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Abstract Transient,specialized cell–cell interactions play

a central role in leukocyte function by enabling specific

intercellular communication in the context of a highly

dynamic systems level response. The dramatic structural

changes required for the formation of these contacts are

driven by rapid and precise cytoskeletal remodeling events.

In recent years, the immunological synapse that forms

between a T lymphocyte and its antigen-presenting target

cell has emerged as an important model system for

understanding immune cell interactions. In this review, we

discuss how regulators of the cortical actin cytoskeleton

control synaptic architecture and in this way specify T cell

function.
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Introduction

Effective immune responses against pathogenic agents and

cancer require rapid and specific threat detection and

intercellular communication. In many cases, immune cells

accomplish these goals by building specialized, transient

interactions with each other and also with other cells in the

surrounding tissue. This often requires them to completely

reorganize their cellular architecture in a matter of minutes.

Lymphocytes like T cells, B cells, and natural killer cells

(NK) exemplify this dramatic structural plasticity by

adopting drastically different structural configurations

depending on their location, motility, and activation state.

This belies their common depiction in textbooks as round

and featureless spheres.

Over the past 15 years, the rapid architectural changes

that accompany T cell activation have emerged as an

important model system for understanding cell–cell inter-

actions in the immune system. All T cells express a unique

T cell receptor (TCR), which is designed to recognize

peptides (typically 9–11 amino acids in length) derived

from foreign organisms. These peptides are presented by

major histocompatibility complex (MHC) proteins on the

surfaces of other cells. Engagement of cognate peptide-

MHC (pMHC) by the TCR induces the robust proliferative,

transcriptional, and secretory responses that are generally

associated with T cell activation. It also promotes a dra-

matic structural change, as the T cell gloms onto the side of

the antigen-presenting cell (APC), forming a stereotyped

contact known as an immunological synapse (IS) [1]. The

IS has long been characterized by the concentric archi-

tecture it adopts during the sustained phase of its

maturation (Fig. 1). The central domain, also called the

central supramolecular activation cluster (cSMAC), con-

tains spent TCR molecules in the process of

downregulation. This is surrounded by a peripheral SMAC

(pSMAC), which is dominated by a ring of the aLb2 inte-

grin LFA-1. This integrin ring is generally thought to be

crucial for mediating adhesion with the APC. Surrounding

the pSMAC at the very edge of the contact is the distal

SMAC (dSMAC), which consists of a circular array of

filamentous actin (F-actin). Together, these radially sym-

metric zones provide the context within which T cell

activation and sustained intercellular communication
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occur. Although this review will focus on T cells, it is

important to note that both B cells and NK cells also form

synaptic contacts with APCs and target cells, respectively,

and that these contacts bear striking similarities to the T

cell IS [2, 3].

Actin dynamics play a central role in the formation and

the maintenance of the IS [4] (Fig. 1). Initially, a uniform

sheet of F-actin powers radially symmetric expansion over

the surface of the APC. Once IS growth has stabilized,

cortical F-actin reorganizes into the peripheral ring that

will become the dSMAC. Continuous retrograde flow

within the dSMAC promotes adhesion by clustering LFA-1

in the pSMAC [5]. This flow also regulates TCR signaling

and maintains IS symmetry. Finally, F-actin depletion from

the center of the IS generates an ‘‘actin hypodense’’ region

that is thought to facilitate secretion toward the APC by

enabling the fusion of intracellular compartments with the

synaptic membrane [6–8]. Both CD4? helper T cells and

CD8? cytotoxic T lymphocytes (CTLs) use soluble cyto-

kines to communicate with other immune cells. In addition,

CTLs kill infected or transformed cells by secreting cyto-

toxic perforin and granzymes. The ability to release these

factors directionally enhances the specificity and perhaps

also the potency of these secretory responses [9, 10].

Hence, the annular F-actin configuration that defines the IS

also serves as a structural foundation for its function.

Despite years of research, our knowledge of the

molecular mechanisms that guide actin dynamics at the IS

remains incomplete. TCR activation triggers a very com-

plex network of signaling events, and it has been difficult

to tease apart which of these events regulate the cytoskel-

eton directly and which influence it only secondarily. These

Fig. 1 Cytoskeletal remodeling and the immunological synapse.

Schematic diagram showing IS initiation (top) and maturation

(bottom) both from the side (right) and from the perspective of the

APC (left). Radially symmetric spreading over the surface of the APC

is driven by protrusive actin polymerization, accompanied by the

formation of TCR microclusters (TCR-MC, red dots) in the plasma

membrane. As the IS matures, retrograde flow of F-actin drives TCR-

MCs into the cSMAC, while F-actin is reorganized into a peripheral

ring known as the dSMAC. Integrins, for their part, cluster in the

pSMAC. Concomitantly, the centrosome reorients to a position just

beneath the center of the IS

538 A. Le Floc’h, M. Huse

123



ambiguities at the level of molecular cause and effect have

complicated efforts to assess the roles played by specific

F-actin structures during T cell activation. In this review,

we will discuss recent advances in our understanding of

how F-actin is remodeled at the IS and how that remod-

eling contributes to T cell function.

Tools for imaging the IS

Lymphocytes are challenging experimental systems for cell

biologists because they are small, highly dynamic, and lack

the beautifully distributed organelles often seen in adherent

cell types. Over the past 10 years, the study of IS formation

has been revolutionized by developments in single cell

imaging. Standard 3-dimensional epifluorescence or con-

focal microscopy lacks the spatial and temporal resolution

required to dissect the rapid signaling events and shape

changes associated with T cell activation. To circumvent

this issue, a number of labs have developed oriented

approaches in which the APC is replaced by a glass surface

or supported lipid bilayer containing stimulatory ligands

[11, 12]. T cells form IS-like contacts with these surfaces

that are oriented perpendicular to the imaging axis. As

such, they are amenable to total internal reflection fluo-

rescence (TIRF) microscopy, a high-resolution technique

that focuses on the first 100 nm of the imaging sample [13].

Because the section illuminated by TIRF encompasses the

synaptic membrane and a thin slice of cytoplasm above it,

it is well-suited for the analysis of signaling dynamics at

the membrane and F-actin remodeling in the cortex just

beneath it. Using this approach, it is relatively straight-

forward to monitor the early stages of IS growth and the

emergence of the synaptic F-actin ring.

More recently, the oriented IS approach has been

merged with so-called super-resolution imaging modalities,

including structured illumination microscopy (SIM), stim-

ulated emission depletion (STED), and photoactivated

localization/stochastic optical reconstruction microscopy

(PALM/STORM) [6, 7, 14–16]. These technologies, in

particular the PALM/STORM approach, enable investiga-

tors to probe the organization of signaling complexes at a

truly molecular scale. This level of resolution has already

proved to be exceedingly useful for the analysis of early

TCR signaling [14–16], and will no doubt influence future

research into the T cell cytoskeleton.

The mechanistic analysis of IS formation has also ben-

efited from advances in our ability to control TCR

activation. Much of the intracellular signaling triggered by

TCR engagement take place within seconds, making it very

difficult to establish a reliable order of events. To address

this issue, we have developed a photoactivation system for

triggering TCR signaling in defined regions of the T cell

membrane [17]. T cells are first attached to glass surfaces

containing a photoactivatable pMHC reagent that is non-

stimulatory to its cognate TCR until it is irradiated with UV

light. Then, a micron-scale area beneath the T cell is UV-

irradiated, creating a region of agonist pMHC that the T

cell can recognize. Subsequent signaling events are moni-

tored by TIRF or epifluorescence microscopy. The

spatiotemporal control afforded by this approach has

enabled us to assemble well-defined pathways linking TCR

stimulation to cytoskeletal regulators.

Although oriented single cell imaging systems have

substantially improved our understanding of T cell acti-

vation and IS formation, it is important to keep in mind that

they cannot recapitulate all aspects of the bona fide T cell-

APC contact. Electron microscopy and tomography has

revealed, for instance, that both CD4? and CD8? T cells

form complex, undulating contacts with the APC charac-

terized by extensive interdigitation of T cell and APC

membranes [18, 19]. Furthermore, certain APCs, in par-

ticular dendritic cells (DCs), appear to play a very active

role in the IS assembly process, polarizing both their

cytoskeleton and certain intracellular compartments toward

the contact site [20–22]. These complex dynamics cannot

be replicated by inanimate, planar surfaces. Hence, future

progress will depend in part on the development of higher

resolution imaging approaches capable of monitoring

three-dimensional T cell-APC interactions both in vitro and

in vivo.

Synaptic actin remodeling

Although other cell surface receptors, in particular inte-

grins like LFA-1 and VLA-4 (a4b1), can influence

cytoskeletal architecture at the IS, the TCR plays the pre-

dominant role. Signal transduction from the TCR has been

studied intensely for many years, and as a result we know a

fair amount about the early steps in the pathway [23]

(Fig. 2). Engagement of pMHC by the TCR induces the

phosphorylation of immunoreceptor tyrosine-based acti-

vation motifs (ITAMs) within the associated CD3 chains

by the Src family protein tyrosine kinase Lck. Phosphor-

ylated ITAMs recruit and activate the Syk family kinase

ZAP-70, which together with Lck mediates the phosphor-

ylation of two scaffolding proteins, the linker for activation

of T cells (LAT) and SH2 domain-containing leukocyte

protein-76 (SLP76). LAT and SLP76 then form a complex

at the plasma membrane that functions as a platform for a

number of important signaling enzymes. The guanine

nucleotide exchange factor (GEF) SOS is recruited via its

associated adaptor protein Grb2 to LAT, where it triggers

Ras activation and the MAP kinase pathway. The LAT-

SLP76 complex also recruits phospholipase Cc1 (PLCc1),
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Fig. 2 Signaling pathways coupling TCR activation to the cytoskel-

eton. TCR engagement triggers activation of the tyrosine kinases Lck

and ZAP-70, which in turn leads to assembly of the LAT-SLP76

signalosome. This complex allows the induction of different signaling

pathways leading to the activation of the NPFs WASp, HS1, and

WAVE2, which induce local actin polymerization through the Arp2/3

complex. While WAVE2 appears to be critical for the initiation of

synaptic actin polymerization, WASp and HS1 might collaborate for

the stabilization and the maintenance of the IS. Class IA PI3Ks bind

to LAT and SLP76 in a pTyr-dependent manner, and are then

activated in a Ras-dependent fashion. SOS, in complex with the

adaptor Grb2, and RasGRP1 are two GEFs for Ras that operate

downstream of the TCR. PI3K-mediated PIP3 production allows the

redistribution of the GEF Dock2 (in complex with Elmo1) to the

periphery of the IS, where it drives F-actin remodeling through Rac

and WAVE2. Meanwhile, WASp associates with the LAT-SLP76

complex via interaction with Nck and is activated by Cdc42. HS1 is

thought to participate in actin dynamics by stabilizing branched-actin

filaments generated by Arp2/3 complex activators. TCR engagement

also drives centrosome reorientation towards the IS. PLCc1 is

recruited via its interaction with LAT and generates DAG in the

synaptic membrane. The DAG gradient induces the recruitment of

nPKCs, which mediate centrosome polarization through the regula-

tion of the motor proteins dynein and NMII
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which hydrolyzes phosphatidylinositol 4,5, bisphosphate

(PIP2) to generate two second messengers: inositol tris-

phosphate (IP3) and diacylglycerol (DAG). IP3 diffuses

into the cytoplasm to trigger calcium (Ca2?) signaling

while DAG activates protein kinase C (PKC) and other

enzymes such as the Ras guanyl releasing protein 1 (Ras-

GRP1), another Ras specific GEF. As discussed later in this

review (see ‘‘Signaling pathways controlling centrosome

polarization’’), synaptic DAG accumulation drives TCR-

induced remodeling of the microtubule cytoskeleton. The

LAT-SLP76 complex also couples TCR activation to actin

remodeling, both by physically recruiting actin regulators

and also by activating second messenger pathways that

coordinate actin regulators at a distance. Our knowledge of

these relationships will be discussed in more detail below.

We will begin with the proteins that directly nucleate actin

polymerization and then discuss the pathways that link

these proteins to the TCR signaling machinery.

Nucleation-promoting factors and Rho-family GTPases

Nucleation-promoting factors (NPFs) play a central role in

T cell actin dynamics. They form a rather structurally

diverse family that can be divided into two subclasses

based on domain structure [24, 25]. Type I NPFs include

the Wiskott-Aldrich syndrome protein (WASp), neural-

WASp (NWASp), WASp family verprolin-homologous

protein (WAVE 1–3, or SCAR), WASp and SCAR

homolog (WASH), WASp homologue associated with

actin, Golgi membranes and microtubules (WHAMM), and

junction-mediating regulatory protein (JMY). Type II

NPFs, for their part, include cortactin and the leukocyte-

specific homolog of cortactin, HS1.

Class I NPFs induce robust actin polymerization through

the Arp2/3 complex, a 7-protein assembly that drives the

growth of branched F-actin arrays [25]. Suppression of

Arp2/3 components blocks TCR-induced lamellipodia

formation and inhibits spreading over the surface of the

APC, demonstrating the importance of the complex for IS

growth [26]. The two predominant class I NPFs in T cells

are WASp and WAVE2 [4]. Both contain a conserved

VCA (Verprolin homologous, central hydrophobic, and

acidic) region that mediates interaction with Arp2/3. Each

has a distinct N-terminus, however, that defines its unique

function by specifying localization and interaction with

other proteins. WASp associates constitutively with the

WASp interacting protein (WIP), which functions both as a

chaperone and regulatory partner. WAVE2, for its part,

incorporates into a large multiprotein complex that con-

tains PIR121, NAP125, ABI, and HSPC300.

Both WASp and WAVE2 are coupled to upstream sig-

nals by members of the Rho family of GTPases, which

function as master regulators of the actin cytoskeleton in

most cell types [27]. Like all small GTPases, Rho family

members cycle between an inactive, GDP-bound state and

an active, GTP-bound form that is capable of interacting

with downstream effectors. Cdc42, the Rho-GTPase most

often associated with linear actin structures like filopodia,

activates WASp by binding to a conserved motif within its

N-terminal region [28]. This relieves autoinhibitory inter-

actions, releasing the VCA domain to engage Arp2/3. By

contrast, it is the GTPase Rac, best known for its role in

driving sheet-like lamellipodial growth, that activates

WAVE2 [24]. Rac does not bind to WAVE2 directly, but

rather the PIR121 component of the WAVE complex.

Importantly, both Rac and Cdc42 are rapidly activated by

TCR engagement [29–31], consistent with a role for both

proteins in synaptic actin dynamics. WASp can also be

activated by PIP2, which functions both to localize WASp

to the plasma membrane and also to destabilize autoin-

hibitory interactions between its N- and C-terminal

domains [32, 33].

Humans lacking WASp develop a severe immune defi-

ciency (Wiskott-Aldrich syndrome, or WAS) that is

accompanied by thrombocytopenia and eczema [34].

Because T cells from WAS patients display defects in

antigen-induced proliferation, differentiation, and cytokine

secretion [35, 36], there has been a great deal of interest in

the role of WASp and its regulators during T cell activa-

tion. Mechanistic experiments have demonstrated that

WASp physically interacts with LAT-SLP76 via the

adaptor protein Nck [37] (Fig. 2). This would place it in

close proximity to Vav1, an activator of Cdc42 that also

associates with SLP76 [38]. Hence, one could easily

imagine a signaling pathway moving from TCR activation

through WASp that might be responsible for driving TCR-

induced F-actin growth at the IS. Consistent with this

notion, T cells from Wiskott-Aldrich syndrome (WAS)

patients and WASp knock-out (KO) mice show cytoskel-

etal defects, including the formation of unstable synapses

[39–42].

In other studies, however, WASp was found to be

essentially dispensable for synaptic F-actin dynamics [43,

44]. The relative importance of the protein for IS formation

may depend on the strength of TCR signaling. In T cells

with a low affinity receptor or under conditions of low

pMHC ligand density, WASp is required for amplifying

signals to the cytoskeleton [43]. This role is superfluous,

however, in the context of abundant ligand or a high

affinity TCR. Interestingly, WASp also appears to be

necessary for the maintenance of radially symmetric IS

architecture. WASp KO T cells initially form normal

synapses on stimulatory lipid bilayers, but these contacts

quickly break down as the cells begin to migrate over the

surface [45]. Taken together, these results suggest that

WASp is more likely to function as a TCR signal amplifier
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and contact stabilizer, rather than as a direct mediator of

synaptic F-actin accumulation. Consistent with this idea,

recent studies indicate that loss of Cdc42, the upstream

regulator of WASp, has little to no effect on the overall

level of synaptic actin polymerization [46].

The ambiguity of the Cdc42-WASp loss-of-function

data has led investigators to assess the role of the Rac-

WAVE2 module as an alternative master regulator of

synaptic F-actin. The importance of both Rac and WAVE

for sheet-like actin polymerization in other systems implies

that they might be good candidates, given that the IS

resembles a radially symmetric lamellipodium [47].

Indeed, loss-of-function studies demonstrated a clear role

for both proteins in IS growth and F-actin ring formation.

Jurkat T cells lacking WAVE2 displayed dramatic defects

in adhesion and cell spreading on stimulatory surfaces,

despite the fact that a number of other events in the TCR

signaling network were intact [48]. Single cell imaging

studies of WAVE2 dynamics were consistent with these

results [49]. During IS growth, WAVE2 localizes to the

leading edge of the radial lamellipodium. It then shifts into

a thicker annular pattern overlying the region of eventual

F-actin ring formation. Taken together, these data are

indicative of a central role for WAVE2 in both the estab-

lishment and maintenance of synaptic F-actin architecture.

Similar results were obtained in loss-of function experi-

ments targeting Rac. T cell express two Rac isoforms: the

ubiquitous Rac1 and the hematopoietic-specific Rac2.

shRNA-mediated suppression of either protein significantly

inhibits both cell spreading and F-actin ring formation on

stimulatory lipid bilayers [49], which is consistent with

other work documenting a TCR-induced actin polymeri-

zation defect in Rac2 KO T cells [50]. Importantly,

simultaneous suppression of both Rac1 and Rac2 leads to a

much stronger defect than loss of either isoform alone [49],

indicating that the two proteins contribute additively in this

context. The importance of robust Rac expression for T cell

function was recently highlighted by the discovery that

blocking Hedgehog signaling in cytotoxic T lymphocytes

(CTLs) impairs their cytotoxic potential by reducing Rac

levels [51].

The type II NPF HS1 has also been implicated in syn-

aptic actin dynamics, although its role is less well-defined.

Like WASp and WAVE2, HS1 contains an acidic domain

that can recruit and activate the Arp2/3 complex [52]. TCR

activation induces tyrosine phosphorylation of HS1 by Lck

and ZAP-70 [53]. This promotes recruitment of the protein

to the IS, where it interacts directly with the tyrosine kinase

ITK, a component of the LAT-SLP76 complex [54]. Loss-

of-function studies indicate that while HS1 is not required

for TCR-stimulated actin polymerization and lamellipodial

protrusion, it is involved in organizing and maintaining

these structures [53]. T cells lacking HS1 also display

defective TCR-induced Ca2? responses, indicative of a role

for the protein in receptor proximal signaling [54]. HS1 has

been described to associate with WASp in DCs [55], and it

is tempting to speculate that HS1 contributes to IS archi-

tecture and sustained TCR signaling by stabilizing the

branched-actin filaments generated by WASP and other

Arp2/3 complex activators.

There is still much that we do not understand about how

NPFs and Rho GTPases shape F-actin at the IS. On bal-

ance, however, the data suggest that Rac-WAVE2, Cdc42-

WASp, and HS1 have distinct and complementary roles in

the process. Whereas Rac-WAVE2 is critical for the ini-

tiation of synaptic actin polymerization and growth of the

F-actin ring, WASP and HS1 appear to be involved in

TCR-induced signal transduction and maintenance of the

mature IS (Fig. 2).

The role of rho GEFs

Rho-GTPase activation is mediated by Rho GEFs, which

promote the exchange of GTP for GDP within the GTPase

active site. Classical rho GEFs contain a catalytic Dbl-

homology (DH) region, which is typically situated just

N-terminal to a regulatory pleckstrin homology (PH)

domain [56]. Among these DH-PH proteins, Vav1 has been

considered to be the major regulator of actin polymeriza-

tion following TCR activation [38]. It can activate both

Rac and Cdc42 in vitro, and studies have indicated that it is

required for full activation of WASp via the recruitment of

GTP-bound Cdc42 [57]. Furthermore, loss of Vav1 results

in defective TCR capping and T cell activation due to

impaired cytoskeletal reorganization [44, 58–61].

That being said, the degree to which Vav1 contributes to

actin cytoskeleton remodeling directly remains unclear. It

is a large, multisubunit protein that contains, in addition to

its DH-PH region, a number of domains that mediate

protein–protein interactions. These domains confer scaf-

folding function to Vav1, and studies suggest that it plays

an important role in stabilizing the LAT-SLP76 complex

and thereby promoting early TCR signaling [62, 63]. Vav

also plays a crucial role in the inside-out activation of

integrins, independently of WASp [44, 58]. The inability of

Vav1-/- T cells to upregulate integrin affinity, and thereby

adhesion to the APC, could explain the defect in IS for-

mation previously observed. Furthermore, Vav1 has been

shown to influence actin remodeling in an indirect manner

by inactivating ezrin-radixin-moesin (ERM) proteins after

TCR activation [64]. ERM proteins act as crosslinkers

between the cortical F-actin and proteins in the plasma

membrane [65], and their inactivation promotes transient

relaxation of the cytoskeleton during T cell-APC contact

formation. The complexity of the Vav1 loss-of-function

phenotype is consistent with the idea that it operates early
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in the TCR signaling cascade and that its functions

encompass more than just the activation of Rho GTPases.

Indeed, it was recently shown that a Vav1 point mutant

lacking GEF activity could completely rescue the signaling

and developmental phenotype of Vav deficient T cells [66].

Although this result is somewhat controversial, it does

suggest that the nucleotide exchange activity of Vav is of

secondary importance during T cell activation.

T cells also express various atypical rho GEFs of the

CDM (CED-5, Dock180, Myoblast City) family [67].

Proteins in this family catalyze nucleotide exchange via a

conserved dedicator of cytokinesis (Dock) homology

region 2 (DHR2) located near their C-terminus. Many

CDM GEFs also interact constitutively with the engulf-

ment and cell motility-1 (Elmo1) adaptor, which confers

stability and regulates GEF activity. Accumulating evi-

dence indicates that CDM proteins control actin

polymerization in multiple cell types. The Dock2 isoform,

which is a Rac-specific GEF, is particularly important for

shaping polarized actin-based structures in leukocytes [68].

Dock2 is recruited to the leading edge of migrating neu-

trophils, suggesting that it drives protrusive actin

polymerization in lamellipodial structures [69, 70]. Con-

sistent with this idea, Dock2-/- T cells and B cells exhibit

profound migration defects toward chemokines both

in vitro and in vivo [71, 72]. Dock2 deficiency also inhibits

IS formation; T cells lacking the protein fail to spread

properly on stimulatory bilayers and form miniaturized

contacts characterized by thin peripheral F-actin rings and

poor TCR accumulation in the cSMAC [30, 49]. Interest-

ingly, LFA-1 accumulation is intact in these cells [30],

implying that the IS size defect is independent of integrin-

mediated adhesion. Expression of a constitutively active

form of Rac restores cell spreading [49], indicating that

Dock2 operates through Rac in this context. Indeed, TCR-

induced Rac activation is essentially abrogated in

Dock2-/- T cells, despite that fact that other signaling

responses are largely intact [30, 49]. TIRF imaging has

revealed that both Dock2 and Elmo colocalize with F-actin

during the growth and subsequent consolidation of the IS

[49]. They display particularly strong overlap with the

F-actin ring, implying that continuous Rac activation is

required for the maintenance of IS size. Taken together,

these data indicate that the Dock2-Elmo complex is critical

for driving protrusive F-actin polymerization in the syn-

aptic lamellipodium. This is remarkably similar to the role

it plays at the leading edge of migrating leukocytes, and

highlights the previously noted similarities between the

two structures [47].

Recent studies have implicated another CDM family

member, the Cdc42-specific GEF Dock8, in the regulation

of lymphocyte development and function [73–76]. In

humans, inactivating Dock8 mutations cause an

immunodeficiency syndrome characterized by severe

cutaneous viral infections and allergies [77, 78]. Studies

using Dock8-/- mice have revealed specific defects in

lymphocyte function that manifest during the later stages of

the adaptive immune response. B cells lacking Dock8

proliferate normally in response to antigen, but then they

fail to form robust germinal centers and produce affinity-

matured antibodies [76]. Similarly, whereas primary T cell

expansion and differentiation are unaffected Dock8-/- mice,

memory T cell persistence is markedly impaired [74].

The immunological phenotypes observed in Dock8-/-

animals are associated with changes in IS architecture.

LFA-1 accumulation is reduced in both B cell and T cell

synapses, and in T cells this integrin-clustering defect is

accompanied by decreased F-actin enrichment [74, 76].

NK cells lacking Dock8 display similar deficiencies in

LFA-1 and F-actin. In addition, lytic granules containing

perforin and granzyme fail to polarize toward the synaptic

membrane [73]. Proteomic studies in this system have

revealed that Dock8 associates with both WASp and the

integrin regulator talin, indicating that it could function as

a structural and/or functional bridge that couples target

cell adhesion to F-actin dynamics. In light of this mech-

anistic insight, it is perhaps not surprising that loss of

Dock8 inhibits target cell killing by NK cells [73]. Pre-

cisely, how Dock8 contributes to T cell and B cell

maturation is less clear, however. It is possible that the

synaptic defects occurring in the absence of Dock8 could

affect asymmetric cell division, which has been linked to

both memory T cell formation and competition between B

cells for T cell help [79, 80]. Impaired synapse formation

could also lead to selective defects in signal transduction

to the nucleus. Indeed, the memory phenotype seen in

Dock8-/- T cells is markedly similar to that observed in

T cells bearing a specific point mutation in the TCR

transmembrane domain [81]. Interestingly, this mutation

impairs NF-jB activation without altering other important

transcriptional responses. A possible link between the

Cdc42-Dock8 axis and NF-jB signaling in lymphocytes

remains to be explored.

Taken together with what is known about Dock2, these

results imply a conserved role for CDM family members in

building transient cell–cell interactions. Leukocytes

express a number of other CDM proteins, including Dock1,

Dock5, Dock10, and Dock11. Their precise functions are,

for the most part, poorly understood, and represent inter-

esting areas for future investigation. Moving forward, it

may be useful to keep in mind that CDM GEFs are large

proteins that could also function as scaffolding molecules.

Indeed, recent work has revealed an alternative role for

Dock8 as an adaptor in the TLR9-MyD88 pathway [82].

Hence, CDM GEFs could conceivably influence cellular

behavior in a manner independent of rho GTPases.
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PI3K dependent activation of the Rac-Dock2 module

Although it has been known for some time that Dock2 is

crucial for TCR-induced Rac activation, precisely how

TCR signaling engages Dock2 was only recently eluci-

dated. All CDM proteins contain a DHR1 domain that

mediates recruitment to membranes containing phospho-

inositides [67]. The DHR1 domain of Dock2 binds with

particularly high affinity to phosphatidylinositol (3,4,5)-

phosphate (PIP3) [69], which is generated from PIP2 by

members of the phosphoinositide 3-kinase family of

enzymes. Using a fluorescent biosensor derived from the

PIP3 specific PH domain of Grp1, we found that PIP3 forms

an annular gradient at the IS that overlies the peripheral

F-actin ring [49]. The close correspondence between this

accumulation pattern and that of Dock2-Elmo suggested

that PIP3 drives Dock2-Elmo1 recruitment to the IS.

Indeed, pretreatment of T cells with the PI3K-specific

inhibitor wortmannin abrogated Dock2-Elmo1 enrichment

at the T cell-APC contact and also inhibited TCR-induced

activation of Rac. This phenotype was accompanied by

dramatic reductions in both IS size and synaptic F-actin

enrichment. Conversely, shRNA-mediated suppression of

PTEN, a lipid phosphatase that antagonizes PI3K signaling,

markedly increased Rac activation and IS growth. Impor-

tantly, a Dock2 mutant lacking the DHR1 domain failed to

accumulate in an annular configuration, confirming the

importance of PIP3 recognition for synaptic recruitment.

Collectively, these data demonstrate that PIP3 induces

plasma membrane translocation of Dock2 upon T cell

activation, thereby targeting its activity to the periphery of

the IS (Fig. 2). A recent study from Sakai et al. [83]

demonstrated that PIP3 also recruits Dock2 to the NK cell

IS, suggesting that this pathway is conserved among all

lymphocytes.

TCR activation elicits rapid and robust PIP3 production

in the synaptic membrane [84–87]. In addition to its role in

structuring the IS, this PIP3 also promotes cell survival,

proliferation, and a range of transcriptional responses [88].

PIP2 is converted into PIP3 by class I PI3Ks, which func-

tion as obligate heterodimers containing one catalytic and

one regulatory subunit. Class IA catalytic subunits (p110a,

p110b, and p110d) pair with regulatory subunits of the p85/

p55 family, which contain SH2 domains that mediate

phosphotyrosine dependent protein-protein interactions.

Conversely, the lone class IB catalytic subunit (p110c)

binds to regulatory subunits of the p101/p87 family, which

associate with activated G-protein coupled receptors.

p110a is ubiquitously expressed, while p110b, p110d, and

p110c are more restricted to leukocytes [89]. There is some

controversy about the relative contribution of these dif-

ferent isoforms to TCR-induced PI3K signaling. Studies

using genetically-modified mice that lack p110d activity

have strongly implicated this isoform as the key player in

the process [90, 91]. Residual PI3K activity is still

observed in p110d-/- T cells, however, suggesting that

additional PI3K isoforms play a role [92]. Other studies

have implicated p110a and the even the class IB isoform

p110c [93, 94].

We initially adopted a pharmacological approach to

address this question, using different combinations of

selective small molecule inhibitors to block specific PI3K

isoforms either alone or in combination [49]. Targeting

p110d in this manner eliminated the majority of TCR-

induced PI3K activity, stunted IS growth, and impaired

synaptic F-actin ring formation. Combining p110d inhibi-

tion with agents targeting either p110b or p110a essentially

abrogated PI3K signaling and induced dramatic defects in

IS architecture. We obtained similar results using T cells

that expressed shRNA against both p110d and p110a,

arguing that our pharmacological data were not artifactual.

By contrast, inhibition of p110c had little to no effect on

TCR-induced PI3K activity and IS formation. Together,

these data indicate that class IA PI3Ks function in a par-

tially redundant manner to control PIP3 dependent F-actin

dynamics at the IS.

It is worth noting that PIP3 also organizes F-actin in the

leading edge lamellipodium of migrating cells [95–97]. In

this context, however, the primary source of PIP3 is likely

to be PI3Kc, which participates in most GPCR-induced

responses, including those triggered by chemokines [88].

Chemokine receptor signaling has been found to both

potentiate and inhibit TCR responses, depending on the

experimental system [98, 99]. The use of distinct PI3K

isoforms by GPCRs and the TCR could ensure that these

receptors do not compete for signaling components even

during periods of concurrent stimulation. This would pre-

sumably allow them to engage in crosstalk in a variety of

situations.

PI3K recruitment and activation

Upon engagement of cognate pMHC, TCRs coalesce into

plasma membrane ‘‘microclusters’’ that can be visualized

by TIRF microscopy [1, 100] (Fig. 1). These structures

contain 10–20 receptors each [101], along with a number of

activated signaling molecules, including Lck, ZAP-70, and

the LAT-SLP76 complex. Microclusters are thought to

play an important role in signal propagation by bringing

kinases into close apposition with their substrates and

thereby enabling them to overcome cellular phosphatase

activity. We recently demonstrated that fluorescently

labeled p85/p55 subunits colocalize extensively with TCR

microclusters [49], suggesting that class IA PI3Ks interact

with receptor-proximal signaling components. Consistent

with this interpretation, it has been shown that
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phosphorylated LAT and SLP76 both bind directly to the

p85/p55 SH2 domains [102–104]. Importantly, phospho-

tyrosine recognition also allosterically activates class I

PI3Ks [105, 106]. Hence, interactions with the LAT-SLP76

complex could serve to both localize these enzymes and to

stimulate their catalytic throughput.

Class I PI3Ks are also activated by the small GTPase

Ras, which binds to a conserved domain within the p110

subunits [107, 108]. Indeed, Ras appears to synergize with

phosphotyrosine containing peptides to induce full PI3K

activation [109]. Loss-of-function mutations targeting the

Ras binding domains of p110a and p110c dramatically

attenuate PI3K signaling in vivo [110, 111], validating the

importance of this interaction. The Ras family comprises

the three closely related isoforms, Hras, Kras, and Nras,

each of which acts as a molecular switch cycling between

inactive GDP-bound and active GTP-bound states [112]. In

T cells, Ras signaling drives TCR-induced proliferative and

transcriptional responses through both the PI3K and MAP

kinase pathways [112, 113]. Its role in cytoskeletal

remodeling, however, is less well-understood. Using an

shRNA-based approach, we found that depletion of Nras,

the most highly expressed isoform in T cells, inhibited

TCR-induced Rac activation, synaptic F-actin ring forma-

tion, and cell spreading [49]. Conversely, expression of a

constitutively active mutant of Ras enhanced IS growth in a

PI3K dependent manner. These results demonstrated that

Nras controls synaptic architecture through the PI3K-Rac

pathway (Fig. 2), establishing Ras signaling as an impor-

tant cytoskeletal regulator in T cells.

All Ras proteins are C-terminally prenylated, and these

modifications mediate localization to a number of different

membrane compartments within the cell [112]. Studies

have shown that these distinct pools of Ras are differen-

tially sensitive to TCR and integrin-dependent signals.

Thus, whereas stimulation of the TCR induces Ras acti-

vation only in the Golgi apparatus, simultaneous

engagement of the TCR and LFA-1 promotes Ras activa-

tion in both the Golgi and the plasma membrane [114].

Remarkably, combined stimulation of the TCR and LFA-1

is also required for sustained, symmetric spreading and

F-actin ring formation on stimulatory bilayers [49]. That

the criteria for annular synaptic architecture match the

requirements for plasma membrane activation of Ras

strongly suggests that the two processes are linked. This

would make sense given that class IA PI3Ks, the down-

stream targets of Ras and the key mediators of F-actin ring

formation, localize to plasma membrane microclusters

[49]. In T cells, Ras activation is mediated by the combined

activities of RasGRP1 and SOS [115]. Whereas SOS

associates directly with the LAT-SLP76 complex, Ras-

GRP1 is recruited into the TCR signaling cascade by

interacting with DAG in the synaptic membrane (Fig. 2). It

will be interesting to investigate how the distinct recruit-

ment mechanisms used by these two GEFs affect the

spatial pattern of Ras activation as the IS matures.

F-actin depolymerization and bundling

Although much attention has focused on the regulation

actin polymerization by Rac, Cdc42, and the molecules that

control them, these pathways alone cannot explain the

complex F-actin dynamics observed at the IS. Indeed, it is

becoming increasingly clear that F-actin severing and

bundling factors also make key contributions to synaptic

architecture and function. Deciphering how these proteins

coordinate with Rho family members and other regulators

in the context of TCR signaling represents an exciting area

of study.

It has been known for some time that T cell activation is

associated with the transient upregulation of cofilin, an

actin depolymerization and severing factor [116, 117].

Cofilin is constitutively phosphorylated by LIM kinase, a

modification that inhibits its activity [118, 119]. Engage-

ment of the TCR in concert with costimulatory receptors

such as CD28 or CD2 induces dephosphorylation of this

site within minutes, which is most likely mediated by the

related serine/threonine phosphatases PP1 and PP2A [120].

Dephosphorylated cofilin subsequently accumulates in the

pSMAC and dSMAC [121], where it presumably regulates

F-actin dynamics. Consistent with this idea, cell-permeable

peptides that block the interaction between cofilin and actin

perturb IS organization and also inhibit activation-induced

cytokine secretion by CD4? T cells [121]. In addition, a

dominant negative cofilin construct was observed to block

B cell spreading on antigen-coated surfaces [122].

Although these results clearly imply a role for cofilin in IS

assembly, resolving precisely how the protein functions in

this context is complicated by the fact that severing and

depolymerization can exert myriad effects on F-actin net-

works that depend on prevailing conditions in the cellular

neighborhood. For example, if the local concentration of

free monomeric actin is high, severing could actually

induce a net increase in F-actin by generating additional

barbed ends capable of seeding new filament growth. High-

resolution live imaging experiments that better correlate

cofilin activity with F-actin dynamics should begin to

address this issue.

It is noteworthy that TCR engagement alone fails to

induce cofilin dephosphorylation. Rather, costimulatory

receptors like CD28 and CD2 appear to play the dominant

role [116, 117]. Biochemical studies in this area indicate

that these molecules induce cofilin activation through Ras

and PI3K [123]. CD28-induced dephosphorylation of

cofilin is blocked by small molecule PI3K inhibitors and by

overexpression of dominant negative Ras. Conversely,
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cofilin dephosphorylation is enhanced by a constitutively

active Ras mutant. The parallels between this regulatory

pathway and the mechanisms controlling Dock2-Rac sig-

naling are striking, and they imply close coordination

between actin polymerization and severing at the periphery

of the IS.

Research in F-actin disassembly has also focused on

coronin1, a conserved actin binding protein that is highly

expressed in hematopoietic cells. Coronin1 has been found

to antagonize F-actin growth by enhancing cofilin activity

and also by directly inhibiting the Arp2/3 complex [124–

126]. Point mutations in its coding sequence cause im-

munodeficiencies in humans that are characterized by

susceptibility to viral infections [127–129]. Mice lacking

coronin1 display dramatic defects in T cell persistence and

trafficking, despite apparently normal thymic development

[130]. These phenotypes were initially attributed increased

F-actin levels, which were proposed to dysregulate cell

migration and induce apoptosis via the mitochondrial

pathway [130]. Other studies of coronin1-/- T cells,

however, failed to document a substantive defect in cyto-

skeletal dynamics, and instead identified an alternative

function for the protein in facilitating TCR-induced PLCc
activation and Ca2? influx [131, 132]. This led to the

alternative hypothesis that coronin1-dependent signal

transduction (rather than actin dynamics) is required for

peripheral T cell survival, and that the previously observed

migration and trafficking defects resulted secondarily from

rapid cell death [131, 132]. Another study identified addi-

tional signaling phenotypes in coronin1-/- T cells,

including reduced NF-jB signaling [133]. However, this

work also documented enhanced F-actin accumulation and

reduced dynamics at the IS, consistent with a role for

coronin1-mediated F-actin disassembly in synaptic struc-

ture and function. Detailed mechanistic experiments that

focus on the various functional domains of coronin1 will be

required to resolve these apparently contradictory findings.

The observed signaling defects in coronin1-/- T cells

could be secondary to cytoskeletal dynamics, or vice versa.

It is also possible, however, that the contribution of coro-

nin1 to downstream signaling is entirely separable from its

role in shaping cortical F-actin.

Recent work has implicated the actin bundling protein

L-plastin in IS formation and stability [135, 136]. L-plastin

contains four actin-binding calponin homology domains,

which crosslink F-actin into parallel arrays [137]. T cells

lacking L-plastin exhibit reduced antigen-induced prolif-

eration and cytokine production. Proximal TCR signaling

in these cells is normal, however, implying a defect further

downstream in the activation process [135, 136]. Imaging

studies have revealed that L-plastin deficiency impairs the

formation and persistence of the IS. L-plastin-/- T cells

spread poorly on surfaces containing anti-CD3 antibodies

and form smaller contacts with APCs than their wild type

counterparts [136]. L-plastin colocalizes with LFA-1 in the

pSMAC, and time resolved experiments suggest that, in the

absence of L-plastin, LFA-1 is not maintained properly at

the IS [135]. These data are consistent with the idea that

L-plastin functions to stabilize integrin-mediated contacts,

and that this stabilization is required for the maturation of

TCR signals. Precisely how L-plastin controls integrin

localization in this context is not well-understood.

Although L-plastin is known to interact with the cyto-

plasmic tail of b1 integrins [138], a direct interaction with

b2 integrins like LFA-1 has not been documented, as yet. It

is also unclear how L-plastin is regulated by upstream

signals from the TCR and costimulatory receptors. The

protein is phosphorylated at Ser5, which has been reported

to modulate its localization and enhance F-actin binding

[139]. However, Ser5 appears to be dispensable for

L-plastin function at the IS, implying an alternative

mechanism of regulation [135]. L-plastin also contains an

N-terminal calmodulin binding domain that couples its

activity to Ca2? signaling. This domain was found to be

required for L-plastin localization to the pSMAC, and

pharmacological inhibition of calmodulin impaired LFA-1

accumulation at the IS, similar to the effect of L-plastin

deficiency [135]. These results are particularly intriguing

because they suggest a possible mechanism for how sus-

tained Ca2? signaling could promote persistent integrin-

mediated adhesion to the APC.

In many lamellipodial structures, nonmuscle myosin II

(NMII) bundles F-actin at the lamellipodium-lamella

boundary into arc-like structures oriented parallel to the

leading edge. This is thought to contribute to both actin

turnover and retrograde flow [140, 141]. High-resolution

imaging experiments have demonstrated that NMII also

drives contractile arc formation at the IS [5]. Precisely,

how these F-actin arcs contribute to IS structure and

function remains unclear and is quite controversial. Two

studies have documented defects in TCR microcluster

movement after pharmacological inhibition of NMII

activity or suppression of NMII protein [5, 142]. In one

case, this trafficking phenotype was also associated with

dramatic inhibition of receptor-proximal tyrosine phos-

phorylation and Ca2? flux, suggesting that NMII-

dependent control of synaptic F-actin is crucial for early

TCR signaling [142]. Signaling defects of this kind were

not observed in other studies, however [5, 143, 144].

Indeed, even the microcluster trafficking phenotype has

been difficult to reproduce [143]. The possible reason(s) for

these discrepancies will not be discussed here at great

length, as they have been explored extensively in a recent

review [145]. It is worth noting, however, that NMII

operates in numerous intracellular locales, both within the

IS and also outside of it. NMII at the sides and back of the
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T cell, for instance, is crucial for cell migration and also

contributes to centrosome reorientation toward the APC

[144, 146] (see ‘‘Crosstalk between actin remodeling and

the microtubule network’’). It is important to keep these

and other NMII-dependent processes in mind, particularly

when interpreting loss-of-function phenotypes resulting

from global inhibition of this motor.

F-actin dynamics and the microtubule cytoskeleton

IS formation is accompanied by dramatic remodeling of the

T cell microtubule cytoskeleton. Within minutes of antigen

recognition, the centrosome (also known as the microtu-

bule-organizing center, or MTOC) moves to a position just

beneath the center of the IS [147]. Microtubules radiate

from centrosome with their minus ends in and plus ends

out. Hence, reorienting the centrosome in this manner sets

up an axis of polarity within the T cell in which all

microtubules point toward the center of the IS. A number

of vesicular organelles, including the Golgi apparatus, the

endosomal compartment, and secretory lysosomes, cluster

around the centrosome in close apposition to the synaptic

membrane. Because of this, it is generally thought that

centrosome reorientation potentiates the directional secre-

tion of cytokines and cytolytic factors toward the APC (see

‘‘Functional implications of the IS’’) [10, 148].

Synaptic F-actin ring formation occurs just prior to

centrosome docking at the center of the IS [8]. This striking

temporal correlation suggests that the two events may be

causally linked. A number of studies, however, argue that

actin dynamics and centrosome reorientation operate

independently. Using specialized target cells that expressed

either integrin ligands or pMHC alone, Burkhardt and

colleagues demonstrated that robust F-actin accumulation

at the T cell-target cell interface could be uncoupled from

the position of the centrosome [149]. Subsequently, it was

found that depletion of Arp2/3 or Dock2, which are both

required for robust F-actin ring formation at the IS, has no

effect on centrosome reorientation [26, 49]. Hence, it

remains unclear whether actin dynamics plays a direct role

in the process, and if so, what that role might be. In the

following sections, we will briefly discuss what is known

about the mechanisms governing centrosome reorientation

in T cells (this topic has been covered extensively in recent

reviews) [147, 148]. We will then discuss a potential role

for actin dynamics in more detail.

Signaling pathways controlling centrosome polarization

TCR activation induces centrosome reorientation to the IS,

and a number of receptor proximal signaling proteins,

including Lck, ZAP-70, LAT, and SLP76, are absolutely

required for the process [150, 151]. Using the localized

photoactivation system described earlier in this review (see

‘‘Tools for imaging the IS’’), we discovered a DAG

dependent signaling pathway that couples early TCR sig-

naling to centrosome dynamics [152, 153] (Fig. 2). DAG,

which is generated by PLCc in the LAT-SLP76 complex,

forms a sustained intracellular gradient that is centered at

the IS [153]. This gradient functions by recruiting three

members of the novel protein kinase C (nPKC) subfamily:

PKCe, PKCg, and PKCh [152]. All three proteins contain a

conserved tandem C1 domain module that mediates

recruitment to membranes containing DAG. PKCe and

PKCg arrive at the IS first, *15 s before the centrosome,

and occupy the entire synaptic membrane. PKCh is then

recruited (5–10 s before the centrosome) to a more con-

fined zone that falls within the F-actin ring. Depletion

experiments have implicated all three nPKCs in the cen-

trosome reorientation pathway; PKCh appears to play a

unique role, while PKCe and PKCg operate in a redundant

manner upstream of PKCh. The precise function of each

isoform awaits the identification of relevant substrates in

this context, most of which remain unknown. Recent work

has also implicated PKC isozymes of the atypical sub-

family (aPKCs) in the centrosome reorientation response

[154, 155]. These proteins (PKCf and PKCi) lack DAG

binding domains, and are regulated instead by protein–

protein interactions. In adherent cell types such as fibro-

blasts and epithelial cells, aPKCs function as integral

components of the Par (for partitioning defective) complex,

which plays a central role in the establishment and main-

tenance of cell polarity over long timescales [156–158].

Components of this complex, including phosphorylated

PKCf and the scaffolding protein Par-3, accumulate in the

IS, and pharmacological inhibition of aPKC activity

impairs centrosome reorientation [154, 159]. If and how

this aPKC pathway combines with DAG signaling during

polarization responses is not known. It has been proposed,

however, that the DAG-nPKC pathway mediates initial

centrosome reorientation, after which the aPKC-Par com-

plex stabilizes the polarized state [148]. Additional studies

will be required to test this hypothesis rigorously.

In most cell types, large-scale organelle rearrangements

are mediated by molecular motor proteins that move along

actin or microtubules. Studies from multiple labs have

implicated the minus end-directed microtubule motor

dynein in the T cell centrosome reorientation response

[146, 160–162]. It has been known for some time that

dynein accumulates in the synaptic membrane within

minutes of TCR engagement. Localized in this manner, it

would be well positioned to reel the centrosome toward the

IS by pulling on the microtubules that radiate from it.

Consistent with this idea, depletion or pharmacological

inhibition of dynein was found to inhibit centrosome
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polarization in a number of experimental systems [146,

161, 162]. Residual reorientation was generally observed,

however, suggesting that other molecular motors might be

involved in the process. Indeed, we recently showed that

NMII, an actin-based motor, collaborates with dynein to

move the centrosome in T cells [146]. Simultaneous sup-

pression or inhibition of both motors elicits a much more

dramatic defect in polarization than perturbation of either

motor alone, indicative of a partially redundant relation-

ship. Interestingly, NMII and dynein adopt reciprocal

localization patterns during the reorientation response.

Dynein accumulates at the IS, while NMII forms transient

clusters in the cortex behind the advancing centrosome.

These results suggest a model whereby dynein ‘‘pulls’’ the

centrosome from the front while NMII ‘‘pushes’’ it from

behind. nPKCs are crucial for establishing the reciprocal

localization of dynein and NMII, and they appear to

function at least in part by phosphorylating inhibitory sites

within the myosin regulatory light chain (MyoRLC) [146].

This induces the depletion of NMII from the region of TCR

stimulation, creating asymmetry in the overall distribution

of the motor. How nPKCs regulate dynein accumulation is

not known, and it is an area of active investigation.

Crosstalk between actin remodeling

and the microtubule network

The discovery that NMII, an actin-based motor, contributes

to centrosome polarization suggests that actin dynamics

may play an important role in the process. Ironically, the

relevant actin-based structures in this context appear to be

the contractile clusters induced by NMII in the sides and

back of the T cell, well away from the IS and its stereo-

typed F-actin ring. It is not clear how the formation of these

cortical clusters might influence centrosome movement.

NMII dependent centrosome polarization is, however,

abolished by the microtubule depolymerization agent no-

codazole [146], suggesting that force generated by NMII is

transduced along microtubules to the centrosome. This

result implies that stabilized microtubules capable of

transmitting force might be a prerequisite for effective

polarization.

In that regard, it is interesting to note that multiple

formin family proteins, including DIA1, FMNL1, and

INF2, have been implicated T cell centrosome reorienta-

tion [26, 163]. Formins promote the accumulation of

a stabilized pool of microtubules containing C-terminally

detyrosinated tubulin monomers [164, 165]. TCR activa-

tion is associated with the formation of detyrosinated

microtubules, and perturbations that block this process also

inhibit centrosome reorientation [163]. Recent imaging

experiments suggest that, in activated T cells, most dety-

rosinated microtubules orient their plus ends toward the

distal pole, opposite the IS [166]. This rearward projecting

pool would be ideally positioned to transduce forces from

cortical NMII clusters forming in the sides and back of the

cell. Formins are perhaps better known for their role in

promoting actin polymerization [167]. They possess both

actin nucleation and actin bundling activity, and they are

particularly strong inducers of unbranched actin structures

such as actin cables. Although it is not known if these

functions contribute to centrosome polarization, it is

tempting to speculate that they might synergize with NMII

activity to generate contractile clusters in the cortex.

Another potential link between the centrosome and

F-actin dynamics involves the relationship between PKCh
and WASp. In a very intriguing set of experiments, Dustin

and colleagues demonstrated that PKCh-/- T cells form

hyperstable synapses on stimulatory bilayers and maintain

these symmetric contacts for extended periods [45, 168].

By contrast, WASp-/- T cells form unstable synapses that

transition quickly into asymmetric, migratory ‘‘kinapses’’

[45]. Importantly, pharmacological inhibition of PKCh in

WASp deficient cells restores IS stability, suggesting that

the two proteins function antagonistically in this context.

Although the basis for this antagonism is not well-under-

stood, it is worth noting that PKCh can directly

phosphorylate WIP [169, 170]. Precisely, how this phos-

phorylation event modulates WIP-WASp function, if at all,

remains to be seen. Nevertheless, given the key roles

played by nPKCs during centrosome polarization, it will be

interesting to investigate whether the regulation of WASp

activity is involved in the process.

Although these potential links between F-actin and

microtubule dynamics are quite intriguing, we know very

little about their molecular bases and functional relevance.

This area of study has been complicated by the overall

complexity of the F-actin cytoskeleton. There are numer-

ous distinct pools of F-actin within activated T cells, and

defining how each of these pools interacts with the TCR

signaling network will be a key step toward understanding

their roles in shaping cellular architecture.

Functional implications of synaptic actin remodeling

Although initially thought to induce and amplify T cell

activation, it is now generally accepted that IS formation is

the product of TCR signaling rather than its cause. Indeed,

studies from multiple labs suggest that the IS functions as a

specifier rather than an intensifier, constraining the TCR

signaling network and focusing downstream effector

responses onto the APC. Below, we will discuss the pur-

pose of the IS, focusing on the role of F-actin dynamics in

regulating T cell activation, adhesion, and the targeted

delivery of effector responses.
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Tuning of TCR signaling

Over the past 10 years, high resolution imaging studies of

signaling components within the IS have dramatically

altered our conception of its role in signal initiation and

regulation. Within seconds of forming, TCR microclusters

begin to move toward the center of the IS, where they

coalesce into a larger cluster that will eventually become

the cSMAC [171, 172]. As the IS matures, new TCR mi-

croclusters continuously emerge in the periphery and move

inward to become incorporated into the cSMAC. This

stereotyped centripetal motion is driven largely by retro-

grade flow within the F-actin ring. Acute disruption of

F-actin with depolymerization agents like latrunculin A

rapidly arrests microcluster motility and also abrogates the

formation of new microclusters [101]. As mentioned

above, certain studies have indicated a role for NMII in

microcluster motility, although these results are quite

controversial [5, 142, 143, 145]. Dynein has also been

implicated in the centralization process, particularly during

the final stage in which microclusters move through the

F-actin hypodense zone at the center of the contact [173].

This area is rich in microtubules due to the close proximity

of the reoriented centrosome, and microclusters have been

observed to track along these microtubules to access the

cSMAC. Studies indicate that TCR signaling from mi-

croclusters is extinguished during centralization [101, 171,

174]. Whereas peripheral microclusters are enriched in

phosphorylated Lck and ZAP-70, these markers are con-

spicuously absent from the cSMAC [171]. Furthermore,

perturbations that impair microcluster centralization

markedly enhance TCR signaling responses [173, 175].

Hence, TCR signaling is initiated in microclusters and

extinguished by the incorporation of these microclusters

into the cSMAC. Importantly, this implies that sustained

TCR signaling depends on the continued formation of new

TCR microclusters in the periphery.

The cSMAC appears to be a focal point for TCR

internalization and ubiquitin-dependent degradation.

shRNA-mediated suppression of components of the endo-

somal sorting complex required for transport (ESCRT),

which is required for receptor down-regulation in many

cell types, blocks cSMAC formation, TCR degradation,

and signal attenuation [174]. cSMAC formation is also

inhibited by small molecules targeting the ubiquitination

reaction. Furthermore, lysobisphosphatidic acid, a marker

for the multi-vesicular bodies that degrade internalized

TCR, is highly enriched within the cSMAC [101]. Inter-

estingly, efficient TCR internalization has also been found

to require WASp, suggesting an important role for actin

polymerization independent of the F-actin ring [39]. In

other systems, class I NPFs have been shown to promote

vesicle formation by inducing Arp2/3-dependent

membrane tubulation [176], and the same process may

occur at the cSMAC. Moving forward, it is also worth

keeping in mind that receptor internalization does not

necessarily mean that all signaling is extinguished. Indeed,

recent work from Pierce and colleagues indicates that

internalized B cell receptors continue to transduce signals

from the endosomal compartment, and that these signals

are qualitatively different from those emanating from

receptors on the cell surface [177]. It will therefore be

interesting to investigate the signaling contribution of

downregulated TCR during IS maturation.

Regulation of integrin-mediated adhesion

Synaptic F-actin dynamics and the pathways that control it

also play key roles in boosting integrin-mediated adhesion

to the APC. Mature synapses are characterized by dramatic

LFA-1 accumulation in the pSMAC [178], which is

thought to promote APC adhesion by enhancing the avidity

of integrin-ligand interactions. The formation of this

annular cluster of LFA-1 is driven by retrograde F-actin

flow in the dSMAC and NMII activity in the pSMAC-

dSMAC boundary [5]. TCR signaling also enhances

adhesion on a per molecule basis by altering integrin

conformation [179, 180]. Activating signals induce the

conversion of integrins from a bent configuration with low

affinity for ligand into an extended, high affinity state. A

key regulator of this maturation process is the small

GTPase Rap1, which drives integrin extension downstream

of the TCR, GPCRs, and other activating receptors [180].

Billadeau and colleagues have demonstrated that the

WAVE2 complex can directly regulate integrin affinity

maturation by recruiting C3G, an exchange factor that

catalyzes the formation of active, GTP-loaded Rap1 [181].

WAVE2 may also contribute to the process by promoting

F-actin growth, thereby creating a platform for the

recruitment of other integrin activators, such as the scaf-

folding molecule talin [182]. Consistent with this notion,

the Arp2/3 complex, which drives lamellipodial protrusion

downstream of WAVE2, is required for integrin-mediated

adhesion to activating surfaces and target cells [26].

Notably, WASp appears to be dispensable for this process

[44], suggesting that either the composition of the WAVE2

complex or the type of F-actin growth it induces is spe-

cifically required for affinity maturation.

The relationship between IS formation and integrin

function is likely to be quite complex. As described above

(see ‘‘PI3K recruitment and activation’’), outside-in LFA-1

signaling is required for robust class IA PI3K activation

and F-actin ring formation [49]. It has also been shown that

engagement of VLA-4 can extend the life of signaling

microclusters at the IS by retarding their centripetal flow

[183]. Hence, while IS components induce integrin affinity
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maturation and clustering, integrins enhance TCR signaling

and promote IS formation. This positive feedback rela-

tionship is undoubtedly quite important for T cell

activation, and deciphering the molecular mechanisms that

control it is an interesting goal for future research.

Regulation of cytotoxicity

Cytotoxic T lymphocytes play a crucial role in immune

responses against intracellular pathogens (e.g. viruses) and

cancer by selectively destroying infected or transformed

target cells. The killing process is induced by TCR rec-

ognition of cognate pMHC on the surface of the target.

This is followed by IS formation and then the directional

secretion of cytotoxic perforin and granzyme molecules

into the synaptic space [10]. These factors induce target

cell apoptosis, after which the CTL continues its search for

antigen elsewhere. As mentioned above, perforin and

granzyme are stored in specialized secretory lysosomes

known as lytic granules. TCR activation triggers the Ca2?-

dependent migration of these granules along microtubules

toward the centrosome, which is itself reorienting toward

the target cell [184]. This concentrates the granules at the

IS, where they undergo fusion with the synaptic membrane.

Granule polarization is thought to enhance both the power

and the specificity of the lytic response.

Synaptic F-actin dynamics contribute to directional

killing in at least two ways. First, the depletion of cortical

F-actin from the central IS promotes exocytosis in this

region by facilitating lytic granule access to the synaptic

membrane [8]. Super-resolution imaging studies in NK

cells indicate that F-actin is thinned, rather than completely

removed, at the center of the IS, creating hot spots for

granule targeting [6, 7]. Recent work has implicated cor-

onin1 in this localized F-actin effacement. NK cells lacking

coronin1 exhibit enhanced levels of synaptic F-actin,

accompanied by defects in degranulation and killing [134].

Interestingly, loss of coronin1 in this context does not

appear to cause any defects in activation-induced signaling,

unlike what has been observed for T cells. Another recent

study has suggested that Cdc42 may also be involved in

creating secretory hot spots [46]. Depletion of Cdc42 in

CD4? T cells leads to an overabundance of F-actin at the

IS and a concomitant defect in cytokine secretion. This

effect can be reversed by treatment with low dose latrun-

culin, suggesting that Cdc42 functions by inducing F-actin

disassembly. It will be interesting to see whether this same

Cdc42 dependent pathway also potentiates lytic granule

release from CTLs.

The second way in which F-actin dynamics contribute to

CTL-mediated killing is by controlling the overall effi-

ciency of cytotoxic interactions. This role became apparent

during our studies of PI3K-Dock2 signaling and its effects

on CTL function [49]. In the absence of Dock2, CTLs form

small, structurally fragile synapses and display markedly

impaired killing responses. By contrast, CTLs lacking

PTEN exhibit enlarged, robust-looking synapses and are

almost five times more effective than controls at destroying

target cells. Importantly, depletion of either Dock2 or

PTEN has no effect on TCR-induced degranulation, indi-

cating that these phenotypes do not result from changes in

lytic granule secretion. Rather, the data suggest that syn-

aptic architecture, in particular the size and strength of the

F-actin ring, plays an important role in modulating the lytic

power of each individual degranulation event. Precisely,

how synaptic F-actin structure might function in this

capacity is not clear. It is tempting to speculate, however,

that the IS might orient or distort the target cell in such a

way as to potentiate the effects of cytolytic secretion.

Recent studies in B cells have highlighted the importance

of mechano-transduction for synapse function [185]. It will

be interesting to see if analogous features contribute to

cytotoxic killing.

Concluding remarks

The speed and structural complexity of IS formation con-

tinue to present challenging technical hurdles to

experimentalists, and as a result there is still much that we

do not understand about the process. How integrin signal-

ing contributes to synaptic architecture, for example,

remains mysterious, and the same can be said for the

mechanisms controlling selective actin depolymerization at

sites of secretion. Furthermore, we have barely scratched

the surface with regard to how cytoskeletal dynamics

potentiates and focuses T cell function. Nevertheless, some

important mechanistic themes have emerged in recent

years. First, lipid second messengers appear to play a

central role in specifying the synaptic cytoskeleton, with

PIP3 shaping F-actin and DAG controlling centrosome

reorientation. Signaling lipids are well-suited for quickly

building transient, polarized interfaces like the IS, and it is

likely that they are used by other leukocytes to construct

analogous cellular structures. Second, feedback relation-

ships within and between signaling pathways are required

both to amplify polarized responses and to create well-

defined architectural domains on the cell surface. The

complex interactions between TCR and integrin signaling

are an excellent example of this crosstalk behavior. In

coming years, the continued development of higher reso-

lution imaging modalities and the incorporation of

improved tools for perturbation, such as CRISPR/Cas9

technology [186], will enable researchers to dissect the

complex mechanisms governing synaptic cytoskeletal

remodeling more effectively. We anticipate that these
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efforts will lead, in turn, to the identification of molecular

strategies for assessing the functional importance of these

structural transformations in more complex settings.
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