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Abstract

Aims—Nanoparticle conjugates have the potential for delivering siRNA, splice-shifting 

oligomers or nucleic acid vaccines, and can be applicable to anticancer therapeutics. This article 

compares tripartite conjugates with gold nanoparticles or synthetic methoxypoly(ethylene glycol)-

block-polyamidoamine dendrimers.

Materials & methods—Interactions with model liposomes of a 1:1 molar ratio of 

tripalmitin:cholesterol or phospholipid:cholesterol were investigated by high-throughput 

absorbance, as well as fluorescence difference and cellular luminescence assays.

Results—Spectral differences and dynamic light-scattering spectroscopy shifts demonstrated the 

interaction of conjugates with liposomes. Biological activity was demonstrated by upregulation of 

gene expression via splice-shifting oligomers, delivery of anti-B-Raf siRNA in cultured human 

cancer cells or tuberculosis antigen 85B plasmid expression vector in a coculture model of antigen 

presentation.

Conclusion—The data suggests that gold nanoparticles and methoxypoly(ethylene glycol)-

block-polyamidoamine dendrimer nanoconjugates may have potential for binding, stabilization 

and delivery of splice-shifting oligomers, siRNA and nucleic acid vaccines for preclinical trials.
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Absorbance difference spectroscopy (ADS) and fluorescence difference spectroscopy have 

been applied to characterize the cell-penetrating basic peptide, penatratin, in its penetration 

of a model liposome [1]. High-throughput screening (HTS) is one of the first steps in our 

drug-delivery research because it is essential to be able to characterize an interaction 

between nanoparticles and nucleic acids. Such an interaction would be evident in HTS 

techniques, including ADS and fluorescence difference spectroscopy, and the data can be 

presented in a quantitative manner, making them desirable techniques. The complexity of 

HTS can vary from innovative and complex technologies to ordinary technologies and 

simple assays. Despite its complexity, the use of HTS is advantageous, as it reduces the time 

and labor to perform assays and provides several data hits at one time [2]. Inthis study, ADS 

and fluorescence difference spectroscopy are applied for the first time in high throughput 

towards the delivery of splice-shifting oligomers (SSOs), siRNA, nucleic acid and protein-

based biomolecular nanoconjugates.

The cell membrane is a limiting barrier that a nanoconjugate-bearing therapeutic nucleic 

acid must surmount for effective delivery. Gold nanoparticles (GNPs) are known to enter 

into the cellular membrane and are used as a model system because their physical and 

chemical properties can be easily manipulated [3]. GNPs can then bind nucleic acids, such 

as DNA or RNA, with the assistance of a delivery-enhancing vehicle such as protamine 

(Prot) or polyamidoamine (PAMAM) dendrimer [4]. The cationic peptide Prot is known for 

its powerful DNA condensation, cell membrane-penetrating and nuclear-trafficking 

properties [5,6]. Similar to Prot, PAMAM is a surface-active subnanomaterial, and 

approaches for delivering anticancer drugs using these polymeric molecules are of 

widespread interest. Physical characteristics of dendrimers, such as their monodispersity, 

water solubility, encapsulation ability and their large number of functionalizable peripheral 

groups, make them appropriate candidates for drug-delivery vehicles [7].

The process of PEGylation involves the modification of a protein or peptide by the linking 

of one or more poly(ethylene glycol) (PEG) chains. These molecules have several additional 

advantages as drug-delivery agents because they have a prolonged resistance in the body, 

decreased degradation by enzymes and a reduction of protein immunogenicity [8]. In this 

study, generation (G)3 methoxypoly(ethylene glycol) (mPEG)–PAMAM dendrimer is used 

as a delivery agent, along with Prot, as recent studies have shown that G3 mPEG–PAMAM 

can bind human serum albumin [9].

Multifunctional nanoparticles were recently tested in humans for the delivery of siRNA [10]. 

Delivery of nucleic acid vaccines or the dsRNA, polyinosine:polycytosine, have also shown 

promising preclinical immunogenic activity [11–13]. SSOs are another potential sequence-

specific therapeutic strategy owing to their ability to correct errors in splicing, which are 

molecular-level aberrances underlying cancer and other human diseases [14,15].
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The importance of this research and the underlying problem that was addressed is that 

nanoconjugates must interact with and penetrate the cell membrane. This study addresses 

this by HTS, as well as fluorescence difference and luminescence assays, to better enhance 

the assessment of interaction and delivery. To demonstrate preclinical potential, GNP 

conjugates with Prot or mPEG–PAMAM dendrimers were constructed to contain specific 

nucleic acid sequences of either tuberculosis antigen 85B (Ag85B) or B-Raf siRNA; two 

important molecular targets against tubercolosis and cancer, respectively [16,17].

Materials & methods

The anti-B-Raf siRNA and 705 SSO sequences used have previously been described [18] 

and were generously provided by the laboratories of R Juliano and R Kole at the University 

of North Carolina-Chapel Hill (NC, USA) and Lineberger Cancer Center core facility (NC, 

USA), respectively. SSOs and siRNA were dissolved in sterile water at 1 μM stock 

concentration prior to use. Prot, λ-phage DNA and tRNAphe used in the preparation of 

DNA:Prot or RNA:Prot (RNP) particle suspensions were obtained from Sigma-Aldrich 

(MO, USA) and dissolved in double-distilled deionized water at 0.5–1.0 mg/ml and stored 

frozen until use. Lipofectamine™ was obtained from Invitrogen (CA, USA). Bromophenol 

blue (BPB), fast green and Crocein Scarlet (acid red 73) were obtained from Matheson 

Coleman & Bell Laboratory Chemicals, Wilshire Chemical Co. Inc., in CA, USA. Amaranth 

red was obtained from Fisher Scientific (DE, USA). Trypan red and chromotrope 2R were 

obtained from Allied Chemical and Dye Corporation (NY, USA). All other dyes, including 

the alizarins, brilliant cresyl blue and Biebrich scarlet, were obtained from Allied Chemical 

and Dye Corporation. All dyes were used at a stock concentration of 1 mg/ml dissolved in 

double-distilled deionized water. GNPs were synthesized chemically or by pulsed laser 

deposition, by standard methodologiesin the laboratories of our collaborators A Wanekaya 

and K Ghosh in the Chemistry and Physics, Astronomy and Materials Science departments 

at Missouri State University (MO, USA). Characterization of these nanoparticles can be 

found in [19]. PEG-dendrimer was synthesized and purified as described in [20,21]. The 

synthesis of the PAMAM dendrimer block onto a mPEG-NH2 core consisted of two steps 

alternately repeated to achieve G4. In the first step, exhaustive Michael addition of methyl 

acrylate to the primary amine terminal groups of mPEG resulted in a tertiary amine branch 

point with methyl ester terminal groups. In the second step, reaction of methyl ester terminal 

groups with a large excess of ethylenediamine resulted in the primary amine terminal 

groups. In preparation of each generation, excess reactants (methyl acrylate and 

ethylenediamine) were removed under vacuum (p < 0.1 mmHg) after completion of the 

reactions. In addition, precipitation of each generation of the polymers in a large excess of 

ethyl ether resulted in separation of trace amounts of the reactants. Every generation of the 

polymers, including G4 mPEG–PAMAM, was analyzed by proton nuclear magnetic 

resonance spectroscopy. For example, the proton nuclear magnetic resonance spectrum of 

G4 mPEG–PAMAM in D2O was consistent with it being the only species present. 

Furthermore, the ratio of the terminal methoxy group of PEG (singlet, chemical shift [δ] = 

3.38 ppm) to the protons next to -CH2CONH (multiplet, δ = 2.43 ppm) was 3:60 (or 1:20) as 

required by its structure. In addition, gel permeation chromatography analysis of the 

polymer further confirmed the purity of the product.
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pDNA expression vector

Ag85 DNA was isolated and amplified from Mycobacterium tuberculosis strain H37Rv 

genomic DNA (kindly supplied by M Bernstein, University of Noth Carolina-Chapel Hill, 

Department of Microbiology and Immunology) using a PCR with primers that the authors 

designed. The resulting antigen–DNA PCR product was then cloned into a NT-GFP Fusion 

TOPO® Expression vector (Invitrogen) carrying ampicillin resistance. Subsequently, the 

vector construct was utilized to transform TOP10 Escherichia coli. Ampicillin resistance 

was used as a selective screen on lysogeny broth agar plates containing 100 μg/ml ampicillin 

to verify transformation of E. coli. Surviving colonies were selected after 24 h and utilized 

to inoculate 2 ml 100 μg/ml ampicillin lysogeny broth liquid cultures. Plasmid isolation was 

performed on 16 pelleted liquid culture colonies. Samples from each colony were digested 

overnight at 37°C with the restriction endonuclease, Eco0109I, incubated and analyzed with 

agarose gel electrophoresis to produce a restriction map to confirm the presence and 

orientation of Ag85 in the vector. Two colonies that met the predicted criteria were 

sequenced at the University of Missouri (MO, USA) Core facility. Electronic sequence 

results were then analyzed with NCBI BLAST. Subsequent sequencing of the construct, as 

well as a control self-ligated NT-GFP Fusion TOPO Expression vector without insert, 

confirmed the presence and proper orientation of the Ag85 DNA insert in the antigen-

containing vector construct.

Niosome & dioleoylphosphatidylcholine:cholesterol liposomes

Liposomes were prepared by coevaporation (Buchi Heidolph Instruments, Schwabach, 

Germany) of a 1:1 molar ratio of tripalmitin and cholesterol (Chol) obtained from Eastman 

Kodak (NY, USA) or dioleoylphosphatidylcholine (DOPC; Sigma-Aldrich). Lipid solids 

were dissolved in approximately 1 ml of chloroform in a round-bottom flask and evaporated 

to a thin film with gentle rotation at room temperature using a house vacuum and water as a 

coolant. The thin layer was then suspended in 10 ml of phophate-buffered saline (PBS), the 

flask was vortexed vigorously for 30 s and sonicated for approximately 5 min prior to 

storage at 4°C or direct use in the high-throughput chromophoric shift, high-throughput 

absorbance difference or dynamic light-scattering (DLS) spectroscopy assays described 

below. Fluorescent liposome was obtained by substitution of 10 μl of 1 mg/ml BODIPY® 

(Invitrogen)–cholesteryl (Molecular Probes, OR, USA) dissolved in chloroform into the 

DOPC:Chol or tripalmitin:Chol preparation prior to coevaporation.

Chromophoric shift

These experiments were conducted essentially as previously described in [19]. Briefly, 100 

μl of each dye was pipetted into a 96-well plate and 100 μl of either PAMAM dendrimer G3 

1:100 dilution of 5–10%(w/v) stock or RNP (0.1–0.5 mg/ml) suspension in double-distilled 

deionized water was added relative to double-distilled H2O itself as a control. Chromophoric 

shifts were observed and quantified on a FLUOstar Optima BMG Labtech instrument (BMG 

LABTECH Inc., NC, USA) monitored at 485, 544 and 595 nm or a wide-range spectrum 

obtained from 1–2 μl of the dye:RNP mixtures on a Thermo Fisher Scientific UV/Vis 

nanodrop. This series of experiments was performed in triplicate.
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Fluorimetric shift & microscopy

Fluorometric shifts were obtained similarly to the above, using uranine (1 mg/ml) incubated 

at a 1:1 (v/v) ratio with GNP, GNP–Prot or PEG-dendrimer. Excitation and emission 

wavelengths are indicated in Figure 1. Microscopy was performed on an Olympus BX60 

Epifluorescence Microscope (Olympus, Center Valley, PA, USA) with built-in Digital 

Imaging Hardware and Software. Two BMG Labtech 96-well plates were used, labeled from 

A to H and 1 to 12, and used in comparison with two different types of liposome: niosome 

and DOPC:Chol. In A1 of the nine-well plate, there was 10 μl of uranine with a 

concentration of 1 mg/ml added to 90 μl of deionized water. In A2 of the 96-well plate, 10 μl 

of 1 mg/ml uranine was added to 50 μl of the corresponding liposome (niosome or 

DOPC:Chol) and 40 μl of deionized water. In A3, 10 μl of 1 mg/ml uranine was added to 50 

μl of the corresponding liposome (niosome or DOPC:Chol), 20 μl of G4 mPEG–PAMAM 

dendrimer and 20 μl of deionized water. In A4, 10 μl of 1 mg/ml uranine was added to 50 μl 

of the corresponding liposome (niosome or DOPC:Chol), followed by the addition of 20 μl 

of G4 mPEG–PAMAM dendrimer and 20 μl of GNPs. The 96-well plates were then 

vortexed for 5 s each and incubated in a VWR Shelton Manufacturing Inc. (OR, USA) 

incubator at 37°C for 20 min. After incubation, the plates were inserted into the BMG 

Labtech manufactured FLUOstar OPTIMA Microplate Reader, and analyzed using 

OPTIMA 2.20 software in fluorescence intensity mode at various wavelengths: excitation 

492 λ and emission 590 λ; excitation 485 λ and emission 590 λ; excitation 485 λ and 

emission 620 λ; excitation 492 λ and emission 520 λ and excitation 492 λ and emission 620 

λ. All of the data were measured in fluorescence intensity units, then exported to Microsoft 

Excel 2007 and graphed accordingly. The A1 standard wells of uranine were subtracted out 

of the remaining columns of data.

Dynamic laser light scatter shift & zeta potential

DLS was conducted on a Malvern Zetasizer Nano ZS-90 instrument. Prot or RNA solutions 

(0.1–1.0 mg/ml) were prepared in double-distilled deionized water and vortexed for 

approximately 10 s to dissolve and mix the solutions. An estimated 1:1 (v/v) Prot:RNA 

solution was prepared and 200 μl of Prot and 200 μl of RNA were added to low-volume 

cuvettes, provided by the manufacturer, to be vortexed for 10 s. A total of three independent 

DLS size measurements were taken, with each solution being vortexed for 10 s between 

each measurement. Various mass ratios were tested (1:2, 1:1, 2:1 and 4:1) concomitantly 

with the splice-shifting assay. Samples containing GNP, PEG-dendrimer conjugates with 

liposome were mixed at equal volume ratios.

UV/Vis spectroscopy

In some cases the concentrations of the biomolecules were read on a Perkin Elmer (MA, 

USA) Lambda 650 UV/Vis spectrometer. UV/Vis spectrometer measurements were taken 

and blanked from double-distilled deionized water from 200 to 800 nm wavelength. 

Background absorbance was corrected and the biomolecules’ interaction monitored by 

following the loss of Prot and PAMAM at 214–220 nm and DNA or RNA at 260–280 nm 

from the supernatant upon their sedimentation by microcentrifugation at 13,000 RPM for 1–

2 min.
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Gel electrophoresis

Gel analysis was performed essentially as previously described in [18]. Prot:RNA 

complexes were prepared by mixing equal volumes of 0.1–1.0 mg/ml Prot or PEG–G3 

dendrimer with 0.1–1.0 mg/ml RNA to a final volume of 50–100 μl and 10–20 μl of the 

complexes or controls were loaded directly in the presence of 0.5–1.0 μl ethidium bromide. 

Loading samples were made by mixing 5 μl of Prot:RNA complex with 5 μl of the 

prescreened dyes and 4 μl of 40–60% sucrose. Samples were run through electrophoresis on 

a 2% agarose gel at 100 V for approximately 1 h. Images were taken on a Gel Logic 200 

(Kodak, Eastman Chemical Company, TN, USA) imaging station.

Luciferase delivery

Fully confluent A375 cells were plated in six wells of a clear 96-well plate in quadruplicate, 

with 150 μl per well, and were then incubated overnight at 37°C in a NuAire (MN, USA) 

CO2 Water-Jacketed Incubator. The following day, Prot, GNPs and luciferase (Luc; stock 

solution from Promega Corporation, WI, USA) were made using 2 mg/ml Prot in double-

distilled H2O, 1 mg/ml GNPs in double-distilled H2O and 0.1 mg/ml Luc in PBS, and were 

incubated at room temperature for 10 min. The first well remained A375-only and 10 μl of 

each solution was added in different combinations at equal volumes to each additional well 

in the order of: GNP-only; GNP + Prot; Prot only; GNP + Prot + Luc; and Luc-only. The 

plate was then incubated again overnight at 37°C in the CO2 incubator. The following day, 

the solutions were removed from the cells and the cells were washed twice with PBS. Then, 

100 μl of 1× passive lysis buffer (Promega Corporation) was added from a stock 

concentration of 5× and the plate was vortexed for 20 s. The entire sample of the lysed cells 

was then transferred to a white OptiPlate 96-well plate and 150 μl of Luc substrate/buffer 

system was added to each well. The plate was incubated for 10 min at room temperature and 

then the luminescence was analyzed on the FLUOstar OPTIMA Microtiter Plate Reader.

HeLa pLuc 705 SSO & B-Raf siRNA systems

The complete protocol for this assay has been previously reported in [18] and performed in 

quadruplicate. Briefly, 103–104 HeLa-705cells were inoculated into 96-well plates 

(Nunclon, USA Scientific Inc., FL, USA) and allowed to attach overnight. Complexes of 

Prot:SSO were added to serum-free Opti-MEM media (100–200 μl) for 6–8 h and then the 

media was withdrawn, indicator-free 10% fetal bovine serum (FBS)/Dulbecco’s Modified 

Eagle medium was added and the cells allowed to grow undisturbed until the following day 

(36–48 h). Thereafter, the cells were washed twice with PBS and relative light units per well 

were quantified using Luc assay kit (Promega Corporation) on a TopCount1 Top Count 

NXT Perkin Elmer top-count machine (average of n = 4 wells) following manufacturers 

recommendations. For B-Raf, 7500 A375 cells per well were plated in a 24-well plate using 

culture medium containing FBS and antibiotics. The cells were left to adhere overnight. The 

following day each well was treated with nanoconjugates, as described above, or 

lipofectamine, per manufacturers’ recommendations (Invitrogen), to inhibit the production 

of B-Raf protein via siRNA. Note that as the nanoconjugates are triconjugates (GNP–

Prot:siRNA), the siRNA stock concentration was approximately one-third less than that of 

the lipofectamine:siRNA (14.4 ng/μl). The western blot for B-Raf protein followed 
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procedures similar to those that have been reported previously [18], whereby the crude A375 

protein lysate was run on an SDS-PAGE gradient gel, blotted, incubated with primary 

antibody and visualized upon development with a horseradish peroxidase-conjugated 

secondary antibody. Only one putative B-Raf band was found in the correct size range for 

B-Raf proteinwhen examined next to a molecular weight ladder [16]. This experiment was 

standardized to total cell protein loaded via bicinchonic acid assay.

A375 tumorigenesis assay

Taken from a fully confluent T25 flask, A375 cells were trypsinized in 0.5 ml of trypsin and 

resuspended in 4 ml of Dulbecco’s Modified Eagle medium media (10% FBS and 1% 

penicillin/streptomycin). The cells were treated via a tumorigenesis assay with the following 

solutions: 20 μl of GNP only at a concentration of 1 mg/ml; 20 μl of dendrimer only at a 

concentration of 1 mg/ml; 40 μl of a B-Raf + dendrimer mix (B-Raf concentration was 28.6 

ng/μl); and 40 μl of a GNP + Prot + B-Raf mix at a concentration of 347.9 ng/μl. The two 

mixed samples were incubated at room temperature for 20 min. Then, 200 μl of cells were 

plated in triplicate in a 24-well plate followed by a 6:4 ratio of an agar/media solution 

(Carolina nutrient agar [Carolina Biological Supply Company, NC, USA], item #821045 

and Dulbecco’s Modified Eagle medium media with 10% FBS, 1% penicillin/streptomycin), 

in which 0.5 ml was added to each well. Finally, the cells were treated with the various 

mixtures, as described above, and the plate was incubated at 37°C in a NuAire CO2 Water-

Jacketed Incubator for 14 days and the number of tumor spheroids formed per quadrant of 

each well were counted via microscopy.

Antigen presentation CD4 coculture assay

The assay involved detection and quantification, by ELISA, of IL-2 expression from CD4 T-

hybridoma (DB-1) cells that had been added to human acute monocytic leukemia cell line 

(THP-1) cellstreated with nanoparticles containing DNA construct [22]. Firstly, THP-1 cells 

were incubated in a 96-well flat-bottom plate (1.5 × 105 cells/well) with 10 ng/ml phobol 

myristate acetate in infection medium for 24 h to fix the cells. Cells were washed once with 

infection medium and incubated with 100 IU/ml of recombinant human IFN-γ for a further 

24 h. Cells were then washed twice with infection medium and nanoparticle preparations 

containing DNA were added to duplicate wells. After 48 h incubation DB-1 cells were 

added (2 × 105 cells/well) and plates were incubated for a further 72 h. Cells were separated 

by centrifugation and the supernatant was harvested and assayed by ELISA for IL-2 

expression. Positive controls (three wells), where rAg85B protein was added instead of 

nanoparticles, were also prepared. Nanoparticles were prepared as follows: a DNA solution 

of approximately 150 μg/ml in water was saturated with Prot. A total of 150 μl of this was 

added to manganese (~1 mg or less needed), zinc (~1 mg or less needed) and gold (~100 μl 

of a 20 nM commercially prepared solution), respectively, and vortex mixed. A total of 20 μl 

volumes of these preparations were added to wells. The positive controls were prepared by 

adding 20 μl of an approximately 1 mg/ml solution of rAg85B protein to wells. The ELISA, 

to determine IL-2 expression from the DB-1 cells, was conducted using a BioSource™ 

mouse IL-2 kit (Invitrogen) with an eight-point calibration curve.
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Results

HTS ADS

PAMAM’s interaction with coomassie blue has previously been described in [23] and 

mPEG–PAMAM has been stained by BPB and its interaction demonstrated by gel shift [24]. 

By means of absorbance shift, the authors wanted to demonstrate a similar interaction 

between G3 mPEG–PAMAM (whose structure is found in Figure 2A ) and BPB (Figure 

2B) , and compare this absorbance shift to that of Crocein Scarlet and Prot (Figure 2C).

ADS can also be applied in order to detect the interaction of Prot with nucleic acids, such as 

DNA or RNA. Several dyes were tested for their affect on the absorbance difference and to 

see if a positive or negative absorbance shift occurred when the dye was complexed with 

RNPs. Over 100 dyes were screened in a HTS assay and those in TABlE 1 were the ones 

with the best results. The dyes that underwent the greatest absorbance shift were BPB, 

quinoline yellow, alazarine yellow and uranine.

Liposomes as model cell membranes

To apply the chromophoric and ADS assays to the nanoconjugate’s interaction with the 

membrane, two different model liposome membranes were created. A first-generation 

neutral liposome contained a 1:1 molar rio of tripalmitin and Chol (niosome). These were 

shown by light microscopy (Figure 3A) . Alternatively, as shown in Figure 3B , when a 

fluorescently derivitized version of Chol containing BODIPY conjugate is incorporated in 

the niosome, fluorescent images of the niosome could be obtained by fluorescence 

microscopy. Furthermore, DLS analysis of these niosomes show that they are homogeneous 

and 1–2 μm in size [DELONG RK, KANOMATA M, UNPUBLISHED DATA]. Chromophoric shift of the 

niosome in the presence of BPB or trypan red as a function of treatment with cell 

penetrating Prot, RNA or RNP is shown in Figure 3C . Further analysis of this interaction is 

characterized in Figure 3D , where a surface charge shift can be observed when the niosome 

is in the presence of Prot or RNPs.

Collectively, the previous data strongly suggest that the attachment of proteins and nucleic 

acids as nanoconjugates mediate binding, if not penetration of the model membranes. GNP 

surface activity and binding at the cell membrane is critical[20] and functionalization of the 

PAMAM dendrimer is also known to affect its interactions [21]. To further compare the 

effect dendrimer has on the efficiency of GNP surface activity, the authors tested the two 

liposomes by fluorescence difference, whereby the fluorescent uranine dye previously 

identified in the ADS assay was incubated with niosome or DOPC:Chol liposome in the 

presence or absence of mPEG–PAMAM dendrimer and GNP. These data are summarized in 

Figure 1.

The data show that the fluorescence difference was wavelength and liposome-dependent. 

Excitation and emission at 485 and 590 nm, respectively, revealed the most sensitive range, 

particularly when GNP was in the presence of mPEG–PAMAM and overall the DOPC:Chol 

liposome exhibited the greatest fluorescence difference.
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Prot:RNA stoichiometry

Previous data demonstrate that Prot interacts with nucleic acids and also has cell membrane 

interacting and penetrating capabilities. Several assays were executed in order to determine 

the proper ratio at which these interactions are most efficient. As shown in Figure 4 , similar 

to other nucleic acid-polymer nanoconjugates [25], the ratio of Prot:SSO impacted the gel 

shift pattern and splice-shifting, demonstrating that the optimal ratio between Prot:SSO for 

highest levels of activity is 1:1 molar ratio. Figure 4 also shows the expected effect of 

Prot:SSO stochiometry on the particle’s surface charge and size.

Nanoconjugates as delivery agents

In order to assay for biological activity, several tripartite conjugates were formed, based on 

the data obtained thus far, and added to cellular systems. Tripartite conjugate complexes 

formed with GNP, cell-penetrating Prot and Luc protein enzyme were incubated with human 

melanoma cells (A375) grown in culture and assayed for luminescence. These data show 

cell-associated luminescence values several log orders higher than background (Figure 5A) . 

The authors also compared DNA nanoconjugates of either GNP or mPEG–PAMAM 

dendrimer for a pDNA expression vector of tuberculosis Ag85B. These data are shown in 

Figure 5B , in a presentation coculture assay system, in which effective antigen presentation 

is assessed by induction of IL-2 expression [22]. Finally, the author and colleagues tested 

the GNP–Prot conjugates for delivery of an anti-B-Raf siRNA into the same human 

melanoma cell line in culture (A375) (Figures 5C & 5D). Figure 5D shows results from a 

tumorgenicity assay in which A375 cells were grown in soft agar and treated with 

nanoconjugates. The data is consistent with that of Figure 5C , such that the tripartite 

conjugate of GNP–Prot–B-Raf siRNA or dendrimer complexes had a profound effect on the 

expression of oncogenic properties of the A375 cells.

Discussion

HTS, such as ADS, can play a major role in the characterization and detection of 

nanoconjugate surface interactions. A common method used in our research is the utilization 

of different dyes to observe these interactions, either via a shift in the absorbance or a color 

change. As seen in Figure 2, an absorbance shift does occur for both BPB and Crocein 

Scarlet in the presence of mPEG–PAMAM and Prot, respectively, within the wavelengths of 

500–650 nm. The absorbance of BPB in the presence of mPEG–PAMAM increased, while 

the absorbance of Crocein Scarlet in the presence of Prot decreased, which can also be seen 

in TABlE 1 . To the best of our knowledge this represents the first time ADS has been 

applied to bionanomaterials.

Building on their knowledge of these nanoconjugate interactions, the author’s group wanted 

to see if they could characterize these surface and/or penetration properties with model cell 

membranes in the form of niosomes or liposomes. The chromophoric shift (Figure 3C) 

suggests an interaction of the niosome when it is in the presence of nanoconjugates, and the 

DLS data seen in Figure 3D show that Prot or RNPs had an effect on the surface charge of 

the niosome consistent with binding and/or penetration of the membrane. The niosome is a 

neutral biostructure and thus in the presence of Prot it is expected that it will bear a positive 
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charge and will then become more negative with the Prot:RNA nanoconjugate. The data 

seen in Figure 3D are consistent with this hypothesis. A second-generation liposome 

containing DOPC and Chol at a 1:1 molar ratio was then created to better reflect a simple 

model membrane, whereby phospholipid rather than triacylglyceride would be more present 

[26].

The data shown in Figure 1 compares how effective the mPEG–PAMAM dendrimer is in 

increasing the surface activity of GNPs on both the niosome and the liposome. Data show 

that there are enhanced surface effects when the GNPs are in the presence of mPEG–

PAMAM and that there is also an enhanced surface effect with the DOPC:Chol liposome, as 

compared with the niosome based on the fluorescence difference intensity between the two. 

The overall decrease in fluorescence compared with the free dye confirms uranine’s 

interaction with either liposome. However, there is a greater negative difference in the 

DOPC:Chol liposome, suggesting the possibility that the nanoconjugate complexes bind to 

or penetrate the membrane of the liposome and the uranine dye is no longer as readily 

available to give off fluorescence.

As previously stated, Prot is known for its powerful DNA condensation, cell membrane-

penetrating and nuclear-trafficking properties. The latter activity of Prot would be critical for 

DNA vaccine expression and SSO activity, and can be applied when assaying for biological 

activity. We determined that a 1:1 molar ratio of Prot and SSO is the most effective for 

expression and stabilization (Figure 4). Figure 4A shows a gel shift that demonstrates the 

binding abilities of Prot:SSO at different ratios and Figure 4B displays that there is 

significantly more activity of SSO when the SSO:Prot ratio is 1:1. Figures 4C & 4D show 

the expected effect of Prot:SSO stochiometry on the particle’s surface charge and size. Since 

RNA bears a negative charge and Prot bears a positive charge, it is expected that when they 

are at equal concentrations, they will create a complex that has a neutral charge. Similar size 

comparisons are also shown. Knowing that this 1:1 ratio is the most effective for expression 

and stabilization, the authors were then able to apply tripartite nanoconjugates of Prot, GNPs 

and biomolecules to cellular systems and uncover various biological applications of these 

bionanoconjugates. The data shown in Figure 5A suggest interaction or penetration of the 

nanoconjugates bearing Luc onto or into the cells. In order to assess whether the Luc was 

intracellular or extracellular, a similar experiment was conducted in which lysed versus 

unlysed cells were compared, and results showed that there was an overall higher relative 

light unit value in lysed cells [RISOR A, DELONG RK, UNPUBLISHED DATA]. A modest amount of 

bioactivity was shown with the siRNA delivery system, where 40–50% B-Raf knock-down 

was achieved. While activity of the DNA expression vector was not shown, the delivery of 

the vector was demonstrated by observing the nanoparticles entering the assay system test 

cells (THP-1 cells). The potential for use of the coculture assay system was demonstrated by 

detection of a large amount of IL-2 expression in the positive controls(Figure 5B) . The last 

cellular system that was considered was that of the B-Raf protein that is expressed in A375 

cells. The author and colleagues complexed anti-B-Raf siRNA with GNP and Prot. The B-

Raf protein was significantly repressed when viewed on a western blot (Figure 5C). Figure 

5D shows quantitative results obtained from a tumorigenesis assay in which tumor spheroids 

from A375 cells were counted after being treated with these conjuguates. Results suggest 

that the nanoconjugates bound or penetrated through the cells because there was a 
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significant decrease in the presence of tumors consistent with, and to be expected for, 

reduced B-Raf protein expression shown previously.

Conclusion

In summary, chromophoric shift, absorbance and fluorescence differences have been shown 

for the firsttime in high throughput, as applied to protein and nucleic acid nanoconjugates, 

and their interactions with model cell membranes. It is important to characterize 

physicochemical attributes, which are likely to underscore biological activity of such 

nanoconjugates, especially as the preclinical development of these systems continue to 

evolve. Intracellular delivery of SSOs, siRNA and nucleic acid vaccines requires their 

binding and penetration through the cell membrane. In this study, the authors have presented 

a promising approach to probe these critical requirements as a function of the surface 

activity of the mPEG–PAMAM dendrimer, Prot and GNP nanoconjugates.

Future perspective

The fields of biomolecular science and biomedical nanotechnology are beginning to 

converge. Nanomaterials with biomolecules, such as protein and RNA bound to them, 

present the ultimate opportunity in being able to re-engineer cells; for example, the delivery 

of a functionally expressive RNA or an active protein enzyme into cells via a nanoparticle. 

Nanomaterials from almost every bioelement in the periodic chart are now being 

synthesized and when these are attached to biomolecules to create ‘nanoconjugates’, they 

have seemingly limitless opportunities as nanomedical agents. Each nanomaterial bound to a 

biomolecule potentially represents a new molecular entity and some of these are very likely 

to have powerful biological activity and specificity. During the next 5–10 years one can also 

speculate that GNPs, dendrimer and surface chemistries will also evolve, expand and be 

adapted to other nanomaterials and polymers. Thus, in conclusion, we are witnessing the 

emergence of a new field called biomolecular nanotechnology. Rapid advancement of such 

biomolecular nanoconjugates hinges critically on better characterization techniques, which 

this study has explored by high-throughput absorbance, fluorescence difference or cellular 

delivery.
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Executive summary

■A surface interaction occurs between RNA and proteins, and can be characterized 

via the absorbance difference between several different dyes.

■Liposomes act as model cell membranes and when in the presence of 

nanoconjugates, a surface interaction and/or penetrating mechanism can be observed.

■Methoxypoly(ethylene glycol)-block-polyamidoamine dendrimer increases the 

surface interaction efficiency of gold nanoparticles, especially in the presence of 

dioleylphosphatidylcholine:cholestrol liposomes.

■The optimal molar ratio of protamine and splice-shifting oligomers for effective 

splice-shifting oligomer activity is 1:1.

■Protamine and gold nanoparticle conjugates significantly improve the delivery 

mechanism of several proteins and nucleic acids, such as B-Raf siRNA and 

tubercolosis antigen 85B, which have significant future applications for drug 

therapeutics.
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Figure 1. Relative fluorescence difference
(A) Niosome and (B) DOPC:Chol liposome in the presence or absence of mPEG–PAMAM 

dendrimer and GNPs. Samples were run at different emission and excitation wavelengths.

Chol: Cholestrol; DOPC: Dioleoylphosphatidylcholine; em: Emission; ex: Excitation; FLU: 

Fluorescence unit; GNP: Gold nanoparticle; mPEG–PAMAM: Methoxypoly(ethylene 

glycol)-block-polyamidoamine.
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Figure 2. Methoxypoly(ethylene glycol)-block-polyamidoamine and protamine absorbance 
difference
(A) mPEG–PAMAM dendrimer structure (generation 3). (B) Absorbance difference of BPB 

in the presence of generation 3 mPEG–PAMAM dendrimer. (C) Absorbance difference of 

Crocein Scarlet in the presence of protamine

BPB: Bromophenol blue; mPEG–PAMAM: Methoxypoly(ethylene glycol)-block-

polyamidoamine.
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Figure 3. Niosome as a model cell membrane
Niosomes can be viewed by (A) light microscopy or (B) fluorescence microscopy when 

BODIPY®–cholesterol was substituted into the membrane. (C) Chromophoric shift of 

niosome in the presence of protamine, RNA or RNP nanoparticles. (D) Shift in the dynamic 

light-scattering spectroscopy zeta potential spectrum as a consequence of interaction with 

protamine or RNP with tripalmitin:cholesterol niosome.

BPB: Bromophenol blue; RNP: RNA:protamine.
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Figure 4. Effect of protamine:RNA ratio on physicochemical characteristics and splice-shifting 
oligomers activity
(A) Gel shift demonstrating binding abilities of protamine:SSO at different ratios. (B) Effect 

of protamine:RNA stoichiometry on SSO upregulation of luciferase, in the HeLa pLuc 

splice-switching oligomer delivery system. The y-axis represents RLU/5000 seeded cells 

post 24-h treatment with protamine:SSO. (C) Charge and (D) size of particles also as a 

function of protamine:RNA stoichiometry (molar ratio). Error bars represent standard 

deviation values.
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BPB: Bromophenol blue; HMW: High molecular weight; Intmdt: Intermediate band; lipo: 

Lipofectamine™; RLU: Relative luminescence units; SSO: Splice-shifting oligomer.
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Figure 5. Biological activity of tripartite nanoconjugates
(A) The effect of protamine:GNPs incubated with luciferase protein, which were then 

exposed to A375 cells, and then the cells were rinsed. The cell-associated luminescence 

activity was quantified. (B) Tuberculosis antigen 85B presentation coculture assay positive 

controls. For details, see the experimental methods section in [22]. (C) Western blot of B-

Raf expression in A375 cells after anti-B-Raf siRNA treatment with delivery by 

Lipofectamine™ (lipo-NH2)-siRNA, GNP–Prot control or the GNP–Prot–siRNA 

nanoconjugate. (D) Comparison of methoxypoly(ethylene glycol)-block-polyamidoamine 
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dendrimer and GNP nanoconjugate effect on delivery of B-Raf siRNA. Represents the 

number of A375 tumor ‘spheroids’ formed after treatment of nanoconjugates. Error bars 

represent standard deviation values.

Abs.: Absorbance; B-Raf: B-Raf siRNA; Dend: Dendrimer; GNP: Gold nanoparticle; Luc: 

Luciferase; Prot: Protamine; RLU: Relative light unit.
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Table 1

High-throughput screening absorbance difference of dyes in the presence H of RNA:protamine at wavelengths 

485, 545 and 595 nm.

Dye Wavelength

485 nm 545 nm 595 nm

Amaranth red Decrease Decrease Increase

Bromophenol blue Decrease Increase Increase

Bromophenol purple No change Increase Increase

Congo red Decrease Decrease Increase

Biebrich scarlet Decrease Decrease Increase

Alazarin yellow Increase Increase Increase

Quinoline yellow Increase Increase Increase

Uranine Increase Increase Increase

Trypan red No change No change Increase

Alazarin red No change Increase Increase

Fast green Increase Decrease Decrease

Crocein Scarlet Decrease Decrease Increase
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