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Abstract
Objective We assessed the predictive value added by Anti-
Mullerian Hormone (AMH) to currently validated live birth
(LB) prediction models.
Methods Based on recent data from our center, we compared
the external validity of the Templeton Model (TM) and its
recent improvement (TMA) to select our model of reference.
The added predictive value of AMH was assessed in testing
the likelihood ratio significance and the Net Reclassification
Index (NRI). The surrogate utility of AMH was tested by
conducting an exploratory stepwise logistic regression.
Results Based on 715 cycles, the original TM had poor per-
formances (auROC C=0.61 [0.58, 0.66], improving by fitting
TM to our data (C=0.71[0.66, 0.75]. TMA fitting proved
better (C=0.76; 95 %CI: 0.71, 0.80) and was selected as
model of reference. Adding AMH to TMA or TM had no
effect on discrimination (C=0.76; 95 %CI: 0.72, 0.80), the
likelihood ratio test was significant (p=0.023), but the NRI
was not (6.7 %; p=0.055). A stepwise exploratory logistic
regression identified the effects of age, previous IVF resulting

in LB, time trend and AMH, leading to a prediction model
reduced to four predictors (C=0.75 [0.70, 0.81]).
Conclusion The added predictive value of AMH is limited. A
possible surrogate/simplifying effect of AMH was found in
eliminating 9/13 predictors from the model of reference. We
conclude that whereas AMH does not add significant predic-
tive value to the existing model, it contributes to simplifying
the equation to reliable, easy to collect, and available in all
databases predictors: age, AMH, time trend and female previ-
ous fertility history.
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Introduction

Determining which baseline characteristics are associated
with the highest chance of achieving a live birth (LB) after
IVF/ICSI has received much attention in the assisted repro-
duction technology (ART) literature. Prediction models are
essentially designed to help ARTexperts counsel their patients
and to decide whether or not to offer them IVF. The historical
development of these models has highlighted the difficulties
encountered in developing a model with sufficient precision
for use in routine practice. Numerous approaches have been
proposed, the best-known of which is the Templeton Model
(TM) [1]. Other approaches include Bancsi (2), Commenges-
Ducos [3], Ferlitsch [4], Hunault [5], Lintsen [6], Minaretzis
[7], Nelson [8], Ottosen [9], Smeenk [10], and Stolwijk [11].
A methodological comparison of these models suggested that
TM was most predictive of LB [12]. Although a more recent
comparison between the Templeton and Nelson models [13]
found equal overall performance in a primary infertility set-
ting, the external validity of TM was confirmed on a wider
basis [15] and a suggested improvement, the addition of three
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further predictors, resulted in higher discrimination
(Templeton Model modified by Arvis, TMA [14], auROC=
0.75), although this model was not yet validated externally.

Despite these improvements, prediction remains insuffi-
ciently precise and requires improvement. Anti-Mullerian
Hormone (AMH) is a dimeric glycoprotein and member of
the transforming growth factor-beta superfamily, which in-
cludes growth and differentiation factors such as activins
and inhibins, was recently suggested as a potential prediction
marker of LB. Data from studies on women undergoing
ovarian stimulation suggest that AMH is secreted in the serum
mainly from small antral follicles and ceases to be produced
when these follicles reach the dominance stage [15, 16]. In the
human ovary, AMH expression is highest in follicles <4 mm
in diameter and absent in follicles>8 mm [17]. The utility of
this expression as a marker for ovarian response has been
suggested in numerous studies [15, 17–21]. Compared with
the Antral Follicle Count (AFC), AMH is measurable
throughout the menstrual cycle and in all patients, even those
with ovarian cysts limiting AFC measurement; AMH also has
low intra- and inter-cycle variability, although instability has
been reported in some circumstances (n=5006) [22].

Some studies have suggested that AMH has predictive
value for LB after adjustment for age [23–25]; however none
of these studies compared the predictive value with currently
validated models such as TM, nor did they provide evidence
of the higher predictive value offered when AMH was added
to the model of reference. Our objective was to explore the
extent to which the addition of AMH to TM increases the
predictive value for LB. As a secondary objective, we
assessed another possible usefulness of AMH: irrespective
of its added predictive value, AMHmay also exert a surrogate
effect, eliminating existing predictors in the original model
thus reducing their number, making the model simpler and
easier to interpret.

Methods

Data collection

Our study was limited to the data available at our centre. All
the IVF/ICI cycles prior to December 2010 and for which LB
information was available, including those with early inter-
ruption at any stage, were included. We documented female
age, male age, duration of sub-fertility, pregnancy history
(primary/secondary infertility), cause of infertility (tubal in-
fertility (TbI), male infertility, ovulatory dysfunctions, endo-
metriosis and unexplained sub-fertility), uterus abnormality,
BMI (weight/height2), basal FSH (IU/L), number of previous
failed cycles (NFC), smoking habits of women and partners
(Yes/No), previous number of miscarriages, duration of sub-
fertility, previous IVF pregnancies resulting in LB (ILB),

previous IVF pregnancies not resulting in LB (INB), previous
Non-IVF pregnancies resulting in LB (NLB), previous Non-
IVF pregnancies not resulting in LB (NNB), Antral Follicle
Count (AFC) and AMH blood levels (ng/mL). Only baseline
variables were used, any variables collected during or post
down-regulation were disregarded at this stage. AMH was
measured at cycle baseline using either the Immunotech–
Beckman Coulter (AMH Gen II ELISA, Beckman Coulter,
Inc., Brea, CA, USA), ELISA or the Diagnostic System
Laboratories test (DSL, ActiveMIS/AMHELISA; Diagnostic
Systems Laboratories, Webster, TX, USA). AMH values in SI
units (pmol/L) were converted to ng/mL by a factor of 7.14.
Log-transformed AMH values were systematically used in the
analyses.

Statistical analysis

In a first stage, we compared the external validity of TM and
TMA to select our reference model before assessing the added
predictive value of AMH. Discrimination was evaluated by
the area under the curve of a ROC curve (auROC), a model
considered to have poor, fair or good performance when the
AuROC exceeds 0.7, 0.8 or 0.9, respectively [26]. Model
calibration was assessed by the Hosmer goodness-of-fit test
[27] and by testing the departure of the fitted line between
observed and predicted frequencies [31]. For all the model
fits, we used a bootstrapping technique for estimation of CIs, a
shrinkage factor to reduce the model over-fit and obtain rela-
tively unbiased estimates [28]. We tested and compared three
models sequentially: TM original formulation, and TM and
TMA fitted to our data. We compared models by their dis-
crimination (auROC), and pairwise comparisons in which
each tested model included an intercept and an offset term of
the log odds of LB calculated by the control model.

The selected model was considered as our model of refer-
ence on which we assessed the added predictive value of
AMH for LB: a) By adding AMH to the predictor list, we
tested the significance of the added term by a Chi-square
Likelihood ratio Test LRT between the two nested models.
b) We evaluated the net benefit in comparing old and new
classifications [29], net reclassification improvement (NRI)
constitutes the net effect on reclassification tables constructed
separately for participants with and without LB, and quantifies
the correct movement in categories upwards for events and
downwards for non-events. The integrated discrimination im-
provement (IDI) focuses on differences between sensitivity
and specificity for models with and without the new
predictors.

Our secondary objective was the extent to which, indepen-
dently of its added predictive value, AMH may help simplify
the model by eliminating a subset of existing predictors. To
this end, we conducted an exploratory stepwise algorithm on
our data by considering as potential predictors all the variables

38 J Assist Reprod Genet (2015) 32:37–43



included into TM and TMA, and adding AMH. The final
model was found by using bootstrapping (n=5000) and test-
ing several variable selection strategies (forward, backward
and stepwise).

To account for more than one cycle for the same patient, the
prediction model was fitted by using a non-linear mixed
model featuring a logistic model in which the patient was
considered as a random factor. The main and interaction
effects were tested at the 0.05 and 0.1 two-sided confidence
levels, respectively. All the statistical analyses were carried
out using the R statistical software package (R, version
2.12.2).

Results

A total of 723 IVF cycles were included according to our
initial selection principles (Table 1): In summary, these pa-
tients were characterized by a median age of 35.1 [Interquar-
tile Q=31.1,38.7], mean BMI of 23.4±4.2 kg/m2, mean num-
ber of 2.15±1.2 unsuccessful IVF attempts, mean AMH of
3.84±3.17 ng/L and 11.7 % tubal infertility. 56 % of patients
were treated with a GnRH long protocol agonist, and ICSI was
applied in 42 %. No missing data was found on LB, 1.4 %

missing data were found in the predictor variables, prompting
exclusion of 8 cycles leading to a final study sample of
715 cycles. 108 (15.1 %) of the 715 cycles studied resulted
in live births.

Three models were compared to select the model of refer-
ence: the original TM model led to poor discrimination
(auROC=0.61, [0.58; 0.66], Fig. 1), irrespective of whether
the woman’s age at the first or current IVF cycle was used.
Calibration assessment highlighted underestimated prediction
of 16 % corresponding to higher observed rates (Fig. 2,
Hosmer Test, p=0.008). Discrimination significantly in-
creased when TM was fitted to our data (auROC=0.71,
[0.66; 0.75]), and a further significant increase was observed
when TMA was fitted (auROC=0.76, [0.71; 0.80], Fig. 1),
with almost perfect calibration (Fig. 2) expressed as a maxi-
mum difference of 1.9 % between the true and predicted
values (Fig. 2), and the fitted line coinciding with the diagonal
(slope=0.93, [-0.47; 1.35]).

The TM fitted to our data was compared to the original TM
by including an intercept and an offset term of the log odds of
LB calculated using the original TM: only the intercept was
found to be significant (p<0.001). The same comparison
between the fitted TMAversus the fitted TM highlighted four
highly significant terms (p<0.001): intercept, trend in time,
FSH and BMI.

TMA fitted to our data was selected as our model of
reference to evaluate the added predictive value of AMH: a)
When adding AMH to this model, the discrimination

Table 1 Sample description, mean±SD or median [interquartile],
(count) and percentage (%)

Parameter Value

Age - Median [interquartile] 35.1 [31.1, 38.7]

BMI - mean±SD 23.44±4.20

FSH - mean±SD 7.45±3.38

LH (UI/L) - mean±SD 3.22±2.52

E2 (pg/ml) - mean±SD 52.17±39.14

E2 Triggering - mean±SD 2301±1326

AMH - mean±SD 3.84±3.17

Number of Attempts - mean±SD 2.15±1.58

Infertility duration - mean±SD 23.18±9.09

ICSI application (Count) (305) 42.7 %

GnRH antagonist (Count) (401) 56.1 %

Previous LB after IVF (Count) (173) 24.2 %

Previous Non-LB after IVF (Count) (100) 14.0 %

Previous non-IVF LB (Count) (113) 15.8 %

Previous non-IVF non-LB (Count) (103) 14.4 %

Diagnosis (Count):

Unexplained (135) 29.2 %

Tubal (54) 11.7 %

IUI failure (30) 6.5 %

Endometriosis (33) 7.1 %

Age>40 (45) 9.7 %

Multiple (165) 35.7 %

Fig. 1 Discrimination measured by the Area under the ROC curve
(AuROC), for the three models considered: strict Templeton model
(auROC=0.61, 95%CI 0.54, 0.56, dashed curve), Templeton-Arvis
TMA model (AuROC=0.76, [0.71, 0.80], dotted line), and simplified
model using AMH (auROC=0.75, [0.70, 0.80], solid line)
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remained unchanged; b) A significant contribution was found
in adding AMH to the TMA (df=1, LRT=5.37,p=.023); c) In
cycles leading to a live birth, the net gain in sensitivity was
4/108=2.77 %, whereas for non-responders, the gain in spec-
ificity was 24/607=3.95 %, the overall Net Gain being NRI=
6.73% (SE=3.45%, p=0.055) whereas the estimated IDI was
0.0167 (p<0.001).

Instead of TMA, we also evaluated the added predictive
value of AMH on TM, as TM was more used and externally
validated. Adding AMH to TMmodified the auROC from .71
to .713, a significant contribution of AMH was found (df=1,
LRT=6.31,p=.039), and the overall Net Gain was NRI=
7.2 % (SE=4.01 %, p=0.048)

Our secondary objective was to assess the capacity of
AMH to simplify the existing model of reference. We con-
ducted a stepwise exploratory Logistic regression by taking
LB as the dependent variable and all the available baseline
variables of TM, TMA, to which we added AMH. Across
bootstrapping and several strategies of variable selection, a
consistent model was identified limited to 4 significant pre-
dictors (Table 2): the linear and quadratic effect of age (Odds
Ratio OR=1.15/year, [1.04; 1.27]) and OR=0.98/year2 [0.96;
0.99]), at least one previous IVF resulting in Live birth (OR=
4.03, [2.57;6.32], Time Trend (OR=1.22 [1.07; 1.39] and
AMH (log-transformed value, OR=2.27 [1.37; 3.67]), with
an observed auROC discrimination of 0.76 [0.71; 0.80].

Compared with this final model, the simple model re-
strained to Age and AMHwas characterized by a significantly
lower auROC of .67. The coefficients of determination were
R2=.14 and .05, for our model and the Age+AMH model
respectively.

Discussion

Main objectives

Our primary objective was to assess the predictive value of
AMH for LB prediction. The a priori relevance of AMH in
this setting is justified as it is a marker of ovarian reserve,
which may in turn influence LB. After selection of a reference
prediction model, we tested the added predictive value of
AMH in the model in several independent ways: By using
TM or TMA. the discrimination (auROC) remained virtually
unchanged, and although the likelihood ratio of the two nested
models was significant, we identified a modest but non-
significant net gain classification of 6.7 and 7.2 % compared
with and without AMH for TMA and TM, respectively. We
conclude that the added predictive value of AMH is limited.

We also assessed the ability of AMH to simplify the pre-
diction model using a stepwise regression algorithm based on
all the available potential predictors involved in the existing
validated prediction models. Four significant effects consis-
tently emerged, including AMH and three contained in the
original TM and TMA models (linear and quadratic effect of
age, time trend and previous IVF resulting in Live birth). The
corresponding auROC value (0.75 [0.70, 80]) remained virtu-
ally unchanged compared with the TMA model based on 13
covariates, and very close of the value found for TMA in
another centre [14]. This result provides evidence of a signif-
icant surrogate effect of AMH: Using AMH, the model be-
comes substantially simpler: 9 out of the 13 original covariates
of TMA are eliminated, i.e. duration of infertility, number of
attempts, previous live or not live (still)births, FSH level and

Fig. 2 Calibration plot for the original TMmodel (right) and TMA fitted
model (left). Ordinates and abscises represent the predicted and observed
live birth probabilities, respectively, the solid line is the ideal line

(meaning coincidence between observed and predicted probabilities)
and the dotted line is the linear fitting based on the quartiles of the
distribution observed
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BMI. Our model confirms the independent effects of AMH
and age, as already suggested elsewhere [24]; however, in
accounting for the nonlinear effect of age, previous IVF history
(existence of a previous LB), and the improvement in LB over
time, the discrimination significantly improved and the per-
centage of explained variance (R2) more than doubled.

A cluster analysis on the correlations between the predictors
helped in understanding the simplification effect of AMH. In this
analysis, we found an important group of correlated predictors:
FSH, AMH, infertility duration, number of attempts, and age.
Almost all these variableswere eliminated from themodel except
age. AMH, a strong predictor of ovarian reserve removed all
these variables appearing as indirect and less determinant predic-
tors of ovarian reserve. Although unknown when Templeton
model was published, AMH is now widely available and advan-
tageously substitutes for indirect measures of ovarian reserve.

Secondary objectives

Before assessing the added predictive value of AMH, our
preliminary objective was to select the best prediction model.

External validation is a key step before deciding to adopt a
prediction model. Although in many other pathologies, fitting
a model to a particular centre generally constitutes a licit
approach, in the ART context, a model fitted in one centre
and assessed in other centres will likely demonstrate poor
validity due to the paramount centre effect overriding the
patient mix effect [14, 30]. As has already been reported in
previous external validations of TM [10, 31], the performance
of TM and TMA original formulations were very poor, al-
though these results were easily predictable. Instead of fitting
the original centre-specific formulation of a model to another
centre, a model must be first fitted to the data of the centre
studied to estimate, at the very least, the model intercept. In
such cases, if no other significant effect is found, the model
tested is de-facto considered to be externally valid in adjusting
for the intercept which measures center performance. By this
analysis, we suggest a statistical technique adapted to
predicting models in ART, taking into account higher differ-
ences between centers. We also provide some evidence of the
improvement of the TMA compared with TM by confirming
the added predictive values of FSH, BMI and time trend.

Table 2 Summary of model findings The final simplified model based on stepwise regression analysis is reported in the third column

. Templeton (TM) Templeton-Arvis (TMA) Final Simplified ModeI

OR(3) 95 %CI Est(2) OR(3) 95 % CI Est(2) OR(3) 95%CI Est(2)

Intercept(6)(age=30) 0.17 0.15, 0.20 −1.77 0.23 0.07, 0.72 −1.48 0.29 0.17, 0.49 −1.24
Age (1) 1.01 1.01, 1.007 0.005 1.17 1.05, 1.30 0.15 1.15 1.04, 1.27 0.14

Age2 (1) 1.00 1.00, 1.000 −0.0002 0.98 0.96, 0.98 −0.02 0.98 0.96, 0.99 −0.02
Infertility duration: 0.97 0.95, 1.01 −0.02

1 Year 1.19 .68,1.73 0.171

4 years 0.88 0.55, 1.39 −0.012
7 years 0.78 0.54, 1.37 −0.248
13 years 0.61 0.25, 0.99 −0.494

Number of attempts 0.87 0.71, 1.29 −0.013 0.85 0.73, 1.01 −0.15
Tubal Infertility 0.76 0.67, 1.39 −0.271 0.40 0.13, 1.19 −0.90
ILB (8) 2.01 1.65, 2.76 0.698 3.97 2.52, 6.25 1.38 4.03 2.57, 6.32 1.39

INB(8) 1.34 0.89, 2.55 0.292 0.76 0.39, 1.45 −0.27
NLB(8) 1.21 0.77, 1.57 0.190 0.89 0.48, 1.65 −0.11
NNB(8) 1.02 0.54, 1.41 0.019 0.84 0.43, 1.65 −0.17
Year (from 2011) 1.23 1.07, 1.40 0.21 1.22 1.07, 1.39 0.20

FSH >10 1.84 0.90, 3.79 0.61

BMI>26 or <18 1.77 1.01, 3.12 0.57

AMH 1.18 0.67, 1.85 0.16 2.28 1.376, 3.768 0.731

C (Strict Model)(4) 0.61 0.58, 0.66

C (Fitted model) (5) 0.71 0.66, 0.75 R2=.067 (7) 0.76 0.71, 0.80 R2=.14 (7) 0.75 0.71, 0.80 R2=.14(7)

1) Age and Age2 are polynomial components of age. (2) Est reports the parameter estimates of the logistic regression. (3) Odds Ratio (OR) and 95%CI
calculated as exp(est), p values <0.001 are in bold underlined. (4) C=area under the ROC curve and 95%CI calculated on the strict model (no fitting). (5)

C=area under the ROC curve and 95%CI calculated on the fitted model. (6) The intercept of the model depends on the selected reference in coding the
predictors, and corresponds to age of 30 years. (7) Nagelkerke Determination (R2 ) coefficient of the Logistic model. (8) Female fertility history: ILB:
previous IVF pregnancies resulting in LB, INB: previous IVF pregnancies not resulting in LB, NLB: previous Non-IVF pregnancies resulting in LB,
NNB: previous Non-IVF pregnancies not resulting in LB
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Smoking habits, another additional variable included in the
TMA but not TM, was not considered as significant.

Limitations

There are several limitations in this study. Firstly, our suggested
external validation technique based on fitting the data to the
center is based on a simplified hypothesis that the center per-
formance and the mix coefficients (patient specific variables)
are separable, which in particular supposes the absence of
interaction between the center and specific women variables.

Templeton and Nelson models were fitted on the basis of
very large sample sizes. Data were collected from legal
sources and issued by many centers. Our study is based on a
small sample size, and has no ambition of competing with
these models. Our results are based on one center, and need to
be generalized across other centers. The small sample size
underpowered the results particularly in the stepwise regres-
sion. A multicenter investigation involving a larger sample
and allowing center-mix interaction testing could be required.

Other important limitations remain before LB prediction
models can be considered as applicable. Despite adding a
new marker like AMH to the existing models, the predictive
potential remains poor. Even in the best conditions in fitting a
model to a specific center, never a sufficient discrimination was
reached (maximum values of 0.78 were found, which is con-
sidered as fair, but not good). Calibration has been suggested as
a more important characteristic than discrimination (32). We
admit that a bias-free estimate irrespective of the magnitude of
the prediction is useful; however, such a prediction without
knowledge of the precision of the prediction remains some-
what unsatisfactory, in particular because the precision is not
constant and depends on the value of the predictors. A more
pressing concern is when a predictive model is used to predict
the outcome of a specific individual. In this case, even the
confidence interval of the probability is no longer relevant and
tolerance interval must be used instead (33). However, toler-
ance values essentially depend on the determination coefficient
of the model (R2), rarely documented in the studies, except in
the present case in which the maximum R2 was 0.14. These
limitations are beyond the scope of this paper, but necessitate
further research before a predictive model can be utilized on a
regular basis in IVF applications.
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