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ABSTRACT: A new reaction coordinate to bias molecular dynamics
simulation is described that allows enhanced sampling of density-driven
processes, such as mixing and demixing two different molecular species. The
methodology is validated by comparing the theoretical entropy of demixing
two ideal gas species and then applied to induce deformation and pore
formation in phospholipid membranes within an umbrella sampling
framework. Comparison with previous biased simulations of membrane
pore formation suggests overall quantitative agreement, but the density-based
biasing potential results in a different, more realistic transition pathway than
that in previous studies.

■ INTRODUCTION
Advanced computational methods have long attracted the
attention of biophysicists to shed light on the behavior of
biological systems. The computer simulation of proteins,
membranes, and nucleic acids are a powerful technique for
understanding the physical characteristics of these complex
systems.1 Despite advances in computer power, the time scales
required for studying many physical phenomena are still
beyond the possibilities for the majority of the scientific
community. However, the use of enhanced sampling
methods2−6 can overcome such limitations. One example
where enhanced sampling is needed is the pore formation and
deformation of lipid membranes.7−16 Pore formation is
involved in a variety of biological processes, such as signal
transduction and small molecule transports,7−9,16 but it is also
highly relevant in the context of toxins and antimicrobial
peptides that induce membrane pores to cause cell leakage and
ultimately kill cells.17−19

A common strategy for overcoming kinetic barriers is the use
of umbrella sampling techniques,20 where a main challenge is
the choice of a suitable reaction coordinate. Geometric
properties such as distances, angles, or dihedrals between
groups of atoms have been widely used, but some physical
processes are not described well by such simple reaction
coordinates. As a result, enhanced sampling simulations using
such coordinates may be less effective for these systems. For
example, density-driven processes may not be described well by
traditional reaction coordinates. Membrane pore formation is
one such process where the application of enhanced sampling
methods has been challenging.21 In one previous study, the
pore radius was incorporated as a reaction coordinate in a
molecular dynamics framework,21,22 and the free energy cost of
pore formation was measured using the potential of mean
constraint field (PMCF) approach.23 Furthermore, Bennett et
al.24 investigated the mechanism of pore formation initially by
long equilibrium MD simulations followed by umbrella

sampling where a single phosphorus atom in one of the lipids
was pulled to the center. However, both choices of the reaction
coordinate could be problematic as they make assumptions
about how the membrane structure deforms upon pore
formation.
A natural reaction coordinate for studying membrane pore

formation is the density of water molecules within the
membrane in the area where pore formation takes place.
Using the water density instead of a structural property of the
membrane avoids biasing membrane structure unnecessarily
but still provides enhanced sampling across the key kinetic
barrier, that is, water penetration into the membrane. Here, we
are describing the development of a density-based reaction
coordinate and its application in umbrella sampling simulations
of membrane pore formation. The method introduced here
biases the density of a group of atoms in a volume of interest,
such as a cylinder. Therefore, our density biasing potential
function not only can be used for studying membrane pores but
also is applicable more generally for reaching a target density
for a given molecular species relative to another species in any
context. This methodology was implemented in the CHARMM
biomolecular software package.25

In the remainder of this paper, we will provide a detailed
description of the density biasing potential, followed by
validation of our method by comparing entropic components
of demixing free energy of two ideal gases with theoretical
estimates. Then, this method is applied to a pure DPPC
membrane bilayer system to demonstrate its potential for
estimating free energies of membrane pore formation.
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■ METHODS
Density Biasing Potential. In this section, we provide the

mathematical basis of the density biasing potential function.
Given the coordinates qi⃗ for atom i, the total number of atoms
in any arbitrary subvolume of interest V can be calculated by
integrating the product of a volume function f(r)⃗ with the Dirac
delta function: δ(r ⃗ − q ⃗i)f(r)⃗ for all atoms:
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where f(r)⃗ returns one inside V while it switches smoothly to
zero on the boundaries and stays zero for all the points outside
the volume (see below). In general, any differentiable volume
function can be used to define f(r)⃗; however, simpler functions
are preferred since they are easier to implement in a molecular
dynamics framework.
The volume of interest in our study is a cylinder with radius

Rcyl and height Zcyl with its axis aligned to the bilayer normal
(Figure 1A). Therefore, we use cylindrical coordinates and

decompose the volume function into radial and axial
components so that

∑Γ =
=

f r f z( ) ( )V
i

N

i i
1

radial axial
(2)

Choosing the switching function as a third degree polynomial
used in CHARMM PBEQ26 and GBSW27,28 modules results in
the following differentiable volume function:
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where w and h are the switching distances for the radial and
axial terms, respectively. Figure 1B shows the shape of radial
component of volume function; the axial component has a
similar shape.
The number density ρV is calculated by normalizing ΓV by

the cylinder volume. The potential energy is then calculated for
a given value of target density ρt with the force constant k

ρ ρ= −U
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2
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The corresponding force components can be obtained from
the gradient of the potential term

ρ ρ⃗ = ∇⃗ = − ∇⃗ΓF U
k
V

( )i i V t i V (6)

∇⃗Γ =
∂

∂
∂

∂
∂

∂

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟f z

f r

x
f z

f r

y
f r

f z

z
( )

( )
, ( )

( )
, ( )

( )
i V i

i

i
i

i

i
i

i

i
axial

radial
axial

radial
radial

axial

(7)

The details of the derivative components are provided in the
Appendix.

Simulation Details. Method Validation. For validation of
our computational method, we investigated the mixing entropy
of two noble gas species. Helium atoms (200) were placed in a
box, 40 of which were tagged to make two distinguishable
species with identical parameters. The box dimensions were
200 × 200 × 50 Å3. A density biasing cylinder with a radius of
50 Å was placed in the center of the box with the cylinder axis
aligned with the z axis. The switching distance in the radial
direction was set to 1 Å. The cylinder height was considered to
be infinite; therefore, the biasing potential did not vary along
the z-axis. The number densities were normalized by the
equilibrium number of particles in the cylinder volume. In
order to fully separate the two molecular species, the reaction
coordinate in the density biasing potential was constructed as
the difference between the densities of the tagged and untagged
species in the cylinder. In this case, an increase in the value of
the reaction coordinate can be due to either increasing the
number of tagged species or decreasing the number of
untagged ones assuming that the total number of particles in
the cylinder is constant on average over time.
For this system, the equilibrium value of the reaction

coordinate is −6 × 10−5 Å−3 for the fully mixed state and 1 ×
10−4 Å−3 for the fully separated state. Therefore, using umbrella
sampling, the reaction coordinate was varied from −5.1 × 10−5

to 7.1 × 10−5 Å−3 in increments of 2.54 × 10−7 Å−3. Each
umbrella window was simulated for 20 ns with a force constant
of 107 kcal/mol·Å6 and a time step of 2 fs. The last 16 ns from
each window were used to construct the PMF as a function of
the reaction coordinate using WHAM analysis.

Figure 1. (A) Schematic representation of the biasing cylinder aligned
to the bilayer normal. The center of the switching region is indicated
with dashed lines. (B) Volume function used in axial and radial
directions.
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A theoretical estimate of the mixing entropy for two
molecular gas species A and B is given by

Δ = +S nR x x x x( log( ) log( ))A A B B (8)

where x is the mole fraction of each species, n is the total
number of moles, and R is the universal gas constant. The total
change in entropy is given by

Δ = Δ + ΔS n S x x n S x x( , ) ( , )V A V B V V A V B Vtot tot, , , tot, , ,1 1 1 2 2 2 (9)

where ntot,V1
and ntot,V2

are the average total number of atoms in
volumes V1 and V2 at equilibrium, respectively. In order to
compare the theoretical mixing entropy with our computational
approach, we evaluated the theoretical estimate as a function of
the mole fraction of species A in volume V1 in the process of
going from a fully separated state (i) to a partially mixed state
(ii) as shown in Figure 2. The mole fraction is then converted
to the reaction coordinate (ξ) used in the umbrella sampling
simulations according to

ξ =
−n x x

V
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Membrane Simulations. A pure membrane bilayer was
constructed by web-based CHARMM-GUI membrane build-
er,29 containing 288 dipalmitoylphosphatidylcholine (DPPC)
and 8376 water molecules placed in a periodic box of size 95.2
× 95.2 × 66.6 Å3. The x−y dimensions were adjusted to match
the experimental value of 63 Å2 for the area per lipid of DPPC
in the fluid phase.30,31 The z dimension was chosen large
enough to avoid boundary artifacts. The CHARMM36 force
field32 was used along with the TIP3 water model.33 Lennard-
Jones interactions were cut off at 9 Å (with a switching function
beginning at 8 Å). Particle-Mesh Ewald summation34 was used
for long-range electrostatic interactions with a 9 Å cutoff for the
direct sum. A time step of 2 fs was used in combination with
the SHAKE algorithm.35 The initially flat bilayer was heated in
steps at 50, 100, 200, 250, and 323 K, each for 100 ps with a
Nose−́Hoover thermostat and barostat (target pressure of 1
bar) to maintain an NPT ensemble. The center of mass of the
bilayer was restrained to the plane at z = 0 with a force constant
of 100 kcal/mol·Å2. The final equilibrated system was then used
to study membrane deformation and pore formation with our
density biased sampling method.

One-Sided Deformation of a Membrane Bilayer. The
density biasing approach was applied to the DPPC membrane
bilayer system. A cylinder with a radius of 8 Å was aligned to
the bilayer normal (z) axis. The cylinder spanned from z =
−2.5 Å to z = +15 Å, and the radial and axial switching
distances were set to 1 and 5 Å, respectively. Umbrella sampling
simulations were performed with 10 windows, increasing the
number density of water molecules per unit area in the cylinder
from 1.1 × 10−3 to 2.17 × 10−2 Å−3. A force constant of 9.2 ×
105 kcal/mol·Å6 was used. To prevent deformation in the lower
leaflet, a plane potential with a force constant of 100 kcal/mol·
Å2 was applied to the phosphates of the lower leaflet if their
distance to bilayer center was less than 8 Å. Each umbrella was
simulated for 50 ns.

Pore Formation in a Membrane Bilayer. In order to create
a pore in a membrane bilayer, we expanded the cylinder from
the previous case to cover both leaflets, that is, from z = −18 Å
to z = +18 Å. The radius of the cylinder was chosen as r = 6 Å,
and the radial and axial switching distances were set to 2 and 8
Å, respectively. The parameters were adjusted based on initial
trial simulations in order to achieve double-sided pore
formation. Twenty umbrella windows were used to vary the
number density of water molecules in the cylinder from 6.7 ×
10−3 Å−3 to 2.25 × 10−2 Å−3, using a force constant of 5.18 ×
106 kcal/mol·Å6. Each umbrella was simulated for 50 ns. The
total simulation time for pore formation was 1 μs.

Parameter Selection. While our method can be used for a
diverse set of applications, the biasing potential parameters
would have to be adjusted accordingly. We will provide
guidance here how to choose the two key parameters, height
and radius, for the case of a cylindrical biasing volume.
Generally, the cylinder height should encompass and extend

beyond the region where the density is meant to be changed.
For membrane simulations, a short cylinder height would be
appropriate to induce one-sided deformation while longer
cylinders are necessary to induce transmembrane pores.
Furthermore, for one-sided deformations, the lower bound of
the cylinder was fixed at z = −2.5 Å to let water molecules
reach the bilayer center without forming complete pores. In the
helium gas demixing simulations, the cylinder height was
chosen bigger than the box size to avoid gradients along the z
axis.
The cylinder radius should be chosen large enough so that

the cylinder extends beyond the pore or deformation that is
meant to be formed. Otherwise, the biasing potential may affect
the shape of the deformation. On the other hand, a cylinder
radius that is too large may not be effective in inducing pore
formation because large membrane deformation could also
satisfy a bias toward increased water densities within the
cylinder. Because it was not entirely clear a priori which radius
and cylinder height would be optimal, we conducted a series of
test simulations with varying radii and cylinder heights until
pore formation was accomplished successfully.
Finally, the force constants and window spacing were

optimized by trial error. We found that the final values were
similar as those predicted by the criterion given by Park and
Im.36

Implementation. The density biasing method using a
cylinder-based volume function was implemented in the
CHARMM biomolecular software package,25 version c40a1.
Although not implemented so far, it would be easy to extend
the method to other geometries such as a rectangular box with
switching regions on each edge or a spherical geometry.

Figure 2. Schematic representation of the mixing process for a simple
two-component noble gas mixture that is fully demixed (A) and
partially mixed (B).
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■ RESULTS AND DISCUSSION
Mixing Entropy of Two-Component Gas. The free

energy cost of separating two noble gas species was calculated
using theoretical and computational methods. Since the two
species have identical properties, there is no change in the
mean of internal energy of the system upon separating the two
species. Figure 3 compares theoretical estimates of −TΔS

according to eqs 9 and 10 with the change in free energy
computed using the density biased sampling method. The
reference point in this figure is the fully mixed state that has the
highest entropy. This state corresponds to a mole fraction of xA
= 0.22. If the theoretical estimate assumes a perfectly uniform
particle distribution to obtain the number of particles in the
cylinder (Figure 3, theory A), the ΔG from the simulation
underestimates the theory significantly. The agreement
improves when the actual average number of particles in the
umbrella windows that corresponds to the demixed states is
used in the theoretical estimate (Figure 3, theory B). The
remaining small discrepancy is due to a non-negligible virial
term that results from a pressure difference inside and outside
the cylinder during the umbrella simulations in response to the
application of the biasing potential. A correction by adding
−Δ(PV), calculated from the average external pressures from
simulations of the fully mixed and fully demixed states as
reported by CHARMM, brings the theoretical and simulation
estimates in near-perfect agreement. We note that the
simulated system is not an ideal gas because of weak attractive
interactions and volume exclusion effects as a result of the
Lennard-Jones interaction potential. This would lead to a small
correction of the theoretical estimate that is expected to be
smaller or on the same order as the uncertainties in the free
energies obtained from the simulations. Therefore, the simple
test case validates the density biasing potential introduced here.
Membrane Simulations. We will now demonstrate the

application of the density biasing approach to simulations of
membrane bilayers. As described in detail in the Methods
section, the density biasing potential was applied to water
molecules within a cylinder encompassing a section of a

phospholipid bilayer. Figure 4 demonstrates how local
membrane thickness, calculated as the average z coordinate of

the phosphorus atoms in a cylinder of radius 8 Å, responds to
the water density in the cylinder when varied in umbrella
sampling simulations. The strong correlation reaffirms that
water density within the bilayer is a suitable reaction coordinate
for inducing membrane deformations. Figure 5 shows snap-

shots of the membrane bilayer after 50 ns molecular dynamics
simulation with the density biasing potential set to increasing
target values. The increasing degree of membrane deformation
is readily apparent and we note that the deformation appears to
proceed with a slight bending on both leaflets (Figure 5C),
presumably because this lowers the overall free energy for these
intermediate states. However, a further increase in the water
density results in a pronounced one-sided deformation with
little apparent perturbation on the opposing leaflet. This is
shown in Figure 5F. Another feature of the deformation process
is that it progresses from an initially wide and shallow
deformation to a narrow and deep deformation, presumably
due to a balance between the elastic properties of the
membrane bilayer and the free energy costs of forming water
defects within the membrane. The deformation of the bilayer is
further quantified in Figure 6A, where the bilayer thickness at

Figure 3. Free energy cost of mixing two noble gas species as a
function of the biasing reaction coordinate ξ based on theory (mixing
entropy) and simulation (free energy calculated from umbrella
sampling simulations). Theory A is using uniform density to estimate
total number of particle in cylinder, whereas theory B uses the
empirical average number of particles observed during the simulations.

Figure 4. Local membrane bilayer thickness of the upper leaflet vs
water density per unit volume from biased sampling of one-sided
membrane deformations.

Figure 5. Snapshots illustrating the one-sided deformation process
from a flat bilayer state to a fully deformed state at water densities of
0.0016 (A), 0.0073 (B), 0.0111 (C), 0.0143 (D), 0.0167 (E), and
0.0170 Å−3 (F). Red spheres represent water molecules, brown spheres
represent phosphorus atoms of the lipids, and lipid tails are shown in
green.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct5009153 | J. Chem. Theory Comput. 2015, 11, 343−350346



the deformation location is shown for each umbrella window.
The first umbrella is simulated with equilibrium flat bilayer
conditions, therefore, no deformation is observed. However,
other umbrellas increase the density of water molecules, which
induces a deformation in bilayer. From the umbrella sampling, a
free energy profile was obtained by weighted histogram analysis
method (WHAM).37 Figure 6B shows the resulting potential of
mean force (PMF) as a function of the water density in the
cylinder. As would be expected, increasing the number of water
molecules, and thereby deforming the bilayer, is highly
unfavorable in terms of free energy with a cost exceeding 40
kcal/mol for a one-sided water defect that extends to the center
of the membrane. As shown below, the cost of forming a pore is
about half, so that without any restraints on the lower leaflet
(see Methods section), the bilayer would not be expected to
stably maintain a one-side deformation.
Finally, we applied the density biasing method across the

entire DPPC bilayer in order to induce pore formation.
Snapshots of the bilayer after 50 ns molecular dynamics
simulations with increasing water density biases are shown in
Figure 7. Similar to what has been described previously,24 pore
formation starts by bending both leaflets inward. A water wire
forms initially (Figure 7D). The lipid head groups then
rearrange and form the familiar hourglass shape of a stable pore
once a critical pore radius is passed (Figure 7E). A transition
involving an initial water wire is consistent with results from the
equilibrium simulations by Bennett et al.24 The average number
density profiles of water molecules across the bilayer normal for
a flat bilayer and a bilayer with a stable pore (with average water

density of 0.0216 Å−3) are compared in Figure 8. By integrating
over the difference between the two curves, it is found that 148

water molecules exist in the pore. This result is comparable
with the 124 water molecules obtained by Leontiadou et al.,9 in
which they applied mechanical stress (surface tension) to form
a pore in a DPPC bilayer.
We computed the pore size by assuming perfect cylindrical

shape between z = −8 and z = 8 Å and a uniform water density
in that region. The average number of water molecules in the
region was found to be 117.7 in the last umbrella. The resulting
pore radius is found to be 8.8 Å. Similar analyses assuming
perfect cylinder for water wire result in pore radius of 4.2 Å.
Figure 9 shows the PMF of pore formation as a function of

water density in the aforementioned cylinder. Again, pore
formation is energetically unfavorable as expected. A plateau
free energy of 22.2 (± 0.4) kcal/mol is reached at a critical
water density of 0.018 Å−3 once a stable pore is formed. This
result is close to the value of 19.02 kcal/mol reported by
Bennett et al. for DPPC.24 The agreement is excellent,
especially when considering differences in force fields. We
further decomposed the free energy into enthalpic and entropic

Figure 6. (A) Average bilayer thickness in radial slabs for each
umbrella window as a function of radial distance from the pore center.
(B) Free energy profile for one sided bilayer deformation as a function
of water density in the cylinder. Standard error values obtained by
calculating the PMF profiles over 10 2 ns subsets from the umbrella
sampling simulation are shown as light blue shades.

Figure 7. Snapshots illustrating the pore formation process from a flat
bilayer state to a stable pore at water densities of 0.0067 (A), 0.0144
(B), 0.0159 (C), 0.0168 (D), 0.0196 (E), and 0.0222 Å−3 (F) with
coloring as in Figure 5.

Figure 8. Number density of water molecules across bilayer normal
compared between a flat bilayer and a bilayer with a stable pore (A) ,
and their differences (B).

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct5009153 | J. Chem. Theory Comput. 2015, 11, 343−350347



contributions. The change in enthalpy is estimated by
computing the average potential energy of the system, and
we found that pore formation is enthalpically favorable by 46 ±
1 kcal/mol. The simple demixing test case above suggests that
there may be an additional ΔPV term but for a partially
demixed system the contribution is estimated to be less than 1
kcal/mol and it is therefore neglected here. This implies an
entropic cost (−TΔS) of pore formation of about 68 kcal/mol.
As mentioned above, one motivation for inducing membrane

pores via water density biasing rather than biasing the
membrane structure directly was to avoid artifacts that could
affect the pore formation pathway and thereby the energy
profiles obtained from umbrella sampling. Figure 10 compares

the water density (ξ), our reaction coordinate that imposes
minimal bias on the membrane structure, with the average
distance of the two closest phosphates from the bilayer center
(λ). The latter relates to previous biased simulation studies
where the distance of a single phosphate group from the bilayer
center was used.24 Poor correlation between the two reaction
coordinates suggests that there could be mechanistic differences
when either of the two reaction coordinates is used to induce
pore formation. With the density biasing term, a typical
transition path (indicated in red in Figure 10) would delay a

transition of phosphates to the bilayer center until a critical
water density is reached at which point there is a sharp,
cooperative transition that leads to formation of a full pore. On
the other hand, we speculate that forming the pore by pulling
down a phosphate group would follow a path indicated in green
in Figure 10 where phosphates approach the center of the
bilayer early and a sharp, cooperative transition could be absent.
Figure 11 shows two intermediate conformations with extreme

low λ values that may be intermediates on such a transition
path. In these conformations, the membrane exhibits large
deformations on one leaflet, and the water molecules are
dragged into the center along with the lipid headgroups, as
shown in Figure 11. Since free energies are state functions,
overall energies of pore formation are, of course, independent
of the path taken. However, the free energy profile along the
transition path and any mechanistic insight obtained from such
simulations does depend on the path taken as a result of the
biasing potential.
The proposed method in this work applies a minimal bias to

induce a pore in membrane. There is no assumption made
about the shape of the pore or the density distribution inside
the cylinder. However, the performance of this method is
sensitive to the choice of cylinder parameters as described
above. Therefore, we believe that this method is more
universally applicable to membrane pore formation and
deformations in response to interactions with other molecules,
especially in cases where it is not clear a priori how exactly the
membrane responds to such molecules.
The variation of the water density in our method is

reminiscent of grand canonical ensemble methods38,39 that
have been widely used to simulate the mixing process of model
fluids.40,41 However, because demixing and bilayer pore
formation processes maybe either thermodynamically unfavor-
able or kinetically hindered, enhanced sampling techniques
such as umbrella sampling would still be required. Furthermore,
a global variation of the chemical potential for water in a
membrane-bilayer system may not necessarily lead to pore
formation since water molecules could be added in the bulk
region while a targeted change of a local chemical potential
would eventually result in a method similar to ours but with the
additional complications of the grand-canonical machinery.
Finally, while the method presented here focuses on

overcoming the kinetic barriers in creating membrane
deformations and pores, it may not fully address overcoming
the slow relaxation times of lipid motions. Therefore,
mechanistic studies of membrane pore formation would likely
require longer simulations and/or a combination with other
enhanced sampling techniques such as replica exchange
sampling that can accelerate lipid motions to guarantee full
convergence of deformed bilayer systems.

Figure 9. Free energy of pore formation as a function of water density
in the cylinder from density-biased sampling with errors indicated as in
Figure 6B. A previous result from Bennett et al. is shown for
comparison.

Figure 10. Average z coordinate of the two closest lipid phosphates
from the bilayer center vs water density within pore cylinder
illustrating different mechanisms between density-driven and phos-
phate-driven pore formation bias. Sampling from each umbrella is
shown in different colors.

Figure 11. Intermediate bilayer states with low average distance of
phosphates to the bilayer center.
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■ CONCLUSIONS
We have developed a new computational technique to bias the
density of a group of molecular species, or the difference in
densities of two molecular groups. The method was validated
for the case of demixing two ideal gas species. Furthermore, we
applied the new biasing term in the context of membrane pore
formation. We believe that biasing the water density rather than
structural properties of the membrane is less likely to introduce
artifacts. Furthermore, the density biasing approach allows the
study of one-sided deformations which has not been described
with umbrella sampling techniques previously. The density
biasing function is also more broadly applicable to any system
involving the mixing or demixing of molecular species with
respect to each other. Possible applications include lipid raft
formation, cosolvent effects, and studies of concentration
gradients in complex systems.

■ APPENDIX
Derivative components of the volume function

∇⃗Γ =
∂

∂
∂

∂
∂

∂

=
∂

∂
∂
∂

∂
∂

∂
∂

∂
∂

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

f z
f r

x
f z

f r

y
f r

f z

z

f z
f r

r
r
x

f z
f r

r
r
y

f r
f z

z

( )
( )

, ( )
( )

, ( )
( )

( )
( )

, ( )
( )

, ( )
( )

i V i
i

i
i

i

i
i

i

i

i
i

i

i

i
i

i

i

i

i
i

i

i

axial
radial

axial
radial

radial
axial

axial
radial

axial
radial

radial
axial

The radial component:

= +r x yi i i
2 2

∂
∂

=
| − | >

− + − | − | ≤

⎧
⎨⎪

⎩⎪
f r

r

r R w

w w
r R r R w

( )
0

3
4

3
4

( )
i

i

radial
cyl

3 cyl
2

cyl

The axial component:

∂
∂

=

+ < < −
< −
> +

− + − | − | ≤

− − | − | ≤

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

f z

z

Z h z Z h
z Z h
z Z h

h h
z Z z Z h

h h
z Z z Z h

( )

0 or
or

3
4

3
4

( )

3
4

3
4

( )

i

i

axial

low up

low

up

3 up
2

up

3 low
2

low

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: feig@msu.edu. Phone: 517-432-7439.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported in part by National Institute of Health
Grant GM084953. Computational resources were provided by
XSEDE facilities (TG-MCB090003) and High Performance
Computing Center at Michigan State University.

■ REFERENCES
(1) Karplus, M.; McCammon, J. A. Molecular dynamics simulations
of biomolecules. Nat. Struct. Mol. Biol. 2002, 9 (9), 646−652.
(2) Marrink, S. J.; Risselada, H. J.; Yefimov, S.; Tieleman, D. P.; de
Vries, A. H. The MARTINI force field: Coarse grained model for

biomolecular simulations. J. Phys. Chem. B 2007, 111 (27), 7812−
7824.
(3) Panahi, A.; Feig, M. Dynamic heterogeneous dielectric
generalized Born (DHDGB): An implicit membrane model with a
dynamically varying bilayer thickness. J. Chem. Theory Comput. 2013, 9
(3), 1709−1719.
(4) Feig, M. Implicit membrane models for membrane protein
simulation. In Molecular Modeling of Proteins; Kukol, A., Ed.; Humana
Press: Totowa, 2008; Vol. 443, pp 181−196.
(5) Ohkubo, Y. Z.; Pogorelov, T. V.; Arcario, M. J.; Christensen, G.
A.; Tajkhorshid, E. Accelerating membrane insertion of peripheral
proteins with a novel membrane mimetic model. Biophys. J. 2012, 102
(9), 2130−2139.
(6) Brannigan, G.; Philips, P. F.; Brown, F. L. H. Flexible lipid
bilayers in implicit solvent. Phys. Rev. E 2005, 72 (1), 011915.
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(30) Kucěrka, N.; Tristram-Nagle, S.; Nagle, J. F. Closer look at
structure of fully hydrated fluid phase DPPC bilayers. Biophys. J. 2006,
90 (11), L83−L85.
(31) Nagle, J. F.; Tristram-Nagle, S. Structure of lipid bilayers.
Biochim. Biophys. Acta, Rev. Biomembr. 2000, 1469 (3), 159−195.
(32) Klauda, J. B.; Venable, R. M.; Freites, J. A.; O’Connor, J. W.;
Tobias, D. J.; Mondragon-Ramirez, C.; Vorobyov, I.; MacKerell, A. D.;
Pastor, R. W. Update of the CHARMM all-atom additive force field for
lipids: Validation on six lipid types. J. Phys. Chem. B 2010, 114 (23),
7830−7843.
(33) Mark, P.; Nilsson, L. Structure and dynamics of the TIP3P,
SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 2001, 105
(43), 9954−9960.
(34) Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N·
log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993,
98 (12), 10089.
(35) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. Numerical
integration of the Cartesian equations of motion of a system with
constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977,
23 (3), 327−341.
(36) Park, S.; Im, W. Two dimensional window exchange umbrella
sampling for transmembrane helix assembly. J. Chem. Theory Comput.
2013, 9 (1), 13−17.
(37) Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.;
Kollman, P. A. The weighted histogram analysis method for free-
energy calculations on biomolecules. I. The method. J. Comput. Chem.
1992, 13 (8), 1011−1021.
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