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ABSTRACT:
Cell motility and invasion initiate metastasis. However, only a subpopulation of 

cancer cells within a tumor will ultimately become invasive. Due to this stochastic 
and transient nature, in an experimental setting, migrating and invading cells need 
to be isolated from the general population in order to study the gene expression 
profiles linked to these processes. This report describes microarray analysis on RNA 
derived from migrated or invaded subpopulations of triple negative breast cancer 
cells in a Transwell set-up, at two different time points during motility and invasion, 
pre-determined as “early” and “late” in real-time kinetic assessments. Invasion- and 
migration-related gene expression signatures were generated through comparison 
with non-invasive cells, remaining at the upper side of the Transwell membranes. 
Late-phase signatures of both invasion and migration indicated poor prognosis in a 
series of breast cancer data sets. Furthermore, evaluation of the genes constituting 
the prognostic invasion-related gene signature revealed Krüppel-like factor 9 (KLF9) 
as a putative suppressor of invasive growth in breast cancer. Next to loss in invasive 
vs non-invasive cell lines, KLF9 also showed significantly lower expression levels 
in the “early” invasive cell population, in several public expression data sets and in 
clinical breast cancer samples when compared to normal tissue. Overexpression of 
EGFP-KLF9 fusion protein significantly altered morphology and blocked invasion and 
growth of MDA-MB-231 cells in vitro. In addition, KLF9 expression correlated inversely 
with mitotic activity in clinical samples, indicating anti-proliferative effects.
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INTRODUCTION

Breast cancer remains the most frequently diagnosed 
malignancy and the primary cause of cancer-related death 
in women globally [1]. The heterogeneity of this disease, 
both inter- and intratumoral, contributes to its morbidity 
and underlines the necessity for personalized prognostics 
and therapeutics. Metastasis marks the final, systemic 
stage of advanced disease and results from a multistep 
process involving detachment of cells from the primary 
tumor, entry into and survival within the vasculature, 
arrest and exit into distant organ parenchyma, followed 
by formation of micrometastatic lesions, eventually 
developing into overt metastasis [2]. As disseminated 
disease accounts for > 90% of cancer mortality [3], there is 
an ongoing need for identification of relevant genes within 
this process. 

Local invasive growth represents an initiating event 
predetermining metastatic spread and consists of a highly 
orchestrated interplay of transcriptional and signaling 
changes [1, 4, 5]. Paradoxically however, it has been 
established that only a small fraction of primary tumor 
cells become invasive and ultimately metastatic [2, 6]. 
Moreover, variability in the locoregional distribution of 
invasiveness within individual primary tumors tends to 
illustrate intratumoral heterogeneity [3, 6-8]. A significant 
proportion of cancer cell motility and invasion is propelled 
by chemotaxis, whereby cells move directionally along 
a gradient of soluble factors [9, 10]. Although modes 
of collective invasion have been recognized to play an 
important role in the biology of tumor progression, an 
important contribution to this process is added by invasive 
behavior generated on a single-cell basis, driven by 
epithelial-to-mesenchymal transition (EMT) [11].

Genome-wide approaches to elucidate gene 
expression patterns can be applied to identify genes 
essentially associated with specific biological phenotypes. 
As cell motility and invasion have a stochastic and 
transient nature, in an experimental setting, migrating 
and invading cells need to be isolated from the general 
population in order to study the gene expression profiles 
linked to these processes [8]. This report describes 
microarray analysis on minute RNA-quantities derived 
from migrated or invaded subpopulations of triple negative 
MDA-MB-231 breast cancer cells in a Transwell set-up 
at two different time points during motility and invasion, 
pre-determined as “early” and “late” in real-time kinetic 
assessments (Fig 1).  Invasion- and migration-related gene 
expression signatures were generated through comparison 
with non-invasive cells, remaining at the upper side of 
the Transwell membranes. Late-phase signatures of both 
invasion and migration indicated poor prognosis in a series 
of breast cancer data sets. Furthermore, evaluation of the 
genes constituting the prognostic invasion-related gene 
signature revealed a differential expression of members 
of the Krüppel-like transcription factor family (KLFs) 

and more specifically, Krüppel-like factor 9 (KLF9) was 
identified as a potential key player in invasive growth of 
breast cancer.

RESULTS

Expression profiling of migratory and invasive 
breast tumor cells

Initially, to determine the time dependent motion 
kinetics of MDA-MB-231 cells, real-time impedance-
based recording of invasion and migration was performed, 
revealing different phases in both processes (Fig 1). 
After selection of two time points (“early” and “late”), 
RNA from invasive and migratory MDA-MB-231 cells 
was isolated from Transwell membranes and hybridized 
onto an Illumina HumanHT-12 v4 Expression beadchip. 
When comparing gene expressions of migrated vs 
reference cells, we identified 943 and 1622 unique and 
differentially expressed genes at the early and late time 
point respectively. For both time points, approximately 
half of the differentially expressed genes were upregulated 
in the motile cell fraction (respectively 47% and 52%). 
Similar analysis of the expression profiles of the 
invasive cells resulted in 3116 and 1060 unique and 
differentially expressed genes in the early and the late 
time points respectively. Again, for both time points, 
approximately half of the differentially expressed genes 
were upregulated in the invasive cell fraction (respectively 
45% and 50%). Lists of differentially expressed genes are 
provided in the supplementary table S1. GSEA and IPA 
suggest that NFkB-signaling, cell death and attenuated 
cell proliferation are characteristics of early migratory 
cells whereas at later time points, migratory cells show 
evidence of active cell proliferation. Invasive cells 
exhibit a remarkably similar and time point-independent 
biological profile characterized by attenuated Interferon 
type 1 signaling and active DNA metabolism. Remarkably, 
diverse pathways of DNA-replicaton and repair, double 
strand break repair and damage response were found to 
be significantly enriched in invasive cells (supplementary 
figure 1). Detailed results, including the top-scoring 
network for each gene list identified by IPA, are provided 
in the supplementary table S2.

Generation of gene signatures for migratory or 
invasive breast cancer cells

Using the nearest shrunken centroid-algorithm, we 
identified gene signatures representing molecular changes 
occurring either early or late during the acquisition of a 
motile or invasive cell phenotype. For each condition, 
the δ-value, the corresponding cross-validated error rate 
and the number of genes retained in the signatures are 
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provided in Table 1. The genes constituting the signatures 
are indicated in the respective lists of differentially 
expressed genes (supplementary table S1). When applying 
the early and late invasion gene signatures onto the gene 
expression profiles from a collection of breast cancer cell 

lines classified as “invasive” or “non-invasive” [12], both 
signatures achieved a sensitivity and specificity of 83% 
and 58% respectively.

Application of gene signatures on breast cancer 
expression series

To evaluate the clinical relevance of the identified 
gene signatures, each of them was applied onto four gene 
expression data sets, comprising for a total of 979 samples 
from patients with breast cancer. Across all signatures, 
about 48% (range: 47% - 49%) of the samples were 
predicted to exhibit migratory or invasive properties. For 
each signature, the percentage of samples with presumed 
migratory or invasive properties for each data set and 
their range of posterior probabilities (i.e. indication of the 
robustness of classification) are provided in supplementary 
table S3. When comparing the classifications obtained for 
each of the signatures, we observed significant agreements 
between the classification results (average OR: 6.602; 
range ORs: 2.601-14.241; all P<0,001) indicating that 
migration and invasion are related biological processes 
in breast cancer biology, independent of the evaluated 
time point. When comparing the classification results to 
the molecular subtypes, we observed augmented posterior 
probability scores for all the signatures in basal-like breast 
tumors and attenuated posterior probability scores in 
luminal A breast tumors (Kruskal-Wallis test; all P<0.001). 
These results were corroborated by correlation analyses, 
comparing the posterior probability scores obtained for 
each signature with PAM50-derived scores for basal-
like, HER2-enriched, luminal A, luminal B and normal-
like breast cancer. In addition, positive correlations were 
observed between the posterior probability scores and 
the PAM50-derived cell proliferation score, particularly 
for the signatures associated with the late time points. 
Results from the correlation analyses are provided in 
supplementary table S3.

We next evaluated the prognostic performance of 
the gene signatures representing molecular changes either 
early or late during the acquisition of a motile or invasive 
cell phenotype. For each data set and each signature 
separately, a Kaplan-Meier analysis and univariate 
Cox regression analysis were performed. For the Cox 
regression analyses, hazard ratios, confidence intervals 

Table 1
Condition Delta ER-LOOCV # genes Test ER Sensitivity Specificity
Early Migration 2.1 0% 271
Late Migration 3.1 0% 211
Early Invasion 2.7 0% 201 37% 83% 58%
Late Invasion 2.8 0% 255 37% 83% 58%

ER Error Rate 
LOOCV Leave-One-Out Cross-Validation

Figure 1: Experimental design for in vitro isolation 
of RNA from migratory/invasive and reference 
populations. A. After 24h of serum starvation, MDA-MB-231 
cells were seeded into Transwell inserts with (invasion) or 
without a layer of Matrigel (migration). At the indicated early 
and late time points, total RNA was isolated after direct lysis of 
the respective cell populations on the membranes. This procedure 
was performed in triplicate for each condition. B. Time point 
selection for RNA-isolation from migratory and invasive cells. 
Dynamic migration (left) and invasion (right) profiles of MDA-
MB-231 cells have been generated by xCELLigence RTCA in 
correlating conditions with the Transwell experiments (panel 
A). Arrowheads indicate selected time points for RNA-isolation 
as described in panel A. Inset shows an integrated plot of the 
migration (blue graph) and invasion (red graph) patterns.
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and P-values are provided in supplementary table S3. In 
addition, Kaplan-Meier plots are provided in Figure 2A 
and forest plots in Figure 2B. In general, patients with 
tumors with enhanced migratory or invasive characteristics 
exhibit a reduced DMFS interval, independent of the 
evaluated time point. Univariate Cox regression analysis 
was then performed on the combined data set of 979 
samples. In this series we observed significantly reduced 
DMFS intervals for patients bearing tumors that exhibit 
characteristics of migratory or invasive breast cancer cells, 
independent of the evaluated time point. Data are provided 
in supplementary table S3. In multivariate analysis, after a 
stepwise backward selection procedure, only the PAM50-
derived scores for luminal A or normal-like tumors 
remained significant in addition to the PAM50-derived 
score for cell proliferation.  

Identification of KLF9 as a potential suppressor 
of invasive growth in breast cancer cells 

The microarray-based gene expression studies 
revealed that KLF9 (also known as BTEB1) was 
significantly downregulated in the invasive subpopulation 
of MDA-MB-231 cells. This finding has been validated 
by RT-qPCR (Supplementary Fig 2) and possibly implies 
a suppressing capacity on breast cancer cell invasiveness. 
Therefore, we screened a panel of breast cancer cell lines 
for KLF9-expression using RT-qPCR. It was found that 
non-invasive cell lines (MCF-7, SKBR-3, T47D, ZR-75-1, 
CAMA-1 and MDA-MB-361) showed significantly higher 
levels of KLF9 mRNA when compared to invasive cell 
lines (MDA-MB-231 and MDA-MB-468) (Fig 3). 

Figure 2: Gene signatures from migratory and invasive breast cancer cells indicate reduced DMFS. A. Kaplan-Meier 
survival analysis for four different gene signatures on four breast cancer gene expression datasets. Columns 1 – 2 represent the early 
and late migration signature, columns 3 – 4 the early and late invasion signature respectively. Rows 1 – 4 represent datasets GSE7390, 
GSE2034, GSE11121 and NKI295 respectively. Tumor samples have been dichotomized according to the degree of correlation with the 
respective signatures: < 50% (black graph) and > 50% (red graph). P-values are depicted on each plot. B. For the gene signatures related 
to early migration, late migration, early invasion and late invasion forest plots were generated depicting the associations of each signature 
with DMFS per data set. The X-axis represent the hazard ratio obtained through cox regression analysis. The black square indicates the 
magnitude of the hazard ratio and is proportional to the sample size in the corresponding study. The grey line indicates the 95% confidence 
interval. The black diamond indicates a summary value estimated through meta-analysis using a random effects model. The width of the 
diamond is proportional to the 95% confidence interval. The dashed vertical grey line indicates a hazard ratio of 1, meaning no association 
with DMFS. Confidence intervals crossing this grey line represent non-significant hazard ratios.    
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To better address its role in breast cancer cell 
motility and invasion, KLF9 was overexpressed in MDA-
MB-231 cells by transient introduction of a pEGFP-KLF9 
fusion construct and a pEGFP plasmid in parallel serving 
as control. Expression was confirmed by both RT-qPCR, 
immunofluorescence and Western blot (Fig 4A, B). In 
addition, it must be noted that expression of the EGFP-
KLF9 fusion protein was strictly confined to the nucleus 
whereas EGFP only (EV) was localized in nuclear and 
cytosolic areas (Fig 4C), indicating intact functionality of 
the fusion protein.

Introduction of EGFP-KLF9 induced a 
morphological switch in MDA-MB-231 cells after 
24h, leading to reduced spreading and the formation of 
dense zones of cortical actin (Fig 4C). As shown, MDA-
MB-231/EGFP cells maintained the wild-type spindle-
shaped morphology. This finding has been confirmed 
after 16 days of culturing in complete growth medium 
containing G418 selection antibiotic hereby enriching for 
MDA-MB-231/EGFP-KLF9 resp. MDA-MB-231/EGFP 
cell populations (Fig 4D).

Putative involvement of KLF9 in breast cancer cell 
invasion was assessed in vitro by conducting a series of 
Transwell experiments on transiently transfected MDA-
MB-231 cells after 24h. MDA-MB-231/EGFP-KLF9 cells 
showed a significantly decreased invasive potential when 
compared to MDA-MB-231/EGFP (P < 0.001, Mann-
Whitney U) (Fig 4E). 

KLF9 is downregulated in breast tumor tissue

To investigate the clinical relevance of the observed 
in vitro effects, the expression of KLF9 was assessed in 
normal human breast tissue and breast cancer. All breast 
cancer samples (N=22, mean age: 59 ± 13) showed a 
significantly decreased expression of KLF9 in comparison 
with normal breast tissue (N=8, mean age: 45 ± 16) (Fig 
5A). 

Oncomine (www.oncomine.com, Oncomine 
Research Premium Edition) [13] was searched for KLF9 in 
several expression data sets containing mixed normal and 
cancer samples. Next to loss of expression in 6 out of 16 
cancer types (Supplementary figure 3A), KLF9 was shown 
to be significantly downregulated in breast carcinoma 
when compared to normal breast epithelium, applying P 
≤ 0.01 and fold change ≥ 2 as thresholds (Supplementary 
figure 3B-D, Supplementary table S4 ) ([14, 15] and 
TCGA Research Network). This was also found in data 
sets comparing invasive breast carcinoma with normal 
breast tissue (Supplementary figure 3E-F, Supplementary 
table S4) ([16] and TCGA Research Network). There 
was no correlation of KLF9-expression with ER-, PR- 
or HER2-status, implying that loss of expression of this 
transcription factor is a receptor-independent event in the 
malignant transformation of mammary epithelial cells. 

Additionally, an inverse correlation was found 
between KLF9-expression and the Mitotic Activity Index 
(MAI) in the series of breast cancer samples (Fig 5B), 
implying an anti-proliferative effect of KLF9. In vitro, 
upregulation of KLF9 expression was shown in MDA-
MB-231 cells in a confluency-dependent manner with 
limited expression in subconfluent cultures (60% - 80%) 
and a 3-fold rise of KLF9 mRNA in confluent cultures, 
corroborating the findings in clinical samples (Fig 5C).

DISCUSSION

This report describes the assessment of gene 
expression characteristics associated with breast 
cancer cells in two different phases during migration 
and invasion. It has become clear that a high degree of 
heterogeneity exists both between (inter-tumoral) and 
within (intra-tumoral) individual breast tumors [17]. It has 
already been established that, within a clinically invasive 
tumor, not all tumor cells will become invasive and that 
invasive behavior is regulated spatio-temporally by the 
microenvironment [10]. The molecular characterization 
of cancer cell migration and invasion by genome-wide 
gene expression profiling is largely impeded by these 
features. When obtaining microarray-based profiles of 
cells exposed to chemotactic cues, the expression profile 
of the motile / invasive subpopulation of interest is masked 
by non-responsive cells constituting the majority of the 
cell population [6]. The triple negative MDA-MB-231 

Figure 3: KLF9 is downregulated in invasive cell lines. 
Non-invasive breast cancer cell lines show higher expression 
levels of KLF9 mRNA than invasive cell lines. Results from 
Transwell Matrigel invasion experiments are shown in red (left 
axis), accompanied by micrographs of representative crystal 
violet-stained membranes (obj. 20X) per cell line mentioned 
below. All experiments have been performed in technical and 
biological triplicates. Normalized relative expression levels 
for KLF9 as measured by RT-qPCR are shown in green (right 
axis). All RT-qPCR experiments have been performed in at least 
technical duplicates and biological triplicates.  All results shown 
are means + SD.
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Figure 4: Forced expression of KLF9 alters cell morphology and impairs breast cancer cell invasion.
A. Normalized relative expression levels of KLF9 in transiently transfected MDA-MB-231/KLF9 and MDA-MB-231/EV cells 24h post-
transfection. Inset shows detailed results for MDA-MB-231/EV, mock-transfected and wild-type MDA-MB-231. Results shown are means 
± SD of three replicates. 
B. Western blot analysis for expression of EGFP-KLF9 fusion protein in MDA-MB-231 cells, transfected with either KLF9 or EV. Lysates 
were prepared 24h after transfection. 
C. F-actin staining of MDA-MB-231/KLF9 and EV using phalloidin-TRITC. EV-transfected cells reconstitute the spindle-like morphology 
of wild-type MDA-MB-231 cells. EV shows both nuclear and cytosolic localization (EGFP, green). Phalloidin-stained actin (red) indicates 
changes in cell morphology in KLF9- and EV-expressing cells. Bars: 50µm.
D. Phase contrast (left column) and fluorescence images (right column) of MDA-MB-231/KLF9 (top row) and EV (bottom row) 
respectively. Pictures were taken after 16 days of culturing in the presence of G418 selection antibiotic for enrichment of transfected cells. 
KLF9-expressing MDA-MB-231 cells (top row) are incapable of reconstituting the wild-type morphology. Arrows indicate examples of 
cells expressing KLF9. Bars: 100µm (top row) and 200µm (bottom row).
E. Transwell-based Matrigel invasion experiments revealed impairment of MDA-MB-231 invasion in the presence of KLF9. Results 
shown are mean cell counts ± SD from three independent experiments in at least experimental triplicates. *** P < 0.001 (Mann-Whitney U)  



Oncoscience75www.impactjournals.com/oncoscience

cell line is able to spontaneously metastasize in orthotopic 
mice models and, therefore, represents a suitable model 
to detect gene expression changes associated with the 
early steps of metastatic dissemination [18]. In the 
present study, a Transwell-based design was adopted in 
order to capture the gene expression characteristics of the 
migrated/invaded subpopulation, physically separated 
from the non-migratory / non-invasive majority of cells. 
Furthermore, two time points have been selected to 
distinguish gene expression patterns in an early and a late 
phase and invasion and migration have been regarded as 
distinct processes in vitro. Differential gene expression 
and pathway analysis revealed that the invaded and 
migrated subpopulations were, next to processes of cell 
movement, highly enriched in replicative, inflammatory 
and developmental programs. In addition, it was found 
that both invaded and migrated subpopulations showed 
significantly upregulated DNA damage repair activity 
(supplementary fig 1). These findings correlate with results 
of a recent study with a similar rationale, conducted in vivo 
using the same cell line [18]. Moreover, in concordance 
with Patsialou et al., invaded cells showed increased 

TGFß-signaling in the early phase, without significant 
detection of TGFß itself and upregulation of CDC25A, a 
gene associated with tumorigenesis [19]. 

The gene expression signatures, corresponding with 
migrated and invaded cells in the late phase, consequently 
predicted reduced DMFS for the four expression 
datasets, comprising in total nearby 1000 breast tumors. 
The positive correlations with the PAM50-derived cell 
proliferation score obtained for the late-phase signatures, 
however, indicate proliferation to remain a driver in the 
prognostic ability, even though motility and invasion were 
the experimental foci in this study.

Nevertheless, the identification of KLF9 and the 
initial results showing its inhibitory effect on cancer 
cell invasion, corroborated by its differential expression 
between invasive and non-invasive cell lines, imply 
interactions between proliferation- and invasion-mediating 
programs. KLFs form a family of highly conserved 
zinc finger transcription factors with versatile roles in 
proliferation, differentiation and development [20]. Apart 
from KLF9, our data also demonstrate downregulation of 
KLF4 and KLF6 in the early invaded and late migrated 
subpopulations respectively. To date, KLF4 is the most 
extensively described member of the family, not in the 
least for its contribution to pluripotent stem cell induction 
[21]. In cancer biology, the effect of KLFs has been found 
to be context-dependent, with both tumor suppressing and 
oncogenic roles reported for breast cancer [22-24]. This 
duality could, at least partly, be explained through altered 
genetic backgrounds appearing in transforming epithelial 
cells [25]. Altogether, the most recent reports point 
towards KLF4 as a tumor suppressor, being downregulated 
in human breast cancer samples. Additionally, a promoting 
interaction between KLF4 and CDH1 (E-cadherin) has 
been described, hereby driving cancer cells into an EMT-
program through loss of KLF4 [23]. A similar effect was 
found to be exerted through downregulation of KLF17 
[26]. KLF6 has been reported as a tumor suppressor in 
prostate cancer [27] and recently a splice variant thereof, 
KLF6-SV1, was identified as an oncogene in breast 
cancer with increased expression in breast tumors [28]. 
Our findings support these results, showing loss of 
expression of these KLFs in migratory / invasive breast 
cancer cells, and illustrate the complexity of their role in 
tumor development and progression. Reports on the role 
of KLF9 are thus far limited to colon and endometrial 
carcinoma. Reduced expression of KLF9 has been shown 
on a transcriptional as well as protein level in colorectal 
cancer samples when compared to paired normal mucosa 
[29]. Similarly, endometrial carcinomas also demonstrated 
lower levels of KLF9 when normal endometrium and stage 
I disease were compared with stage II – IV carcinomas. In 
this tumor type, downstream repression of regulators of 
the actin cytoskeleton has been detected by microarray in 
modified cell lines overexpressing KLF9 [30]. Our results 
provide the first evidence of KLF9 as a suppressor of 

Figure 5: KLF9 is downregulated in human breast 
cancer.
A. Scatter plot depicting normalized relative expression levels of 
KLF9 as detected by RT-qPCR in normal human breast samples 
(N=8) and breast cancer (N=22). Horizontal lines indicate the 
mean level of expression per group. *** P < 0.001.
B. Correlation plot showing available mitotic activity indices 
(MAI), as assessed at diagnosis for each patient (N=18), in 
relationship to the normalized expression of KLF9 per sample.
C. Normalized relative expression levels of KLF9, as detected 
by RT-qPCR in triplicates, in wild-type MDA-MB-231 cells at 
different degrees of confluency in culture, illustrated by phase 
contrast pictures below each degree. Bars: 1000µm.
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invasive growth in breast carcinoma. The loss of KLF9, as 
found in several Oncomine breast data sets and in a series 
of breast samples from our institution, confirm the clinical 
relevance of this transcription factor in human breast 
cancer. The inverse relationship of KLF9 with mitotic 
activity and the contact inhibition-driven upregulation 
of KLF9 in culture, imply a role in cell cycle regulation, 
which has also been demonstrated for KLF4 [31]. Whether 
the reduced expression of KLF9 in invaded MDA-MB-231 
cells in comparison with their non-invasive counterparts 
is an effect of active transcriptional or translational 
repression or due to the presence of a “KLF9low”-
subpopulation within the general cell population remains 
to be investigated.

Our data set derived from invaded breast cancer 
cells also revealed a significant downregulation of E74-
like factor 3 (ELF3). ELF5, a transcriptional regulator 
closely related to ELF3, has recently been identified as 
a suppressor of EMT in MDA-MB-231 cells by direct 
repression of SNAI2. In addition, ELF5-expression was 
strongly reduced in breast cancer samples [32].  Also 
recently, leukemia inhibitory factor receptor (LIFR), a 
gene present in our prognostic invasion signature, was 
found to exert anti-metastatic effects through activation 
of the Hippo pathway and functional inactivation of the 
transcriptional co-activator YAP. A significant association 
between loss of LIFR and poor prognosis in breast cancer 
has been discovered as well [33]. Indeed, our data from 
isolated invaded MDA-MB-231 cells reveal a significant 
downregulation of LIFR, in support of these recent results.   

In conclusion, our data provide novel insights on 
cell migration and invasion as separate and initiating 
processes in the invasion-metastasis cascade. The devised 
in vitro experimental design has yielded prognostic gene 
signatures indicating reduced DMFS, identified KLF9 as 
a novel potential invasive growth suppressor in breast 
cancer and generated results in concordance with previous 
studies. Gene expression profiling has indeed revealed 
migration and invasion as highly related, yet different 
processes. Furthermore, according to our results, the 
role of proliferation, DNA damage repair mechanisms 
and cell motility programs should not be considered 
as mutually exclusive. We believe that the consistent 
subtype-independent downregulation of KLF9 in patient 
material confirms the relevance of this factor in human 
breast cancer. Finally, the complex interplay of KLF9 with 
its related family members in breast cancer, and epithelial 
cancer biology in general, still remains largely elusive and 
needs to be thoroughly investigated in order to identify 
downstream genes as potential therapeutic targets or 
mediators of metastatic progression.

MATERIALS AND METHODS

Cell culture

The MDA-MB-231, MCF-7, CAMA-1 and ZR-75-1 
cells were cultured in RPMI1640, MDA-MB-468 cells in 
DMEM/F12, MDA-MB-361 and T47D cells in DMEM 
and SKBR-3 cells in McCoy’s 5A media, all supplemented 
with 10% fetal bovine serum (FBS), 1% L-glutamine, 
1% penicillin/streptomycin and 1% sodium pyruvate. 
All cell culture reagents were purchased from Invitrogen 
(Life Technologies, USA) unless mentioned otherwise. 
Cell lines were maintained at 37°C and 5% CO2/95% air 
in a humidified incubator. MDA-MB-361 and CAMA-1 
were kindly provided by Dr. Maurice PHM Jansen and 
Dr. John WM Martens (Department of Medical Oncology, 
Erasmus University Medical Center, Daniel den Hoed 
Cancer Center, Rotterdam, The Netherlands). Although 
the MDA-MB-231, MDA-MB-468, MCF-7 and SKBR-
3 breast cancer cell lines have been purchased from the 
American Type Culture Collection (ATCC, USA) (http://
www.lgcstandards-atcc.org), all cell lines have been 
validated in-house by short tandem repeat (STR) profiling 
using the Cell ID™ System (Promega, USA) according to 
the manufacturer’s instructions. 

xCELLigence real-time cell analysis (RTCA)

Real-time cell migration and invasion experiments 
were performed on an xCELLigence RTCA DP instrument 
(ACEA Biosciences, USA) as described previously [34]. 
Briefly, 1.6x105 MDA-MB-231 cells were seeded on top of 
a solidified Matrigel layer (10% v/v) in kinetic correlation 
with 4x105 cells on 20% (v/v) Matrigel in a conventional 
Transwell system [34]. Cells were allowed to invade 
during 50h with kinetic measurements programmed every 
15 minutes to display dynamic invasive behavior patterns 
at the above mentioned cell and Matrigel densities. Cell 
migration experiments were carried out as described 
above, without application of Matrigel.

Transwell invasion and migration assay

Migration and invasion set-up for RNA-isolation of 
distinct cell populations

In vitro invasion experiments have been performed 
using a conventional 24-well Transwell system 
(Corning®), essentially as described previously [34], 
with 4x105 cells seeded on top of a 20% (v/v) Matrigel 
layer. Complete medium was added to the wells as 
chemoattractant and the Transwell plates were incubated 
at 37°C/5% CO2 during 20h (first timewindow) and 28h 
(second timewindow), as predetermined in real-time 
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invasion assessments. 
An identical protocol as the above was followed 

for migration experiments, without application of an 
extracellular matrix substitute. Transwell migration plates 
were incubated during 6h30’ (first timewindow) and 24h 
(second timewindow). For both invasion and migration, 
the respective timeframes of incubation have immediately 
been followed by RNA-isolation.
Migration and invasion assessment of wild-type and 
transfected cell lines

Cell line Transwell migration and invasion 
experiments were performed essentially as described 
above with the following specifications for transfected 
cell lines: 24h after transfection, 105 cells were seeded 
in the inserts after 4h serum starvation. Both invasion 
and migration were quantified after 24h by cell counting 
in at least three different fields per membrane at 
10X-magnification. Each condition was performed in 
technical and biological triplicates.

RNA-isolation from invasive and migratory 
subpopulations and microarray hybridization

Total RNA was extracted using the RNAqueous™ 
Micro Kit (Life Technologies, USA) for nucleic acid 
extraction from small cell populations. All cell populations 
of interest were lysed directly on the membranes 
without prior enzymatic detachment. Isolated RNA was 
immediately tested on yield, purity and quality using 
a NanoDrop® ND-1000 (Thermo Scientific, USA) 
and a BioAnalyzer 2100 (Agilent Technologies, USA) 
device. Samples were stored at -80°C and only samples 
with absorption (A) ratios A260/A280 ≥ 1.8 and A260/A230 
≥ 1.5 (NanoDrop®) and RNA Integrity Number (RIN) 
> 6 (BioAnalyzer) were considered for microarray 
hybridization.  

Prior to hybridization, RNA samples were amplified 
using the Illumina Totalprep RNA Amplification kit (Life 
Technologies, USA). Subsequently, single-stranded cRNA 
with incorporated biotin-UTP nucleotides was produced 
by an in vitro transcription reaction and hybridized onto 
an Illumina Human HT-12 v4 gene expression BeadChip. 
Three biological replicates per time point per biological 
state were loaded, totalling 24 sample hybridizations 
on two chips. After overnight sample hybridization, 
subsequent washing steps and sample labeling, intensity 
values were read on an Illumina iScan equipped with iScan 
control software (v. 3.3.29). All microarray expression 
data have been deposited in the Gene Expression Omnibus 
database (http://www.ncbi.nlm.nih.gov/geo/) under the 
accession number GSE54465.

RNA-isolation from cell lines and clinical samples

Cell line total RNA was extracted using the 
TRIzol® method (Life Technologies, USA) after lysis of 
subconfluent cultures in 25cm2 culture flasks (T25). As 
mentioned above, yield and purity of the isolates were 
tested using a NanoDrop® system and stored at -80°C.

From every clinical sample, 6-12 10µm-sections 
were made and stored in cryotubes (-80°C) for RNA-
extraction. RNA was extracted from the samples using the 
RNeasy Lipid Tissue Mini Kit (Qiagen, Germany).

Microarray data analysis

All microarray data analysis procedures were 
performed using BioConductor in R (v 2.13.0). Raw 
intensity reading, log2-transformation, summarization, 
quantile normalization and quality controls were 
performed using the methods implemented in the 
BioConductor package “beadarray” (v 2.8.1) [35]. 
Normalized expression data were further analysed using 
the package “limma” (v 3.14.4) [36] to identify lists of 
differentially expressed genes between the migratory 
or invasive cell populations on the one hand and their 
respective controls on the other hand. Lists of differentially 
expressed genes were then functionally annotated by 
analyzing them for enriched Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
categories through hypergeometric Gene Set Enrichment 
Analysis (GSEA). In addition, Ingenuity Pathway Analysis 
(IPA) software was used for similar purposes. For all 
analyses, correction for multiple testing was performed 
using the Benjamini and Hochberg step-up false discovery 
rate (FDR) controlling procedure and adjusted P-values 
inferior to 0.1 were considered significant. 

To identify gene signatures (N=4) representing 
molecular changes occurring either early or late during 
the acquisition of a motile or invasive cell phenotype, the 
nearest shrunken centroid-algorithm, implemented in the 
BioConductor-package Prediction Analysis of Microarrays 
for R (PAMR), was applied. Using Leave-One-Out Cross-
validation (LOOCV), a δ-value that corresponds to the 
lowest cross-validated error rate, was selected. This 
δ-value defines a list of predictor genes for which the 
minimal expression difference between the invasive or 
motile cell populations and their controls equals δ. The 
thus identified lists of predictor genes determine centroids 
that can be used to classify patient samples according to 
the presence or absence of motile or invasive cancer cell 
characteristics. 

To determine the clinical relevance of our gene 
signatures, we analyzed four publicly available gene 
expression series from patients with breast cancer with 
documented follow-up in terms of distant metastasis-
free survival (DMFS; GSE2034 [37], GSE7390 [38], 
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GSE11121 [39] and NKI295 [40]). To ensure proper 
classification performance, we used the “limma” package 
to normalize each data set. Sample classification was 
then performed by comparing the signature-specific 
expression profiles of each sample with each of the 
identified centroids. In this process, each sample is 
assigned a posterior class probability, a value ranging 
from 0 to 1 indicating the strength of the classification. In 
addition, each sample in these patient series was classified 
according to the molecular subtypes using the PAM50-
algorithm [41]. 

Survival analysis

To evaluate the prognostic performance of the 
gene signatures, we performed Kaplan-Meier and Cox 
regression analysis using DMFS as endpoint. All analyses 
were performed using the R-package “survival” (v 
2.36.5). Kaplan-Meier analysis was performed using the 
dichotomized classification results (i.e. invasive/non-
invasive or motile/non-motile). Univariate Cox regression 
analysis was performed using the posterior class 
probabilities for each of the identified gene signatures and 
all parameters (i.e. molecular subtypes and the measures 
for cell proliferation, ER-activation and ErbB2-activation) 
provided by the PAM50-algorithm. Multivariate Cox 
regression analysis was then performed for each variable 
identified as significant in the univariate setting. 

Clinical samples

The clinical breast tumor and reference normal 
tissue samples used in this publication were provided 
by the UZA tumor bank, Antwerp University Hospital, 
Belgium. The samples were stored at -80°C. In each case 
one 8µm-section was made, using a cryotome (Thermo 
Scientific, USA), which was HE stained (Thermo 
Scientific, USA). All sample diagnoses were validated by 
a trained pathologist, considering only samples without 
necrosis and, for tumor samples, a tumor/stroma ration 
of minimum 40%. The Mitotic Activity Index (MAI) was 
calculated as the average number of mitotic spindles per 
mm2, counted in 10 different high-power fields.

cDNA synthesis and real-time quantitative PCR

Microarray validation

Reverse transcription quantitative PCR (RT-
qPCR) was performed on total RNA in a single reaction 
using the Power SYBR Green RNA-To-CT 1-Step 
kit (Life Technologies, USA) on a LightCycler 480 
instrument (Roche Applied Science, Germany). Primers 
were designed using QuantPrime software [42] and 
RTPrimerDB (http://www.rtprimerdb.org) [43] and 

have been obtained from Integrated DNA Technologies 
(USA) (supplementary table S5). All reactions have been 
performed in triplicates in 384-well plates with 2µL RNA 
(prediluted to 15ng/µL) as input in a total reaction volume 
of 10µL, further comprising 5µL Power SYBR Green 
RT-PCR Mix (2x) (Life Technologies, USA), 0.08µL RT 
Enzyme Mix (125x) (Life Technologies, USA) and 200nM 
of each primer (final concentration). Normalized relative 
gene expression values were calculated using qBasePLUS 
software version 1.5 (Biogazelle) [44]. 
Cell line expression levels of KLF9

All reactions have been performed following the 
above described protocol using identical primer pairs. 
SDHA, RPL13A and HMBS were identified as stably 
expressed across all analyzed cell lines and have been used 
as reference genes to determine relative KLF9 expression 
levels in triplicate.
Expression levels of KLF9 in breast tumor tissue

All RT-qPCR experiments were performed as 
indicated above. SF3A1 and YWHAZ were identified as 
being stably expressed in tumor as well as normal tissue 
samples. Expression levels of KLF9 were calculated using 
qBasePLUS v1.5.

Molecular cloning and transfection

The ORF of WT KLF9 was cloned in a pEGFP-N1 
backbone, with subsequent bi-directional sequencing on an 
ABI 3130xL (Life Technologies, USA). Next, expression 
vectors were electroporated into MDA-MB-231 cells using 
a Nucleofector II device (Lonza, Switzerland). Briefly, 106 
cells were collected from a subconfluent (80%) culture, 
electroporated with plasmid DNA and seeded into 6-well 
plates. After overnight settlement, growth medium was 
replaced and experiments initiated after 24h. 

To obtain stable cell populations, enrichment for 
EGFP-KLF9 or EGFP expressing cells was obtained 
through addition of G418 antibiotic (800µg/mL, Life 
Technologies, USA) to the growth medium starting 24h 
after transfection and renewed every 48h. 

Fluorescence microscopy

Cells were fixed in 4% paraformaldehyde, 
permeabilized in 0.1% Triton-X-100, blocked in 1% BSA, 
stained with phalloidin-TRITC (Sigma Aldrich, USA) and 
mounted onto glass slides using Vectashield® HardSet™ 
Mounting Medium (Vector Laboratories, USA) containing 
DAPI as nuclear counterstain. Visualization and image 
capturing have been performed on an EVOS® FL Cell 
Imaging System (Life Technologies, USA). 
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Western blot

Whole-cell lysates have been prepared using RIPA 
buffer containing protease-inhibitors (Roche Diagnostics 
GmbH, Germany). Protein concentration was determined 
using the BCA-200 protein assay kit (Thermo Scientific, 
Wilmington, DE, USA). Twenty µg of proteins were 
loaded and separated by SDS-PAGE (Life Technologies, 
USA) on a 12% gel. Blots were incubated overnight 
with primary antibodies against KLF9 (Santa Cruz 
Biotechnology, USA) or EGFP (Sigma-Aldrich, USA). 
After incubation with a secondary IgG-HRP antibody 
(Santa Cruz Biotechnology, USA) and addition of HRP-
substrate (Lonza, Switzerland), proteins were visualized 
by chemiluminiscence. 

Statistical analysis

All statistical analyses, except those related 
to microarray-based gene expression analyses, were 
performed in SPSS 21.0. A P-value below 0.05 was 
considered to be statistically significant. * P<0.05, ** 
P<0.01, *** P<0.001

Detailed methods and associated references 
are available in the Supplementary Information 
(Supplementary methods). 
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