-2/h0030
http://refhub.elsevier.com/S2090-1232(14)00033-2/h0035
http://refhub.elsevier.com/S2090-1232(14)00033-2/h0035
http://refhub.elsevier.com/S2090-1232(14)00033-2/h0035

472 H. El-Hadary and S. El-Kassas
[8] Firesmith D. Security use cases. J Object Technol 2003;2(3):

53–64.

[9] Mouratidis H. Secure information systems engineering: a manifesto.

Int J Electron Security Digital Forensics 2007;1(1): 27–41.

[10] Jackson M. Analyzing and structuring software development

problems. Addison-Wesley; 2001.

[11] Lin L, Nuseibeh B, Ince D, Jackson M, Moffett J. Introducing

abuse frames for analyzing security requirements. In: Proceedings

of the 11th IEEE international requirements engineering

conference (RE’03), Monterey, CA, USA; 2003. p. 371–2.

[12] Hatebur D, Heisel M, Schmidt H. A pattern system for security

requirements engineering. In: Proceedings of the international

conference on availability, reliability and security (AReS),

IEEE; 2007. p. 356–65.

[13] Haley CB, Laney R, Nuseibeh B. Deriving security requirements

from crosscutting threat descriptions. In: Proceedings of the

third international conference on aspect-oriented software

development, Lancaster, UK; 2004.

[14] Whittle J, Wijesekera D, Hartong M. Executable misuse cases

for modeling security concerns. In: Proceedings of the 30th

international conference on software engineering, Leipzig,

Germany; 2008.

[15] Giorgini P, Massacci F, Mylopoulous J, Zannone N.

Requirements engineering meets trust management: model,

methodology, and reasoning. In: Proceeding of iTrust-04,

LNCS 2995. Heidelberg: Springer-Verlag; 2004. p. 176–90.
[16] Oladimeji E, Supakkul S, Chung L. Security threat modeling: a

goal-oriented approach. In: Proceedings of SEA’06, Dallas, TX;

2006.

[17] Yin B, Jin Z. Extending the problem frames approach for

capturing non-functional requirements. In: Proceedings of the

11th international conference on computer and information

science; 2012.

[18] Schneier Bruce. Attack trees. Dr. Dobb’s J; 1999.

[19] Swiderski F, Snyder W. Threat modeling. Microsoft Press;

2004.

[20] Hermoye LA, van Lamsweerde A, Perry DE. A reuse-based

approach to security requirements engineering; 2006. <http://

users.ece.utexas.edu/~perry/work/papers/060908-LH-

threats.pdf>.

[21] Cote I, Hatebur D, Heisel M, Schmidt H, Wentzlaff I. A

systematic account of problem frames. In: Proceedings of the

12th European conference on pattern languages of programs

(EuroPLoP 2007); 2007.

[22] Information Assurance Technology Analysis Center (IATAC)/

Data and Analysis Center for Software ‘‘Software Security

Assurance. A state-of-the-art report; 2007.

[23] Jackson M. The problem frames approach to software

engineering. In: 14th Asia-Pacific, software engineering

conference (APSEC’07); 2007. apsec, p. 14.

[24] Heisel M, Hatebur D. Security problem frames. Entwicklung

Sicherer Software SS; 2007.

http://refhub.elsevier.com/S2090-1232(14)00033-2/h0040
http://refhub.elsevier.com/S2090-1232(14)00033-2/h0040
http://refhub.elsevier.com/S2090-1232(14)00033-2/h0045
http://refhub.elsevier.com/S2090-1232(14)00033-2/h0045
http://refhub.elsevier.com/S2090-1232(14)00033-2/h0050
http://refhub.elsevier.com/S2090-1232(14)00033-2/h0050
http://refhub.elsevier.com/S2090-1232(14)00033-2/h0095
http://refhub.elsevier.com/S2090-1232(14)00033-2/h0095
http://users.ece.utexas.edu/~perry/work/papers/060908-LH-threats.pdf
http://users.ece.utexas.edu/~perry/work/papers/060908-LH-threats.pdf
http://users.ece.utexas.edu/~perry/work/papers/060908-LH-threats.pdf

	Capturing security requirements for software systems
	Introduction
	Related work
	Problem frames

	Methodology
	The methodology steps
	Step 1: System modeling
	Step 2: Assets identification
	Step 3: Threats and vulnerabilities identification
	Step 4: Security requirements elicitation
	Step 5: Security requirements evaluation

	Methodology iterations and outputs
	Security catalog
	Catalog contents: Threats
	Catalog contents: Security requirements

	Results and discussion
	Comparing with Haley’s methodology
	Comparing with security problem frames based approach

	Conclusions
	Future work

	Conflict of interest
	References

