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Abstract

The increased availability of time series genetic variation data from experimental evolution studies 

and ancient DNA samples has created new opportunities to identify genomic regions under 

selective pressure and to estimate their associated fitness parameters. However, it is a challenging 

problem to compute the likelihood of non-neutral models for the population allele frequency 

dynamics, given the observed temporal DNA data. Here, we develop a novel spectral algorithm to 

analytically and efficiently integrate over all possible frequency trajectories between consecutive 

time points. This advance circumvents the limitations of existing methods which require fine-

tuning the discretization of the population allele frequency space when numerically approximating 

requisite integrals. Furthermore, our method is flexible enough to handle general diploid models of 

selection where the heterozygote and homozygote fitness parameters can take any values, while 

previous methods focused on only a few restricted models of selection. We demonstrate the utility 

of our method on simulated data and also apply it to analyze ancient DNA data from genetic loci 

associated with coat coloration in horses. In contrast to previous studies, our exploration of the full 

fitness parameter space reveals that a heterozygote-advantage form of balancing selection may 

have been acting on these loci.
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1. Introduction

Natural selection is a fundamental evolutionary process and finding genomic regions 

experiencing selective pressure has important applications, including identifying the genetic 
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basis of diseases and understanding the molecular basis of adaptation. There has been a long 

line of theoretical and experimental research devoted to modeling and detecting selection 

acting at a given locus. Several earlier works have considered modeling the stationary 

distribution of allele frequencies in a population undergoing non-neutral evolution 

(Fearnhead, 2003, 2006; Genz and Joyce, 2003; Stephens and Donnelly, 2003). More 

recently, there has been growing interest to utilize time series genetic variation data to 

enhance our ability to infer allele frequency trajectories, thereby enabling better estimates of 

selection parameters. For example, the sequencing of samples over several generations in 

experimental evolution of a population (e.g., Bacteria (Wiser, Ribeck and Lenski, 2013), 

yeast (Lang et al., 2013), and Drosophila (Burke et al., 2010; Orozcoter Wengel et al., 

2012)) under controlled laboratory environments, or direct measurements in fast evolving 

populations such as HIV (Shankarappa et al., 1999), has allowed us to better understand the 

genetic basis of adaptation to changes in the environment. Also, recent technological 

advances have given us the unprecedented ability to acquire ancient DNA samples (e.g., for 

humans (Hummel et al., 2005), ancient hominids (Green et al., 2010; Reich et al., 2010), and 

horses (Ludwig et al., 2009; Orlando et al., 2013)), providing useful information about allele 

frequency trajectories over long evolutionary timescales.

Most methods for analyzing times series DNA data model the underlying population-wide 

allele frequency as an unobserved latent variable in a hidden Markov model (HMM) 

framework, in which the sample of alleles drawn from the population at a given time is 

treated as a noisy observation of the hidden population allele frequency. In this framework, 

computing the probability of observing time series genetic variation data involves 

integrating over all possible hidden trajectories of the population allele frequency. For short 

evolutionary timescales, a discrete-time Wright-Fisher model of random mating is often 

used to describe the dynamics of the population allele frequency in the underlying HMM. 

This approach has been used to estimate the effective population size from temporal allele 

frequency variation, assuming a neutral model of evolution (Williamson and Slatkin, 1999). 

More recently, temporal and spatial variations of advantageous alleles have been 

investigated through an HMM framework that can incorporate migration between multiple 

subpopulations (Mathieson and McVean, 2013).

If the evolutionary timescale between consecutive sampling times is large, it can become 

computationally cumbersome to work with discrete-time models of reproduction. However, 

by a suitable rescaling of time, population size, and population genetic parameters, one can 

obtain a continuous-time process (the Wright-Fisher diffusion) which accurately 

approximates the population allele frequency of the discrete-time Wright-Fisher model. The 

key quantity needed when applying the diffusion process is the transition density function, 

which describes the probability density of the allele frequency changing from value x to 

value y in time t. This transition density function satisfies a certain partial differential 

equation (PDE) with coefficients that depend on the mutation and selection parameters. 

Bollback, York and Nielsen (2008) have used a finite-difference numerical method to 

approximate the solution to the PDE and incorporated the results into the aforementioned 

HMM framework to infer the strength of selection from time series data. Recently, an 

alternative approach (Malaspinas et al., 2012) based on a one-step Markov process has been 
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proposed to compute the necessary transition densities. In both of these approaches, the 

allele frequency space has to be discretized finely enough in order to reliably approximate 

various numerical integrals that are needed for computing the HMM likelihood. The 

efficiency and accuracy of these grid-based numerical methods depend critically on the 

spacing and distribution of the discrete grid points. Furthermore, an appropriate choice of 

this discretization scheme could be strongly dependent on the underlying population genetic 

parameters. Another limitation of these previous works is that only a few restricted models 

of selection have been considered. Feder, Kryazhimskiy and Plotkin (2014) recently 

developed a likelihood-ratio test for identifying signatures of selection from time series data, 

in which they combined a deterministic model and a Gaussian noise process. This 

approximation is less accurate than the diffusion approximation, but it facilitates 

computation and seems sufficiently accurate provided that the allele frequency does not get 

too close to the boundaries during the period of observation.

In this paper, we develop a novel algorithm based on the spectral method to circumvent the 

limitations mentioned above. Specifically, instead of approximating the solution to the PDE 

numerically, we utilize a method recently developed by Song and Steinrücken (2012) which 

finds an explicit spectral representation of the transition density as a function of x, y, and t. 

We show that the probability of observing a given time series dataset can be computed 

analytically by combining the spectral representation with the forward algorithm for HMMs 

to efficiently and analytically integrate over all population allele frequency trajectories. The 

key idea in our work is to represent the intermediate densities in the forward algorithm in the 

basis of eigenfunctions of the infinitesimal generator of the Wright-Fisher diffusion process. 

Exploiting the spectral representation of the transition density, we can then efficiently 

compute the coefficients in this basis representation. Furthermore, since this spectral 

representation applies to general diploid models of selection, we are able to leverage this 

representation to consider more complex models of selection than previously possible. We 

first demonstrate the accuracy of our method on simulated data. We then apply the method 

to analyze time series ancient DNA data from genetic loci (ASIP and MC1R) that are 

associated with horse coat coloration. In contrast to the conclusions of previous studies 

which considered only a few special models of selection (Ludwig et al., 2009; Malaspinas et 

al., 2012), our exploration of the full parameter space of general diploid selection reveals 

that a heterozygote-advantage form of balancing selection may have been acting on these 

loci. We implemented the algorithms described in this paper in a publicly available software 

package called spectral HMM1.

The remainder of this paper is organized as follows. In Section 2, we formally introduce the 

HMM framework and describe the details of our spectral algorithm. The proofs of the 

theoretical results underlying our algorithm are provided in the supplemental article 

(Steinrücken, Bhaskar and Song, 2014). In Section 3, we use simulated data to investigate 

the statistical properties of our maximum likelihood estimator and also apply our method to 

analyze the aforementioned ancient DNA data for the loci associated with horse coat 

1Available from http://spectralhmm.sf.net
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coloration (Ludwig et al., 2009). We conclude in Section 4 with a discussion of future 

extensions of our model.

2. Method

Here we provide a formal description of the time series data considered in this paper and 

present our inference method for analyzing such data.

2.1. Time series allele frequency data

The data we analyze consist of genotype samples obtained from individuals at K distinct 

times t1 <···< tK in the past (given in years). The present time is denoted by tpresent ≥ tK. At 

each time point tk, a sample of nk ∈  individuals is randomly drawn from the population. 

We assume that the locus under consideration is biallelic, and that the identities of the 

ancestral allele A0 and the derived allele A1 are known. We also assume that the allele A1 

became selected at some time t0 ≤ t1. We use dk to denote the number of derived alleles in 

the sample of nk alleles drawn at time tk, where 0 ≤ dk ≤ nk. For notational convenience, we 

use ok to denote the tuple (tk, nk, dk), and O[i:j] to denote the partial sequence of observations 

oi, oi+1, …, oj. Figure 1 shows an example of a time series allele frequency dataset with 

samples drawn at three time points.

2.2. The diffusion approximation

Consider a locus evolving according to a discrete Wright-Fisher model of random mating 

with an effective population size of Ne diploids. Let u01 be the per-generation probability of 

mutation from the ancestral allele A0 to the derived allele A1, and u10 the probability of the 

reverse mutation. We use si to denote the selection coefficient of an individual with i copies 

of the derived allele A1, where 0 ≤ i ≤ 2. Without loss of generality, we can assume that s0 = 

0. In each generation of reproduction, an offspring randomly chooses a parent having i 

copies of the derived allele with probability proportional to 1 + si.

Consider the scaling limit where the population size Ne → ∞ while the unit of time is 

rescaled by Ne and the population-scaled parameters (2Nes1, 2Nes2, 4Neu01, 4Neu10) 

approach some constants. In this limit, the trajectory of the population frequency of allele A1 

follows a Wright-Fisher diffusion process (Ewens, 2004). The unit of time τ in this diffusion 

approximation is related to the physical unit of time t as

where g is the average number of years per generation of reproduction. Similarly, we let τk 

denote the population-scaled versions of the physical times tk, where

(2.1)

The population-scaled selection and mutation parameters of the Wright-Fisher diffusion 

process are related to the corresponding parameters in physical units as
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(2.2)

(2.3)

(2.4)

From here on, we use the above population-scaled parameters when describing our analysis 

of the Wright-Fisher diffusion. The initial population frequency of the allele A1 when it 

became selected at time τ0 is distributed according to the density function ρ(y). In this paper, 

we are interested in estimating the selection coefficients of the heterozygote and A1-

homozygote (s1 and s2, respectively) given the other population genetic parameters and 

assuming that the allele A1 became selected at time τ0.

2.3. Hidden Markov model framework

To analyze the time series data described earlier, we employ a hidden Markov model 

(HMM) framework as in Bollback, York and Nielsen (2008). In this approach, the 

population-wide frequency Y(τ) of the A1 allele at time τ is modeled as an unobserved 

hidden variable (see Figure 1). We denote a realization of the frequencies at the sampling 

times τk by yk ≡ Y(τk). The initial frequency at time τ0 is distributed according to the density 

function ρ, i.e. Y(τ0) ~ ρ. For example, the density function ρ(y) = δ(y − 1/(2Ne)) models the 

case where the selected allele A1 arose as a de novo mutation in one individual of the 

population at time τ0.

The probability of transitioning from frequency yk−1 at time tk−1 to frequency yk at time tk is 

described by the transition density function pΘ(τk − τk−1; yk−1, yk) of the Wright-Fisher 

diffusion process, where Θ = (σ1, σ2, α, β, τ0, Ne) and τ k are population-scaled parameters 

as given in equations (2.1)–(2.4). The observations in the HMM are the number of copies dk 

of the allele A1 among the nk alleles in the sample drawn at time tk. The probability of such 

an observation at time tk with population allele frequency yk is given by the probability mass 

function ξ(dk; nk, yk) of a binomial distribution

To compute the probability {O[1:K]} of observing the data O[1:K] under the model 

parameters Θ, we introduce the forward density functions fk, given by

(2.5)

The function fk is the joint density of the observed data up to time τk and the hidden 

population allele frequency at time τk. We also find it convenient to consider a second 

auxiliary density function, gk, given by
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(2.6)

This function gk is the joint density of the observed data up to time τk−1 and the hidden 

frequency at τk. The forward density function f0 is given by the density function for the 

initial allele frequency as

Since we approximate the time evolution of the hidden population allele frequency by the 

Wright-Fisher diffusion, we can get a recurrence relation between the density functions gk 

and fk−1 by integrating over all possible allele frequencies at τk−1:

(2.7)

where k ∈ {1, …, K}. Using the binomial distribution for sampling dk derived alleles out of 

nk individuals at time τk, we get another recurrence relation between the density functions fk 

and gk as follows:

(2.8)

Finally, the probability {O[1:K]} of observing the data is computed by integrating over all 

possible hidden frequencies at the last sampling time:

(2.9)

Note that the equations above describe a forward-in-time procedure for computing the 

probability of the data O[1:K], where the intermediate density functions have a natural 

interpretation.

While (2.7), (2.8) and (2.9) succinctly describe the sampling probability of the data O[1:K], 

no analytic solutions to the integrals in (2.7) and (2.9) are known. In the previous 

approaches mentioned in Introduction, these integrals were approximated numerically by 

discretizing the allele frequency state space. The accuracy of these approximations depends 

critically on the careful choice of the discretization grid. We present an analytical solution to 

this problem which obviates the need for such a discretization.

2.4. Spectral representation of the transition density

The biallelic Wright-Fisher diffusion with general diploid selection has the infinitesimal 

generator  given by

(2.10)
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where  is the infinitesimal generator of the diffusion process without selection, given by

(2.11)

We refer the reader to Ewens (2004) for more details about the Wright-Fisher diffusion. 

Song and Steinrücken (2012) developed an efficient method to compute the eigenvalues and 

eigenfunctions of , and we utilize that method here. A brief summary of their approach is 

provided below.

To approximate the spectral decomposition of the operator , consider the functions

(2.12)

where σ̄(x) := 4σ1x(1 − x) + 2σ2x2 is the mean fitness of the population and  are a 

rescaled version of the classical orthogonal Jacobi polynomials and are defined in Section B 

of the supplemental article (Steinrücken, Bhaskar and Song, 2014). The α and β parameters 

in (2.12) are the population-scaled mutation rates given in (2.3) and (2.4). The set 

 forms a basis for the Hilbert space L2([0, 1], π) of real-valued functions on 

[0, 1] that are square integrable with respect to the stationary density π of the diffusion 

generator . Specifically,

(2.13)

The basis elements  are orthogonal with respect to the inner product 〈·, ·〉π defined 

by .

In the basis , the operator  is given by the matrix

(2.14)

where  is a diagonal matrix containing the eigenvalues of the 

neutral diffusion generator ,  is the matrix of coefficients from the 

three-term recurrence relation for the Jacobi polynomials , and  are constant 

coefficients defined in Section C of the supplemental article (Steinrücken, Bhaskar and 

Song, 2014). Explicit expressions for the entries of Λ(α,β) and G are provided in equations 

(B.3) and (B.5), respectively, in Section B of the supplemental article.
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The eigenvalues λn of the full diffusion generator  are given by the eigenvalues of M, and 

the coefficients of the eigenfunctions of  in the basis  are given by the 

eigenvectors of M. In particular, the eigenfunction Bn of  is given by

(2.15)

where wn = (wn,0, wn,1, …) is the eigenvector of M corresponding to eigen-value λn. We use 

Λ = diag (λ0, λ1, …) to denote the diagonal matrix of eigenvalues of M, and W to denote the 

matrix with rows given by the eigenvectors wn. As can be seen from (2.15), W is the change-

of-basis matrix between the basis of eigenfunctions Bn of  and the basis .

The leading eigenvalues and the associated eigenvectors of the infinite matrix M can be 

approximated by the eigenvalues and eigenvectors of sufficiently large submatrices of M. 

We refer the reader to Song and Steinrücken (2012) for a more detailed empirical discussion 

on how the approximation accuracy varies for different submatrix sizes and different 

parameter regimes. The transition density function pΘ(τ; x, y) for the probability density of 

the allele changing frequency from x to y in time τ is given by the following spectral 

decomposition,

(2.16)

2.5. Incorporating the spectral representation into the HMM

Using the spectral decomposition of the transition density function in (2.16), we devise a 

dynamic programming algorithm to compute the likelihood {O[1:K]}. This algorithm 

recursively computes the density functions fk and gk given in (2.5) and (2.6), respectively. 

To update these density functions efficiently, we represent them in the basis of scaled 

eigenfunctions  of the diffusion generator . More precisely, we express fk and gk as

(2.17)

(2.18)

where we employ the vector notation

(2.19)
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(2.20)

(2.21)

We now describe how the coefficient vectors ak, bk and the probability {O[1:K]} can be 

computed efficiently. All proofs can be found in Section A of the supplemental article 

(Steinrücken, Bhaskar and Song, 2014). First, the following proposition determines the 

vector b0 of coefficients for the initial forward density function f0:

Proposition 1—If the allele frequency at τ0 is distributed according to the density function 

ρ(y) = δ(y−x), then the initial forward density function f0 in the basis  has the vector 

of coefficients

where Bn(x) is given by (2.15), and cn are the squared norms of Bn given by

(2.22)

where  denote the squared norms of the Jacobi polynomials given in equation (B.2) in 

Section B of the supplemental article (Steinrücken, Bhaskar and Song, 2014).

In the case where the selected allele A1 arises from de novo mutation at t0 in one of the 

individuals in the population, we set x = 1/(2Ne) in Proposition 1. We note that our 

framework allows us to easily model other distributions for the frequency of the mutant 

allele A1 when it became selected. For example, the initial distribution of mutation-drift 

balance can be used to model selection arising from standing genetic variation. Some of 

these initial distributions are described in Section D of the supplemental article (Steinrücken, 

Bhaskar and Song, 2014).

The following theorem establishes how the representations of the densities fk and gk, for k > 

0, can be computed algebraically in a recursive fashion:

Theorem 2—Let  and D := diag (c0, c1, …) denote diagonal 

matrices with entries  and cn defined as in Proposition 1. Then, for each k ∈ {1,…, K}, 

the coefficients in the representation of the densities gk(y) and fk(y) in (2.17) and (2.18) can 

be computed recursively as

(2.23)
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(2.24)

where W−1 is given by

(2.25)

Combining Proposition 1 and Theorem 2, we obtain a dynamic programming algorithm for 

calculating the coefficients bk and ak in the representations for fk and gk given in (2.17) and 

(2.18), respectively. The vectors and matrices appearing in the above results are infinite 

dimensional. As in previous works (Song and Steinrücken, 2012; Steinrücken, Wang and 

Song, 2013) on the spectral representation of the transition density, when applying the above 

results we truncate the infinite vectors and matrices by choosing cutoffs for the dimensions. 

We provide more practical details in Section 3.3.

Finally, the probability of observing the full data O[1:K] can be computed using the 

following proposition:

Proposition 3—The probability {O[1:K]} of observing the data O[1:K] given the 

population genetic parameters Θ is

(2.26)

where B0(0) is given by

3. Results

In this section, we perform parametric inference via the maximum likelihood framework, 

using a finite grid in the parameter space. We first test the accuracy on simulated data and 

then apply it to analyze an ancient DNA dataset related to coat coloration in domesticated 

horses (Ludwig et al., 2009).

Since ancient DNA data are often collected from only those loci which are segregating at the 

present time, in our empirical study we condition on observing at least one copy of the 

derived allele at the last sampling time τK. In particular, the likelihood of the parameters is 

given by L(Θ) := {O[1:K] | dK > 0}. We chose to maximize this function on a grid, since 

the algorithm described in the previous section can be parallelized, thus allowing to 

efficiently evaluate the likelihood under given parameters for several datasets at once.
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3.1. Performance on simulated data

We simulated data under a discrete-time Wright-Fisher model with several values for the 

effective population size and selection coefficients. We chose the mutation probabilities to 

be u01 = u10 = 10−6, and the number of years per generation to be five years. These 

parameters are similar to those considered by previous works that analyzed time series 

allelic samples from the ASIP and MC1R loci in horses (Ludwig et al., 2009; Malaspinas et 

al., 2012). In our simulations, 5% of the population carried the mutant allele when it first 

became positively selected. We sampled 40 individuals at each of 10 time points over the 

course of 32,000 years.

We investigated the performance of our maximum likelihood estimator in various scenarios 

of selection. Here, we present the results for the following four particular selection schemes:

1. Genic selection, in which the selective fitness of the heterozygote is the arithmetic 

mean of the fitness of the two homozygotes, i.e. s1 = s/2 and s2 = s.

2. Heterozygote advantage selection, in which s1 = s and s2 = 0.

3. Recessive selection, in which s1 = 0, s2 = s.

4. Dominant selection, in which s1 = s, s2 = s.

For each scenario, we considered s ∈ {0, 0.001, 0.0025, 0.005, 0.01} and simulated 200 

datasets for each value of s.

Figure 2 shows the performance of the maximum likelihood estimator under a model of 

genic selection with an effective population size of Ne = 2,500 and Ne = 10,000. It illustrates 

empirical boxplots of the maximum likelihood estimates, where the tips of the whiskers 

denote the 2.5%-quantile and the 97.5%-quantile, and the boxes represent the upper and 

lower quartile. As the figure shows, our maximum likelihood estimates are unbiased. The 

uncertainty of the estimate tends to increase with increasing values of s, while the 

uncertainty decreases as the population size increases, illustrating the fact that for larger 

population sizes, selection acts more efficiently and is easier to detect. In the case of Ne = 

10,000, if the true selection coefficient is 0.0025 or more, all our maximum likelihood 

estimates are higher than the 97.5%-quantile of the empirical distribution of the maximum 

likelihood estimates for s = 0. Hence, there is high power to reject neutrality in these 

scenarios.

The performance of our maximum likelihood estimator for several additional selection 

schemes and parameter regimes can be found in Figure 3, where we also consider a scenario 

with fewer sampling time points. The figure shows that our maximum likelihood estimates 

are unbiased across the different parameter ranges and scenarios. In general, the low 

variance of the empirical distribution of the maximum likelihood estimates shows that our 

method can be used to accurately infer the selection parameters of interest in a wide range of 

scenarios.
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3.2. Analysis of ancient DNA data: coat coloration in domesticated horses

Ludwig et al. (2009) extracted genotype data at several loci from ancient horse DNA 

obtained from various sites in Eurasia. In particular, they extracted temporal allele frequency 

data at eight loci that are known to play a role in coat color determination in contemporary 

horses. Only the locus encoding for the Agouti signaling peptide (ASIP) and the locus for 

the melanocortin 1 receptor (MC1R) showed strong fluctuations in the sample allele counts. 

Table 1 shows the time series data for the ASIP and the MC1R loci in the curated form of 

the original work (Ludwig et al., 2009).

Using the method of Bollback, York and Nielsen (2008) for the model of genic selection (s1 

= s/2, s2 = s), Ludwig et al. (2009) established that selection acted significantly on only the 

ASIP and the MC1R loci. However, another recent analysis (Malaspinas et al., 2012) of the 

same dataset considered the model of recessive selection (s1 = 0, s2 = s) and did not find a 

significant signal of selection at the ASIP locus.

To investigate the dependence of the previous conclusions on the assumed selection scheme, 

we applied our method to reanalyze the ASIP and the MC1R data under a general selection 

scheme with arbitrary selection coefficients s1 and s2. We set the mutation probability to u01 

= u10 = 10−6 and the average length of a generation to 5 years. Table 1 shows that the 

derived allele is absent in both datasets at time 20,000 BCE. Thus, we set the initial 

frequency of the derived allele as 1/2Ne, corresponding to the case where the selected allele 

arises as a de novo mutation at time t0. We tried a range of values for Ne and t0.

Figure 4(a) shows the likelihood surface for the temporal allele frequency data from the 

ASIP locus, for Ne = 2,500 and t0 = 17,000 BCE. The empirical maximum of the likelihood 

surface is located at (s1, s2) = (0.0025, 0), indicated by the ‘x’ in Figure 4(a). This maximum 

suggests that a selective scheme of heterozygote advantage best explains the data, where 

both the ancestral and derived allele homozygotes are of equal fitness, while the 

heterozygous genotype confers a selective advantage over the homozygotes. To establish the 

significance of this finding, we performed the following bootstrap procedure: We resampled 

the ASIP dataset 100 times to obtain sub-sampled datasets . For each 

bootstrapped dataset 1 ≤ j ≤ 100, we resampled  alleles at each time . The 

number of derived alleles for dataset j was obtained by binomial sampling from the 

empirical frequency of derived alleles in the original ASIP dataset, i.e.,

We then reported the empirical maximum of the likelihood surface for each of these 

resampled datasets. Figure 4(b) shows the empirical maximum likelihood estimates and 

marginal histograms of the maxima for the 100 re-sampled datasets. The marginal 2.5% and 

97.5% quantiles of the empirical distribution are [0.0025, 0.0235] for the heterozygote 

fitness s1 and [0, 0.0045] for the derived allele homozygote fitness s2, thus providing further 

evidence that the data are significantly better explained by a selection model where a 
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heterozygous individual is selectively advantageous over the homozygous individuals. As 

Figure 5 shows, changing Ne from 1,000 to 10,000, or changing t0 from 19,000 BCE to 

15,000 BCE has only a minimal effect on the shape of the likelihood surface and maximum 

likelihood estimate, again supporting that a selective scheme of heterozygote advantage best 

explains the data.

A similar analysis of the MC1R locus can be found in Figures 6 and 7. For this dataset, the 

maximum of the likelihood surface is attained at (s1, s2) = (0.004, 0.0015), and the empirical 

marginal 2.5% and 97.5%-quantiles are [0.001, 0.025] for the heterozygote fitness and 

[−0.009, 0.0135] for the derived allele homozygote fitness. Together with the results shown 

in Figure 7, this suggests that the data at the MC1R locus is also best explained by a 

selection model of heterozygote advantage. However, although the marginal quantiles for 

the homozygote fitness cover s2 = 0, they are rather far apart, so the evidence of 

heterozygote advantage for the MC1R locus is weaker than that for the ASIP locus.

3.3. Computational performance

The running time of our algorithm for computing the likelihood of a given set of population-

scaled parameters is dependent on the dimensions of the truncation M̃ of the infinite matrix 

M given in (2.14). In particular, the time complexity of computing a single likelihood is the 

cost of computing the eigenvalues and eigenvectors of M̃ plus the cost of computing the 

coefficients bk in Theorem 2, where k ∈ {1, …, K}. To compute the eigenvalues and 

eigenvectors of M̃ to high precision, we first used LAPACK2 to compute them to double 

precision, and then refine them by using inverse iteration (Press et al., 2007, Chapter 11.8). 

Each step of the inverse iteration involves solving a linear system with matrix M̃ − μI, where 

μ is an estimate for an eigenvalue of M̃. Since this matrix has bandwidth at most 9, this 

linear system can be solved in O(D) time, where D is the dimension of M̃. By using the 

repeated squaring algorithm for taking powers of the matrices G and 1 − G and exploiting 

the fact that G and 1 − G are tridiagonal matrices, each coefficient bk can be computed in 

O(D2 + D min(D, nk)2 log nk) time, where the first O(D2) term comes from the matrix-

vector multiplications in (2.24).

For the analysis of the ASIP and MC1R datasets reported in Figures 4 and 6, we 

approximated the eigenvalues and eigenvectors of M defined in (2.14) using a 600 × 600 

submatrix. Furthermore, we used the first 590 terms in (2.15) to approximate the 

eigenfunctions, and the dimensions of the vectors of coefficients in (2.19) and (2.20) were 

set to 580. We empirically verified that these cutoffs produced a stable approximation of the 

likelihood. Using these values the computation time for a single point of the grid in Figure 

4(a) was approximately 95 seconds. We adjusted the cutoffs appropriately for the other 

analyses reported in Section 3.

2Available from http://www.netlib.org/lapack/

Steinrücken et al. Page 13

Ann Appl Stat. Author manuscript; available in PMC 2015 January 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.netlib.org/lapack/


4. Discussion

In this paper, we have developed a novel, efficient spectral algorithm to analyze time series 

allele frequency data under a general diploid selection model. We have demonstrated that 

our method can be used to accurately estimate selection parameters on simulated data.

We have also applied our method to investigate loci involved in horse coat coloration. Our 

inferred selection coefficients show that the data are best explained by a heterozygote 

advantage model of balancing selection. As mentioned earlier, Ludwig et al. (2009) 

provided evidence for slightly positive selection at the ASIP locus, assuming a model of 

genic selection (where s1 = s2/2). More precisely, they obtained a point estimate of s2 = 

0.0007 and a 95% confidence interval of [0.0001, 0.0015]. However, using a model of 

selection where the derived allele homozygote is recessive (i.e., s1 = 0), a subsequent re-

analysis (Malaspinas et al., 2012) of the same data found that s2 has a point estimate of 

−0.001 with a 95% confidence interval of [−0.02, 0.051], thus not rejecting neutrality at the 

ASIP locus. In our work, we have allowed our method to explore the two-dimensional 

parameter space of general diploid selection models and presented evidence for a selection 

mode where heterozygous individuals are advantageous over homozygous individuals. It is 

possible that previous analyses have only been able to infer very weak selection acting at the 

ASIP locus because they have restricted the model of selection to certain one-dimensional 

models. Indeed, if we restrict our analysis to a model of genic selection, we get results 

similar to those reported by Ludwig et al. (2009). Our analysis does not conclusively prove 

that individuals that were heterozygous at the ASIP locus had a constant evolutionary 

advantage since 17,000 BCE, because we have ignored the interaction of selection and 

demographic history, epistatic interactions between loci, time-varying models of selection, 

and other factors. However, our results suggest the possibility that some mode of 

heterozygote advantage balancing selection has maintained polymorphism at the ASIP locus 

that is involved in horse coat coloration.

Although we have focused on time series samples taken at a biallelic locus, the 

mathematical framework presented here could be readily extended to handle an arbitrary 

number of alleles using the spectral representation derived by Steinrücken, Wang and Song 

(2013). Further, changes in the population size and selection coefficients could be modeled 

by suitably combining the spectral representations for different population genetic 

parameters at the change points. It is also possible to extend the method to multiple 

populations and to incorporate samples taken from extinct ancestral populations. In light of 

emerging ancient DNA sequence data for ancient hominids (Green et al., 2010; Reich et al., 

2010), such temporal sequence data and inference methods present novel opportunities to 

gain insight into adaptation in humans. For a more adequate modeling of biologically 

relevant scenarios, it is also necessary to incorporate the exchange of migrants into the 

model (Gutenkunst et al., 2009; Lukić, Hey and Chen, 2011), and extend the framework to 

incorporate variation at linked loci. By taking advantage of genetic hitchhiking at closely 

linked sites during the course of selective sweeps, one might be able to further improve the 

inference of selection coefficients.
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Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
In this example, samples of size n1 = 4, n2 = 3, and n3 = 6 (illustrated by the total number of 

circles) are taken at times t1, t2, and t3 respectively. The observed number of derived alleles 

(filled circles) is d1 = 3, d2 = 1, and d3 = 4. The initial time is t0, and the curve indicates a 

particular trajectory of the underlying population allele frequency Y(t) ∈ [0, 1].
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Fig 2. 
Empirical distribution of the maximum likelihood estimates for 200 datasets simulated under 

a model of genic selection, with heterozygote fitness s1 = s/2 and derived allele homozygote 

fitness s2 = s, for each of several different values of selection strength s. The dashed lines 

indicate the true values. (a) The effective population size Ne is 2,500 individuals. (b) Ne = 

10,000 individuals.
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Fig 3. 
Empirical distribution of the maximum likelihood estimates of 200 simulated datasets each 

under different modes of selection of differing strength with Ne = 10,000. The dashed lines 

indicate the true values of s. (a) Genic selection (s1 = s/2, s2 = s) with only five sampling 

time points. (b) Heterozygote advantage model of selection (s1 = s, s2 = 0) with ten sampling 

time points. (c) Recessive selection (s1 = 0, s2 = s) with ten sampling time points. (d) 

Dominant selection (s1 = s, s2 = s) with ten sampling time points.
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Fig 4. 
Analysis of the ASIP locus. (a) Empirical values of the likelihood L(Θ) for temporal samples 

from the ASIP locus where the likelihood is computed over a 21 × 21 grid. The maximum is 

attained at (s1, s2) = (0.0025, 0), indicated by the ‘x’. (b) A joint density plot and marginal 

histograms of the maximum likelihood estimates for 100 bootstrap resampled datasets of the 

temporal data at the ASIP locus. The circles are centered on the grid points at which the 

likelihood function is evaluated, and the sizes of the circles indicate the proportion of 

maximum likelihood estimates that occupy the same grid point. The marginal empirical 

2.5% and 97.5%-quantiles are [0.0025, 0.0235] for the heterozygote fitness s1, and [0, 

0.0045] for the derived allele homozygote fitness s2, as indicated by the dashed box.
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Fig 5. 
Likelihood surfaces for the ASIP dataset under various combinations of Ne ∈ {1 000, 2 500, 

10 000} and t0 ∈ {15 000 BCE, 17 000 BCE, 19 000 BCE}. The respective maxima are 

indicated by an ‘x’.
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Fig 6. 
Analysis of the MC1R locus using the parameters Ne = 2,500 and t0 = 7,000 BCE. (a) 

Likelihood surface for the MC1R locus. The maximum likelihood estimate is at (s1, s2) = 

(0.004, 0.0015) and is indicated by the ‘x’. (b) A joint density plot and marginal histograms 

of the maximum likelihood estimates for 100 bootstrap resampled datasets obtained from the 

MC1R data as described in Section 3.2. The marginal 2.5% and 97.5%-quantiles are [0.001, 

0.025] for the heterozygote fitness s1 and [−0.009, 0.0135] for the derived allele 

homozygote fitness s2, as indicated by the dashed box.
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Fig 7. 
Likelihood surfaces for the MC1R dataset under various combinations of Ne ∈ {1 000, 2 

500, 10 000} and t0 ∈ {5 000 BCE, 7 000 BCE, 9 000 BCE}. The respective maxima are 

indicated by an ‘x’.
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