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The receptor tyrosine kinase Axl contributes to cell migration and invasion. Expression of Axl correlates with metastatic pro-
gression in cancer patients, yet the specific signaling events promoting invasion downstream of Axl are poorly defined. Herein,
we report Elmo scaffolds to be direct substrates and binding partners of Axl. Elmo proteins are established to interact with Dock
family guanine nucleotide exchange factors to control Rac-mediated cytoskeletal dynamics. Proteomics and mutagenesis studies
reveal that Axl phosphorylates Elmo1/2 on a conserved carboxyl-terminal tyrosine residue. Upon Gas6-dependent activation of
Axl, endogenous Elmo2 becomes phosphorylated on Tyr-713 and enters into a physical complex with Axl in breast cancer cells.
Interfering with Elmo2 expression prevented Gas6-induced Rac1 activation in breast cancer cells. Similarly to blocking of Axl,
Elmo2 knockdown or pharmacological inhibition of Dock1 abolishes breast cancer cell invasion. Interestingly, Axl or Elmo2
knockdown diminishes breast cancer cell proliferation. Rescue of Elmo2 knockdown cells with the wild-type protein but not
with Elmo2 harboring Tyr-713-Phe mutations restores cell invasion and cell proliferation. These results define a new mechanism
by which Axl promotes cell proliferation and invasion and identifies inhibition of the Elmo-Dock pathway as a potential thera-
peutic target to stop Axl-induced metastases.

Tyro3, Axl, and Mer (TAMs) belong to a family of receptor
tyrosine kinases (RTKs) characterized by an extracellular part

formed by two immunoglobulin-like domains and two fibronec-
tin type III domains followed by a transmembrane region and an
intracellular tyrosine kinase module (1, 2). Like the majority of
RTKs, TAMs are activated by ligands, which include the vitamin
K-dependent coagulation factor-like growth arrest-specific 6
(Gas6) and protein S, in addition to the unconventionally secreted
Tubby/Tubby-like proteins (3–6). While these ligands activate
TAMs in a canonical manner when presented in free forms, they
also bridge phosphatidylserine (PS) exposed on the outer surface
of apoptotic cells, such that TAMs on phagocytes promote
prompt clearance of dying cells (7–10). TAMs are also activated in
a ligand-independent manner by either overexpression or trans-
phosphorylation by other RTKs (11–13). A number of signaling
pathways are activated following engagement of TAMs, including
phosphatidylinositol (PI) 3-kinase/Akt, Ras/Mapk, Stat3, and Rac
(14). Together, these pathways are thought to integrate Axl-in-
duced proliferation, survival, cytoskeletal remodeling, and cell
migration responses depending on the biological context (14).
Moreover, the normal biological functions of TAMs are complex.
Individual inactivation of TAMs in mice does not impair devel-
opment, and a panel of mild defects is observed in adult animals
(15–17). The most striking defect among them is blindness in Mer
mutant animals arising from abnormal clearance of photorecep-
tor outer segments by retinal pigment epithelial cells (18). Studies
of triple mutant animals lacking TAMs also revealed their role
in limiting the macrophage response, and this has important
consequences, such as the development of autoimmune dis-
eases (15, 16).

Among TAMs, Axl is highly expressed in various invasive can-

cers (19). High expression of Axl in breast tumors associates with
metastasis and poor patient outcome (20). Notably, expression
levels of Axl correlate with an invasion potential of breast cancer
cell lines (20), where silencing its expression or blocking its activ-
ity through a pharmacological inhibitor or blocking antibodies
impairs breast cancer cell invasion (20–23). In addition, in vivo
experiments suggest that downregulation of Axl in human breast
cancer cells drastically blocks metastasis without considerably af-
fecting tumor growth (20, 24). Within basal/triple-negative hu-
man breast cancer cell lines, Axl signaling promotes the expression
of an epithelial-to-mesenchymal (EMT) gene signature, including
the upregulation of Slug, Snail, and vimentin and the downregu-
lation of E-cadherin, which are important for ensuring a stem cell
and invasive phenotype (20, 25). Notably, the signaling pathways
engaged by Axl to promote such aggressive migration and invasive
behaviors remain to be fully defined, since this may uncover new
targets for antimetastatic treatments.
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Evolutionarily conserved Dock family guanine nucleotide ex-
change factors (GEFs) activate Rac or Cdc42 GTPases through a
unique dock homology region 2 domain to promote cytoskeletal
rearrangements (26–28). Elmo1 to -3 are autoregulated scaffold
proteins that interact with Dock1 to -5 to spatiotemporally orga-
nize Rac signaling (29–32). In vivo, in mice, Dock1 and Elmo1
promote migration, engulfment of apoptotic cells, and myoblast
fusion during development and adult life (reviewed in reference
33). High expression of Dock1 in breast cancer tumors correlates
with a poor probability of survival for HER2� or basal-like breast
cancer patients (34). Deletion of Dock1 in the mouse mammary
gland protects mice from developing lung metastasis in a model of
HER2 breast cancer (34). In addition, activation of Dock1 by the
platelet-derived growth factor (PDGF) receptor or the EGFRvIII
receptor promotes cancer cell dissemination in distinct subclasses
of gliomas and correlates with poor patient survival (35–37). Like-
wise, interfering with Dock1 or Elmo expression in human breast
cancer cell lines impairs invasion (38, 39). These results point to
Dock1 and Elmo as potentially important proteins to promote
Rac1-dependent cell migration and invasion during metastasis.

Here, we present evidence that Axl orchestrates breast cancer
cell invasion by phosphorylating Elmo proteins. Our results dem-
onstrate that Elmo2 is required for Axl-induced Rac activation.
We identify Tyr 713 on Elmo2, homologous to Tyr 720 in Elmo1,
as the site of phosphorylation by Axl kinase, and their mutation
abolishes cell invasion and proliferation. Collectively, our efforts
uncover a long-sought-after signaling pathway operating down-
stream of Axl to promote cell invasion and proliferation.

MATERIALS AND METHODS
Antibodies. The antibodies against the following proteins were obtained
commercially: Tyro3 (C-20), Axl (C-20), Myc (9E10), green fluorescent
protein (GFP) (B-2), DOCK 180 (H-4), and pY99 (sc-7020) were from
Santa Cruz Biotechnology (Santa Cruz, CA); FLAG M2 and tubulin were
from Sigma (St. Louis, MO); Rac1 was from Millipore (Billerica, MA);
pAKTS473, AKT, pY100, and pAxlY702 were from Cell Signaling Technol-
ogy (Danvers, MA); vimentin, N-cadherin, and E-cadherin were from BD
Biosciences (Franklin Lakes, NJ); Elmo2 was from Novus Biologicals
(Littleton, CO); glutathione S-transferase (GST) was from GE Healthcare
(United Kingdom); Mer and pAxl779 were from R&D Systems (Minneap-
olis, MN); and Mer and Twist1 were from Abcam (Cambridge, United
Kingdom). Rabbit phospho-specific polyclonal antibody against pY713
Elmo2 was custom generated using the synthetic phosphopeptide CIP-
KEPSSpTyrDFVYHYG as an immunogen (GenScript, Piscataway, NJ).
Specificity of the pElmo2pY713 antibody was verified by dot blotting
against the phosphorylated and unphosphorylated peptides.

Plasmid constructs. pCNX2 Flag-DOCK1 was from M. Matsuda
(Kyoto University, Japan). pDEST27 Tyro3 was described in reference 40.
pCMVSport6 Axl was from Open Biosystems (catalog no. MHS1010-
7430144). pCMVSport6 Axl kinase dead K561M was generated by site-
directed mutagenesis (QuikChange; Stratagene) using primers specified
in Table S3 in the supplemental material. The pcDNA3.1 Myc-Elmo1,
pcDNA3.1 Myc-Elmo2, and pcDNA3.1 Myc-Elmo3 plasmids were de-
scribed previously (26, 41). The tyrosine-to-phenylalanine (Y-F) mutants
of Elmo1 and Elmo2 were generated by site-directed mutagenesis with the
primers specified in Table S3. The Elmo1-Myc �N/PXXP mutant plasmid
was described previously (32). The pGEX-4T1-Elmo1 wild type and mu-
tants were subcloned using XhoI/BamHI from pcDNA3.1 into pGEX-4T1
(Amersham, Piscataway, NJ). pGEX-4T1-Elmo2 and pGEX-4T1-Elmo3
were subcloned using BamHI/XhoI into the pGEX-4T1 vector from
pcDNA3.1.

Cell culture and transfections. Cell lines (MDA-MB-231, Hs578T,
and HEK 293T) were cultured in Dulbecco’s modified Eagle medium

(DMEM) supplemented with 10% heat-inactivated fetal bovine serum
(FBS) and 1% penicillin-streptomycin (Invitrogen-BRL, Carlsbad, CA) at
37°C in a 5% CO2 incubator. MDA-MB-231 and Hs578T cells were trans-
fected with the indicated plasmids or small interfering RNAs (siRNAs)
using Lipofectamine 2000 (Invitrogen). HEK 293T cells were transfected
with the indicated plasmids by the calcium phosphate method. Hs578T
and MDA-MB-231 cells were transfected with ON-Target SmartPool hu-
man siRNA (60 nM Elmo2, 100 nM Axl siRNA, and 200 nM Dock1 and
Dock5) (Dharmacon). Control cells were transfected with 60 nM or 100
nM NON-Targeting siRNA (Dharmacon). Biochemical and cell biologi-
cal studies were performed 48 to 72 h after transfection.

Kinase library screen. One hundred eighty full-length human protein
kinase cDNA clones derived from the MGC/ORFeome collection (Open
Biosystems, Invitrogen) were Gateway recombined with the pDEST27
vector (Invitrogen) to generate in-frame GST kinase open reading frames
(ORFs) (40). GST kinases encoded in plasmids were transfected into
HEK293T and arrayed in 96-well plates. GST kinases were immobilized 24
h later on glutathione-coated plates (Pierce) whose wells were previously
rinsed and equilibrated with kinase buffer (25 mM Tris [pH 7.5]), 5 mM
�-glycerol phosphate, and 1 mM NaVO4) prior to adding 1 �g recombi-
nant mouse Elmo1 substrate, 1 �g of myelin basic protein (MBP) as an
internal control, and 2 �Ci of [�-32P]ATP. Reactions were carried out at
30°C for 30 min and stopped with 2� SDS sample buffer; samples were
boiled before separation on SDS-PAGE gels. Phosphorylated substrates
were detected by autoradiography. pGEX-4T1 Elmo constructs were
transformed in BL21 cells for protein production. Exponentially growing
BL21 cultures (2 to 4 liters) were induced with 0.1 mM isopropyl-�-D-
thiogalactopyranoside (IPTG) overnight at 25°C. Cleared lysates were
prepared, and GST-Elmo1 was purified on GSTrap minicolumns using an
Äktaprime Plus chromatography system. The GST tag was cleaved by
incubation with thrombin, and the protease was removed by passing the
sample on a HiTrap Benzamidine FF column. Sample was dialyzed against
a phosphate-buffered saline solution and passed on glutathione-Sephar-
ose 4B to remove uncleaved GST-Elmo1 and the GST moiety. GST-Elmo1
and truncated proteins, in addition to GST-Elmo2 and -3, were affinity
purified on small amounts of glutathione-Sepharose 4B for small-scale
pulldown (see below) (32).

Immunoprecipitation, GST fusion protein pulldowns, and Rac-
GTP assays. Cells were lysed for 10 min in 150 mM NaCl, 50 mM Tris (pH
7.5), 1% NP-40, 5 mM NaF, 1 mM Na3VO4, and 1� complete protease
inhibitor (Roche, Indianapolis, IN). For immunoprecipitation, clarified
cell lysates were incubated with the indicated antibodies, and the immune
complexes were allowed to form for 1 h at 4°C. Protein A-agarose was
added for 30 min to recover the immune complex. The beads were washed
3 times with lysis buffer, and bound proteins were analyzed by SDS-PAGE
and immunoblotting. For GST fusion protein pulldowns, the GST fusion
proteins were expressed in bacteria and purified on glutathione-Sephar-
ose 4B as described above. Equal amounts of the various GST fusion
proteins bound to beads were next incubated with cell extracts (500 �g of
protein per condition). The in vitro kinase (IVK) assays with the GST
fusion proteins and recombinant kinase domains of TAMs were carried
out as describe above. The kinase domains of the human TAMs were
obtained from Signal Chem (Richmond, BC, Canada). Following IVK
assays, the proteins were separated by SDS-PAGE and stained with Coo-
massie blue, and the phosphorylated proteins were detected by autora-
diography. For the Rac activation assay, Hs578T cells were treated and
lysed as described previously (34). The GTP loading status of Rac was
analyzed by affinity precipitation of the purified p21-binding domain of
PAK protein kinase expressed as a GST fusion protein (GST-PAK-PBD)
as described previously (26). Equal amounts of protein lysates or pull-
downs were separated by SDS-PAGE, and Rac was detected by immuno-
blotting. Rac activation was quantified by densitometry analysis using the
ImageJ software program (http://rsb.info.nih.gov/ij/).

Mass spectrometry. The human GST-Tyro3 kinase expressed in
HEK293T cells was purified by affinity purification and used to phosphor-
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ylate 2 �g of recombinant mouse Elmo1 by IVK assay. To produce phos-
phorylated Elmo1 in cells, HEK293T cells were cotransfected with human
GST-Tyro3 and mouse cMyc-Elmo1. Ten milligrams of lysate was used
for immunoprecipitation of Elmo1 with 10 �g of anti-c-Myc antibody
(9E10) bound to protein A beads. Samples were separated by SDS-PAGE.
The gel was stained with mass spectrometry-compatible Coomassie, and
the band corresponding to Myc-Elmo1 was excised and destained exten-
sively in water; in-gel digestion was then performed according to standard
procedures. The peptide digestion products were extracted from the gel
with an extraction buffer (1:2 [vol/vol] 5% formic acid-acetonitrile) and
incubated for 15 min at 37°C. Peptides were redissolved in 0.1% trifluo-
roacetic acid for liquid chromatography-tandem mass spectrometry (LC-
MS/MS) analysis at the IRIC platform (Montreal, QC, Canada).

RT-PCR. Total RNAs were extracted using the TRIzol reagent (Invit-
rogen) and treated with DNase I (Invitrogen) to remove genomic DNA.
cDNAs were generated using the Superscript II reverse transcriptase
(Invitrogen) and random primers (Invitrogen) as recommended by
the manufacturer. The expression profiles of beta-actin, Elmo1,
Elmo2, and Elmo3 were determined using specific primers, shown in
Table S3 in the supplemental material.

Boyden chamber invasion assay. Cell invasion assays were performed
using 8-�m-pore Boyden chambers (Costar, Cambridge, MA) coated
with 6 �l of Matrigel (BD Biosciences, San Jose, CA) dissolved in 100 �l of
DMEM. Cells were detached and washed with DMEM– 0.1% bovine se-
rum albumin (BSA) as described in reference 42. One hundred thousand
cells were seeded in the upper chamber in duplicate for each condition in
serum-starved DMEM, and cells were allowed to invade for 16 h toward
the bottom chamber containing DMEM with or without 10% FBS before
fixation in 4% paraformaldehyde. Cells in the upper chambers were me-
chanically removed using cotton swabs. Invading cells were permeabilized
with 0.2% Triton X-100 in PBS and blocked in PBS-1% BSA before stain-
ing with anti-c-Myc and anti-GFP. The membrane was isolated and
mounted on a microscope slide using SlowFade Gold reagent (Invitro-
gen). An aliquot of the cells was lysed to verify the expression levels of the
exogenous proteins and the knockdown of Elmo2 by Western blotting.
GFP-positive cells and c-Myc-positive cells that had invaded to the un-
derside were counted from 8 to 10 independent fields on each membrane
(magnification, �20).

BrdU proliferation assay. Cell were transfected with siRNA as indi-
cated in the figure legends and were plated on fibronectin-coated glass
slips for 24 h prior to being incubated with 0.03 mg/ml BrdU at 37°C for
30 min. Cells were then fixed with 70% ethanol for 5 min, rinsed with PBS
(three times), denatured with 1.5 M HCl for 30 min at room temperature,
and rinsed three times with PBS for 5 min each. After incubation with
PBS-1%BSA to block nonspecific staining for 60 min, cells were incubated
with BrdU antibody (Cell Signaling Technology) overnight at 4°C. After
three washes with PBS, cells were incubated with corresponding Alexa
Fluor-conjugated secondary antibody (Invitrogen) for 2 h. The samples
were then counterstained with 4=,6-diamidino-2-phenylindole (DAPI) to
stain the nuclei and analyzed using a Zeiss Observer.Z1 microscope. The
percentage of BrdU-positive cells versus total cells was calculated in 5
different fields of each condition. The average of the percentage of BrdU-
positive cells calculated for the 5 images was used for the final quantifica-
tion. Values are reported as means � standard errors of means (SEM).
Statistical differences were evaluated using analysis of variance (ANOVA)
followed by Bonferroni’s multiple-comparison post hoc test using the
Prism 6 software program (GraphPad). A P value of less than 0.05 was
considered statistically significant. An aliquot of the cells was lysed to
verify the expression levels of the exogenous proteins and the knockdown
of Elmo2 or Axl by Western blotting.

Statistical analysis. Statistical significance was determined using Stu-
dent’s t test, with P values of �0.05 considered significant, using the soft-
ware program Prism. In all tests, two groups with one changed parameter
were compared. For invasion assays, ANOVA and all pairwise multiple-

comparison procedures (Holm-Sidak method) were performed (n 	 6 for
each condition).

RESULTS
A kinase screen uncovers Elmo proteins as direct substrates of
Tyro3, Axl, and Mer receptor tyrosine kinases (TAMs). Dock1 is
activated by phosphorylation to promote cell migration and inva-
sion (34–37). Previously, we reported that mRNA expression lev-
els of Dock1 correlate with poor patient outcome in HER� and
basal/triple-negative breast cancer subtypes (34). Because Elmo
proteins are bound to Dock1 and regulate Rac signaling (43), we
aimed to identify novel regulators of the Elmo/Dock1 complex by
carrying out a screen designed to uncover kinases that could phos-
phorylate Elmo1. To this end, a panel of 180 GST-tagged hu-
man kinases, composed of representative members of each kinase
subfamily, was expressed in HEK293T cells as previously reported
(40) (see Table S1 in the supplemental material for a full list of
kinases). Following cell lysis, each GST kinase was recovered in a
glutathione-coated well as depicted in Fig. 1A. To carry out in vitro
kinase (IVK) assays, immobilized kinases were mixed with recom-
binant purified Elmo1, myelin basic protein (MBP), and [�-
32P]ATP (Fig. 1A). Seven putative candidate kinases that phos-
phorylate Elmo1 were identified, including five Ser/Thr kinases
(Pftaire1, Camkk2, Dclk1, Prpf4b, and Ttbk2) and two tyrosine
kinases (Blk and Tyro3) (see Table S2). A secondary screen of
selected candidates revealed that GST-tagged Camkk2 and
Pftaire1 cannot phosphorylate Elmo1; instead, they comigrated
with recombinant Elmo1, and their autophosphorylation led us to
conclude that they were false positives (not shown). Although we
have not retested Blk’s ability to phosphorylate Elmo1, another
Src family kinase, Hck, has been reported to do that efficiently
(44). Instead, we chose to further study Elmo1 phosphorylation by
the RTKs of the TAM family (including Tyro3, Axl, and Mer) due
to their involvement in biological processes similarly controlled
by Elmo/Dock1, including cell migration, cell invasion, and
phagocytosis of apoptotic cells (2, 45).

Since Axl and Mer were not part of the initial screen, we ex-
tended our analyses to test if, as seen for Tyro3, they could phos-
phorylate Elmo proteins, indicating this as a conserved feature of
TAMs. We conducted IVK assays using purified recombinant ki-
nase domains of Tyro3, Axl, and Mer to test their ability to directly
phosphorylate the Elmo1 to -3 proteins. We found that all three
TAMs preferentially phosphorylate Elmo1 and Elmo2, yet phos-
phorylation of Elmo2 seems to be less than that of Elmo1 (Fig. 1B).
We also found that full-length TAMs but not kinase-dead mutants
phosphorylate recombinant Elmo1 in vitro (see Fig. S1A in the
supplemental material). To confirm these results in cells, we co-
expressed TAMs with Myc-Elmo1 and examined the phosphory-
lation status of immunoprecipitated Myc-Elmo1 using an an-
tiphosphotyrosine antibody. In a cellular context, we similarly
found that TAMs but not their kinase-dead mutants promote ty-
rosine phosphorylation of Myc-Elmo1 (Fig. 1C; see also Fig. S1B
and C). Collectively, these results establish Elmo1 and Elmo2 as
previously unidentified direct substrates of TAMs and raise the
question of whether TAMs could exploit the Elmo/Dock1 com-
plex to promote migration and invasion.

TAMs phosphorylate two tyrosine residues on Elmo1/2. To
gain mechanistic insights into the effect of tyrosine phosphoryla-
tion of Elmo proteins, a proteomics approach was used to map the
tyrosine residues of Elmo1 targeted by TAMs. First, in vitro-phos-
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phorylated Elmo1 was obtained by mixing bacterially produced
and purified Elmo1 with Tyro3 immunoprecipitated from
HEK293T lysates and cold ATP (as done for Fig. S1A in the sup-
plemental material). Second, cellular phosphorylated Myc-Elmo1
was generated by coexpression with Tyro3 and immunoprecipita-
tion with an anti-Myc antibody (as done for Fig. S1B). Both phos-
phorylated Elmo1 samples were subjected to proteomics analysis,
and 9 phosphorylated tyrosine sites were identified (18, 48, 216,
352, 395, 511, 576, 588, and 720) (Fig. 2A). We also included in
our analysis Tyr 724 of Elmo1 as a residue potentially phosphor-
ylated by TAMs, wince we could not rule it out from the mass
spectrometry spectrum that identified Tyr 720. We generated sin-
gle Tyr-to-Phe mutants of Elmo1 for each site identified by pro-
teomics and narrowed our focus to Tyr 720 as the major site tar-
geted by Axl by performing IVK assays (Fig. 2B). The residual

phosphorylation on the Elmo1 Tyr 720 mutant was attributable to
Tyr 724, since the 720/724 double mutant failed to become phos-
phorylated upon incubation with Axl (Fig. 2B). In contrast, mu-
tation of Tyr 352 did not affect the residual phosphorylation signal
observed for the Tyr 720 mutant (Fig. 2B). Tyr 720 is highly con-
served between the Elmo1 and Elmo2 but not Elmo3 proteins (see
Fig. S1D), explaining the differential phosphorylation of Elmo
family proteins by TAMs observed in Fig. 1B. Together, these re-
sults demonstrate that TAMs specifically phosphorylate Elmo1 on
Tyr 720/724.

Axl interacts with and phosphorylates Elmo proteins. We in-
vestigated whether Elmo recognition by Axl could involve the for-
mation of a physical RTK-substrate complex. In cells coexpressing
Axl and Myc-Elmo1, we found that Myc-Elmo1 specifically coim-
munoprecipitated with Axl (Fig. 3A). However, the binding of
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Myc-Elmo1 to Axl was lost when kinase-dead Axl was immuno-
precipitated. We raised a phospho-specific antibody against Tyr
720 of Elmo1 (Tyr 713 in Elmo2) to monitor the phosphorylation
of this site in cells (see Fig. S2 in the supplemental material for
antibody characterization). As shown in Fig. 3A, coexpression of
Axl with Myc-Elmo1 promoted the phosphorylation of Tyr 720,
and this increase was not observable with kinase-dead Axl. To
further validate the interaction between Elmo and Axl, we per-
formed in vitro binding assays using GST Elmo1 fusion proteins
and found that full-length Elmo1 and the N terminus of Elmo1
(amino acids [aa] 1 to 495) but not the C terminus of Elmo1 (aa
532 to 727) were able to bind to Axl (Fig. 3B). We also tested if
Elmo2 was a binding partner of Axl and found that it coimmuno-
precipitated with Axl but not the kinase-dead mutant when the
two proteins were coexpressed in HEK293T cells (Fig. 3C). In
addition, by monitoring Elmo2 phosphorylation on Tyr 713 (Tyr
720 in Elmo1) (see Fig. S1D) with our phospho-specific antibody,
we similarly found that Axl but not the kinase-dead mutant pro-
moted phosphorylation of this site (Fig. 3C). We next used a phar-
macological inhibitor against, Axl R428 (22), to investigate
whether inhibiting the kinase activity would be sufficient to abro-
gate Elmo2 phosphorylation and binding to Axl. Treatment of

HEK293T cells expressing Axl and Myc-Elmo2 with R428 pre-
vented Elmo2 phosphorylation on Tyr 713 but surprisingly did
not inhibit the interaction of Axl with Elmo2 (Fig. 3D).

In an effort to understand if adaptor proteins could facilitate
coupling of Elmo2 to Axl, we mutated Tyr residues in Axl (at
positions 779, 821, and 866), known to be involved in binding the
Src homology 2 (SH2) adaptor proteins Grb2 and PI 3 kinase (46,
47), to Phe and found that this did not abrogate Axl-Elmo2 asso-
ciation (see Fig. S3 in the supplemental material). From these
results, it is still unclear how Elmo2 is recruited to the Axl recep-
tor, and this remains to be investigated.

Moreover, we found that Elmo2 is the only Elmo family mem-
ber expressed in the MDA-MB-231 and Hs578T basal breast can-
cer cell lines (48) (see Fig. S4A in the supplemental material). We
also observed that Hs578T cells expressed only Axl, whereas
MDA-MB-231 expressed both Axl and Mer (see Fig. S4B). Tyro3
was not expressed in either cell line. Using these basal breast can-
cer cell line models, we next investigated if endogenous Axl can
phosphorylate and bind Elmo2. To this end, we treated serum-
starved MDA-MB-231 cells with recombinant Gas6 to activate
Axl. As expected, immunoprecipitation of Axl revealed that it be-
comes globally phosphorylated on Tyr residues following 5- and
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30-min treatments with Gas6, suggesting that the RTK is activated
(Fig. 3E). An increase in Akt phosphorylation, a known target of
Axl, confirmed the activation of downstream signaling following
Gas6 treatments (Fig. 3E; see also Fig. S4C). We also found that
endogenous Elmo2 in MDA-MB-231 and Hs578T cells coprecipi-
tated minimally with Axl at the basal state, and this interaction was
enhanced transiently at 5 min after Gas6 treatment (Fig. 3E). Blot-
ting of total cell lysates with Elmo2 pTyr 713 phospho-specific
antibody revealed an increase in Elmo2 phosphorylation at this
site after 5 and 30 min of Gas6 treatments (Fig. 3E). We found that
Axl is the major kinase promoting Gas6 signaling, since siRNA-
mediated knockdown of Axl completely prevented Akt phosphor-
ylation after stimulation with Gas6 (see Fig. S4C). Identical results
were observed in MDA-MB-231 cells. Collectively, these data
demonstrate that Axl phosphorylates and interacts with Elmo2 in
invasive breast cancer cells.

Elmo2 is required for Axl-induced Rac activation. Axl pro-

motes neuron migration by activating Rac (49). We investigated if
Elmo2 functions as a scaffold protein to connect Axl to the Rac
GEF Dock1 in breast cancer cells. Immunoprecipitation of Flag-
Dock1 revealed formation of a multiprotein complex with Axl
(see Fig. S5A in the supplemental material). Surprisingly, and in
addition to Elmo, Dock1 also appears to make its own contacts
with Axl, since this interaction was neither enhanced nor reduced
by the expression of wild-type Myc-Elmo1 or a Myc-Elmo1 mu-
tant (�N/PXXP) that is not able to bind Dock1 (see Fig. S5C).
Interestingly, Dock1 might contribute to guiding Elmo for phos-
phorylation by Axl, since the phosphorylation of the Elmo1 mu-
tant (�N/PXXP), which is not interacting with Dock1, is de-
creased (see Fig. S5C). We also found that mutating Tyr 713 to Phe
in Elmo2 did not impact the formation of an Elmo2/Dock1 com-
plex (see Fig. S5A). This was also observed when Elmo1 was coex-
pressed, where the wild type and an Elmo1 protein carrying a
mutation at Tyr 720 or Tyr 720/724 bound similarly to Axl and
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Dock1 (see Fig. S5B). Because Rac is a key molecule in promoting
cell migration, we therefore investigated the possibility that Axl
employs the Elmo-Dock1 complex to promote Rac activation in
invasive breast cancer cells. To test this, serum-starved Hs578T
cells were stimulated with Gas6, and Rac-GTP loading was mon-
itored by affinity precipitation with a GST PAK-PBD fusion pro-
tein. Treatment of Hs578T cells with Gas6 induced Rac activation
that peaked at 10 min (Fig. 4A). To confirm that Gas6 mediates
Rac activation under these conditions through Axl, we found that
treatment of Hs578T cells with R428 prevented Rac activation
(Fig. 4B). In addition, interfering with Elmo2 expression by using
siRNA or with Dock1 GEF activity using the small-molecule in-
hibitor CPYPP (50) prevented Gas6-induced Rac activation (Fig.
4A to C). It is noteworthy that depletion of Elmo2 by siRNA in the
MDA-MB-231 cell line led to a partial decrease in expression of
Dock1 and the closely related member Dock5, and this could ex-
plain at least in part the decrease in Rac activation observed fol-
lowing Gas6 treatment in Elmo2-depleted cells (see Fig. S6A). We
reproducibly found that downregulation of Elmo2 and inhibition
of Dock1 GEF activity impaired maximal activation of Akt follow-
ing Gas6 treatment (Fig. 4A to C), suggesting that Elmo2-Dock1-
Rac-GTP might be involved in stimulating a PI 3-kinase.

Axl promotes the expression of epithelial-to-mesenchymal
transition (EMT) markers in invasive breast cancer cells (20). Rac
signaling is also found to contribute to the maintenance of the
mesenchymal and stem cell phenotype of cancer cells (51, 52).
Therefore, we investigated the possibility of Elmo and Dock1 (or
Dock5) playing a role downstream of Axl in promoting a mesen-
chymal phenotype in MDA-MB-231 cells via Rac activation either
by suppressing the expression of E-cadherin or inducing the ex-

pression of mesenchymal markers. To test this, we inhibited Axl
and Dock GEF activity using R428 and CPYPP, respectively (see
Fig. S6B in the supplemental material). In addition, we blocked
the expression of Axl, Elmo2, Dock1, and Dock5 using a siRNA
approach (see Fig. S6A). The expression of the epithelial marker
E-cadherin was not rescued either by blocking the expression of
Axl, Dock1, Dock5, and Elmo2 or by inhibiting their activity (see
Fig. S6A and B). Interestingly, the expression of the mesenchymal
marker vimentin was significantly reduced by the knockdown of
Axl, Elmo2, and Dock1 expression and by inhibiting Dock GEF
activity in MDA-MB-231 cells (see Fig. S6A and B). However,
knockdown of Dock5 and R428 treatment was not able to reduce
vimentin expression levels (see Fig. S6A and B). Collectively, these
results uncover the Elmo2-Dock1 complex as a key signaling
module for Rac activation and in promoting the expression of
mesenchymal markers downstream of Axl in invasive breast can-
cer cells.

Phosphorylation of Elmo2 on Tyr 713 is required for cell in-
vasion and cell proliferation. We aimed to define if phosphor-
ylation of Elmo2 by Axl is a required signaling event to promote
cell invasion. We first confirmed previous observations suggesting
that MDA-MB-231 and Hs578T cells invade through Matrigel in
an Axl-dependent manner (20, 22, 53). We treated MDA-MB-231
cells with R428 or siRNA against Axl and found that both treat-
ments blocked cell invasion (Fig. 5A and B). We next assayed the
role of Elmo2 in breast cancer cell invasion by a siRNA approach.
Knockdown of Elmo2 robustly inhibited migration of MDA-MB-
231 cells across a Matrigel barrier (Fig. 5C). In an effort to deter-
mine if phosphorylation of Elmo is important for cell invasion, we
performed rescue experiments in Elmo2 knockdown cells with a
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construct encoding either Myc-Elmo1 wild-type or a Myc-Elmo1
Y720F mutant. We reexpressed Elmo1, since the exogenous Myc-
Elmo2 was difficult to express in Elmo2 siRNA-treated cells (the
human Elmo2 SmartPool siRNA also targets murine mRNA). We
also previously reported that biological functions of Elmo1 and
Elmo2 in myoblast fusion are interchangeable (54). We observed
that expression of Myc-Elmo1 in Elmo2 knockdown cells com-
pletely restored the invasion to an extent comparable to that for
cells expressing a control siRNA (Fig. 5C). In contrast, reexpres-
sion of Myc-Elmo1 Y720F in Elmo2 knockdown cells failed to
reestablish cell invasion despite its expression being identical to
that of the wild-type protein (Fig. 5C).

We next aimed to define if Elmo, i.e., Rac signaling, down-
stream of Axl contributes to the proliferation of these cells. We
assayed proliferation by BrdU staining and found that knockdown
of Axl or Elmo2 robustly inhibited the proliferation of MDA-MB-
231 cells (Fig. 5D). To determine if Elmo phosphorylation is im-
portant for proliferation, we performed rescue experiments as
mentioned above. We observed that expression of Myc-Elmo1 in
Elmo2 knockdown cells partially restored the proliferation of
these cells (Fig. 5E). In contrast, expression of Myc-Elmo1 Y720F
in Elmo2 knockdown cells failed to reestablish cell proliferation
despite its expression being identical to that of the wild-type pro-
tein (Fig. 5E). Globally, our findings demonstrate a central role for
Axl-mediated phosphorylation of Elmo2 in promoting prolifera-
tion and invasion of basal breast cancer cells.

DISCUSSION

Axl is a potent promoter of invasion and metastasis in experimen-
tal models, and its expression correlates with a poor outcome for
breast cancer patients. Therefore, defining the molecular path-
ways by which this RTK promotes invasion is essential in order to
interfere with downstream signaling. We report here a previously
unrecognized molecular mechanism by which Axl uses Elmo scaf-
fold proteins to signal to the Rac pathway to promote cell inva-
sion. Despite identification of many Axl-interacting proteins,
Elmo1 and Elmo2 may be the first identified bona fide direct sub-
strates of this RTK, and we show that their interaction with Axl
and phosphorylation on carboxyl-terminal tyrosine residues is es-
sential for invasion of basal breast cancer cells. Early studies ex-
ploiting an epidermal growth factor receptor (EGFR)-Axl chime-
ric protein had identified unknown proteins of approximately 45
and 80 kDa that became robustly tyrosine phosphorylated in re-
sponse to epidermal growth factor (EGF) stimulation (46). Elmo
proteins are approximately 80 kDa in mass and may represent the
proteins observed in that study. In addition, early studies in Dro-
sophila melanogaster demonstrated that Myoblast City, the fly or-
thologue of mammalian DOCK1, acts downstream of the receptor
tyrosine kinase PDGF/vascular endothelial growth factor (VEGF)
receptor to promote the Rac-dependent migration of border cells
(55). In connection with our study, we present evidence that the
Elmo/Dock1 complex likewise acts as a signaling mediator down-
stream of receptor tyrosine kinases of the TAM family receptors
which are not found in Caenorhabditis elegans or Drosophila.

Our knockdown of Elmo2, in parallel to rescue assays with
Elmo1, demonstrates that Elmo2 is required for basal breast can-
cer cell invasion and proliferation. Likewise, a recent study dem-
onstrated that stable knockdown of Elmo2 prevents metastasis of
MDA-MB-231 cells to lungs in experimental tail vein assays (39).
However, we find here that rescuing Elmo2 with Elmo1 lacking

Y720 completely prevented cell invasion. These data point to a
critical role for this residue in transmitting signaling. Exactly how
phosphorylation of Elmo2 promotes cell invasion is not fully un-
derstood. We previously reported that Elmo proteins are regu-
lated by intramolecular interactions that prevent aberrant Rac sig-
naling (31). In particular, expression of Elmo with mutations
maintaining it in an open conformation can increase migration in
cells and biological activity in vivo (31, 56). Through the use of a
conformational state biosensor for Elmo2 that we previously de-
scribed (31), we failed to detect changes in Elmo2 conformation
when it enters into a complex with, and is phosphorylated by, Axl
(data not shown). Another mechanism could be that the tyrosine-
phosphorylated residue Y713 in Elmo2 becomes a docking site for
other signaling molecules, but we deemed this hypothesis unlikely
because bioinformatics analysis conflicts with these sites being
strong candidates for SH2 or PTB domain-containing proteins.
Recent studies also demonstrated that phosphorylation of Dock1
on serine and tyrosine residues can increase Rac binding and GEF
activity (34–37). One hypothesis is that this phosphorylation site
on Elmo can transmit signals to Dock1 and enhance its GEF ac-
tivity, such as relieving Dock1 from its autoinhibited state, which
may explain why we found the Elmo/Dock1 complex stable
whether or not the proteins are phosphorylated.

Moreover, guanine nucleotide exchange factors for Rho
GTPases operating downstream of Axl have not been previously
described. They have been neglected as signaling intermediates
that are important in defining the mechanism whereby this RTK
promotes metastasis. Through an interaction with Elmo2 or po-
tentially through another mechanism, we report here that Axl can
form a complex with the Rac regulator Dock1. We demonstrated,
using the CPYPP small-molecule inhibitor, that Dock1, a member
of the Dock-A subfamily (Dock1, Dock2, and Dock5), mediates
Axl-induced Rac activation. Because this inhibitor also targets he-
matopoietic cell-specific Dock2 and ubiquitous Dock5, we cannot
rule out that Dock5 is also recruited to Axl via an interaction with
Elmo2, since it is also expressed in basal breast cancer cells. Simi-
larly, Dock4, which belongs to the Dock-B subfamily (Dock3 and
Dock4), is another broadly expressed Elmo-binding GEF that may
contribute to Axl signaling, since it has been shown recently to
promote MDA-MB-231 cell migration through activation of Rac
(57). In the case of the Mer TAM family member, it has been
reported to recruit the classical GEF Vav1 for activating Rac dur-
ing engulfment of damaged photoreceptors (58). Interestingly,
Mer can also recruit Dock1, but in this context through an inter-
action with the scaffolding protein p130Cas and the adaptor pro-
tein CrkII, to promote engulfment of apoptotic cells (8). We did
not investigate if CrkII can complex with tyrosine-phosphorylated
Axl through its SH2 domain; if that was the case, CrkII or other
SH2/SH3 adaptors could also cooperate with Elmo proteins to
facilitate the recruitment of Dock GEFs to the RTK.

Previous studies have shown that high Axl expression in breast
cancer patients is correlated with poor patient survival (20). Sim-
ilarly, the Axl ligand Gas6 has been shown to be a target for over-
expression and amplification in breast cancer (59). However,
some studies have shown that upregulation of Axl in breast cancer
cells led to an increase in Axl activity independently of Gas6 bind-
ing, confirming the constitutive activation of Axl in these cells
(25). Because we detect Axl phosphorylation at basal levels prior
to Gas6 stimulation in serum-starved cells in MDA-MB-231, our
data suggest that Axl in basal breast cancer cells is constitutively
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active and may act independently of its ligand, which may be the
reason why we observe an Elmo2/Axl complex at basal levels prior
to Gas6 stimulation.

Our data highlight a previously unsuspected role of Axl and
Elmo in proliferation of invasive breast cancer cells. Previous
studies did not detect a reduction in proliferation upon knock-
down of Axl and Elmo expression using short-hairpin RNA
(shRNA) (20, 39). A transient siRNA approach may have not al-
lowed enough time for alternative pathways to rescue prolifera-
tion, which allowed us to identify a role for Elmo tyrosine site
Y713 in promoting proliferation. Similarly, we showed in another
study that Dock1-null mammary tumors’ growth was reduced
compared to that of Dock1-wild-type mammary tumors, indicat-
ing a role for Dock1 in promoting cell proliferation (34).

Furthermore, it remains unclear at what step of breast cancer
progression Axl is contributing. Knockout mouse models looking
at this important question are missing. Recent data highlight that
Axl expression is important in basal breast cancer cells to maintain
a stem cell-like phenotype (20, 25). In part, this is done through
the expression of transcription factors that maintain a mesenchy-
mal phenotype, such as Snail and Slug. Our results revealing a role
for Dock/Elmo proteins in EMT is novel and potentially unique
for basal breast cancer cells. In a previous study, we found Dock1
in vivo not to be required for mesenchymal transition of cardio-
myocytes (60). Likewise, deletion of Dock1 in HER2 breast cancer
tumors was found to alter interferon gene expression but not EMT
gene expression (34). The pathophysiological importance of Vi-
mentin expression by Elmo/Dock proteins remains to be fully
explored in basal breast cancer cells. It will also be important to
verify in vivo if Axl contributes to stem cell maintenance and if its
role in sustaining epithelial-to-mesenchymal transition is directly
linked to invasion.

Altogether, these results led us to propose that Axl may hijack the
Rac activator Elmo/Dock complex to phosphorylate Elmo and pro-
mote cell invasion and cell proliferation. It also identifies inhibition of
the Elmo-Dock pathway as a potential therapeutic target to stop Axl-
induced cell proliferation, invasion, and metastases.
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