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Abstract

During rest, the mammalian cortex displays spontaneous neural activity. Spiking of single
neurons during rest has been described as irregular and asynchronous. In contrast, recent
in vivo and in vitro population measures of spontaneous activity, using the LFP, EEG, MEG
or fMRI suggest that the default state of the cortex is critical, manifested by spontaneous,
scale-invariant, cascades of activity known as neuronal avalanches. Criticality keeps a net-
work poised for optimal information processing, but this view seems to be difficult to recon-
cile with apparently irregular single neuron spiking. Here, we simulate a 10,000 neuron,
deterministic, plastic network of spiking neurons. We show that a combination of short- and
long-term synaptic plasticity enables these networks to exhibit criticality in the face of
intrinsic, i.e. self-sustained, asynchronous spiking. Brief external perturbations lead to
adaptive, long-term modification of intrinsic network connectivity through long-term excitato-
ry plasticity, whereas long-term inhibitory plasticity enables rapid self-tuning of the network
back to a critical state. The critical state is characterized by a branching parameter oscillat-
ing around unity, a critical exponent close to -3/2 and a long tail distribution of a self-
similarity parameter between 0.5 and 1.

Author Summary

Neural networks, whether artificial or biological, consist of individual units connected to-
gether that mutually send and receive parcels of energy called spikes. While simply de-
scribed, there is a vast space of possible implementations, instantiations, and varieties of
neural networks. Some of these networks are critically balanced between randomness and
order, and between death by decay and death by explosion. Selecting just the right proper-
ties and parameters for a particular network to reach this critical state can be difficult and
time-consuming. The strength of connections between units may change over time via
synaptic plasticity, and we exploit this mechanism to create a network that self-tunes to
criticality. More specifically, the interplay of opposing forces from excitatory and inhibito-
ry plasticity create a balance that allows self-tuning to take place. This self-tuning takes rel-
atively simple spiking units and connects them in a way that creates complex behavior.
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Introduction

The mammalian cortex presents a challenging complex system for the study of information pro-
cessing, behavioral adaptation, and self-organization. At rest, a state in which there is no obvious
sensory input or motor output, neural activity in the cortex is predominantly spontaneous, or
ongoing. At the single neuron level, resting activity has been characterized as persistent and irreg-
ular firing of action potentials, or spikes. A well-known aspect of cortical spiking is that, at rest,
the correlation between distant, single neuron spiking is very low [1]. Persistent asynchronous
background activity (PABA), however, is typically interpreted as a largely independent activity.
Independence does not seem concomitant with the cortex as a complex system, which typically
displays interactions among most system elements and long-range structure as detailed below.
Demonstrations regarding the exquisitely high sensitivity of cortical networks to the addition of
even a single spike [2] have further fueled the debate concerning robust cortical computation in
the presence of apparently uncorrelated contributions from single neurons [2, 3].

Other research, however, has demonstrated that spontaneous cortical activity in vitro [4-6]
and in vivo [1, 7, 8] at the population level manifests as precisely organized spatiotemporal cas-
cades of activity termed neuronal avalanches. For critical networks, the scale-invariance of ava-
lanche sizes is reflected by a power-law with exponent —3/2. Such a power-law is expected
when cortical networks are balanced so that spiking activity neither tends to increase nor de-
crease, a state quantified by the critical branching ratio o =1 [4].

Theory predicts that networks with critical dynamics optimize numerous aspects of infor-
mation processing [9]. Specifically, experiment and modeling show maximized information ca-
pacity and transmission [5], maximized number of metastable states [10, 11], optimized
dynamic range [12, 13], and optimum variability of phase synchrony [6]. The ubiquity of scale-
invariance in nature, combined with its advantages for information processing, suggests that
each of the foregoing properties would be beneficial for neuronal models and artificial systems,
i.e. physical embodiments of neuronal networks, as well [14, 15]. In all of these cases, the net-
works in question are critical and not merely balanced.

Recently, both conservative [16] and non-conservative [17] neural networks featuring short-
term synaptic plasticity (STP) have been demonstrated to be critical, or display neuronal ava-
lanches. Likewise, neural networks that incorporate long-term synaptic plasticity, such as spike-
timing dependent plasticity (STDP), have displayed balanced networks as well [18, 19]. These
models, however, did not exhibit self-generated PABA [3, 20] and were not capable of self-tun-
ing to criticality after being steered away from it by strong perturbations. A neural network that
was capable of self-tuning to stable regimes based on short-term plasticity was described in
[21], however that network did not exhibit critical dynamics and did not include long-term
STDP that can create lasting changes to synaptic conductances. We show that it is possible for a
single neural network to exhibit four of the above properties simultaneously, namely PABA,
self-tuning due to short-term plasticity (as in [16, 17]) and long-term plasticity (as in [18-19,
22]) and critical balance (as in [16, 17]). We also show that such a network undergoes a lasting
change in synaptic strengths, thereby effective connectivity, suggesting the capability of learn-
ing. Combining all of these properties into a single system greatly diminishes the need for exter-
nal controls in order to establish the desirable network dynamics and behavior.
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To that end, we demonstrate in a 10,000 neuron network model with 20% inhibitory neu-
rons including AMPA and GABA-receptor dynamics, how a network self-tunes to criticality.
This deterministic network spontaneously displays PABA and undergoes changes in network
dynamics and structure due to short- and long-term synaptic plasticity in the response to per-
turbations, while self-tuning back to a critical regime. We believe that this capability will lead
to the realization of future synthetic physical systems that self-tune to be optimally sensitive in
response to multi-scaled stimuli and adapt to changing environmental conditions, thus paving
the way for synthetic intelligent systems [14-15, 23, 24].

Results

Network spiking behavior

A 10,000 neuron network with both excitatory (80%) and inhibitory (20%) neurons was simulat-
ed for 900 s in 1 ms time-steps. The simulator itself [25] was based on the dynamics and feature
set of a specific neuromorphic hardware implementation [15, 26]. These features are short term
plasticity (STP), spike-timing dependent plasticity (STDP), and AMPA and GABA-receptor ki-
netics. For details of the network model and simulation parameters see Materials and Methods.

The simulation began by injecting Poisson-distributed spikes at a 300 Hz firing rate into a
randomly chosen set of 20 excitatory (E) neurons. After 15 ms, the initializing external drive
ceased and the network was left to develop its own internal dynamics. The effect of varying
these initial perturbation parameters is not well known, and is a subject open for further study.
After the initial 15 ms, the network stabilized to a spontaneous firing mode where it main-
tained an average firing rate of 31.8 & 2.6 Hz. Average rate is defined as the number of spikes
produced by the network per unit time, divided by the number of neurons.

Spiking was asynchronous and irregular as quantified by both pairwise correlations between
spike-trains and the coefficient of variation of inter-spike-intervals. Specifically, pairwise corre-
lation distributions from spontaneous activity in the model were centered around 0, as shown
in Fig. 1b. Such weak correlation in spiking in our model is in line with the weak pairwise cor-
relations in spiking found in ongoing activity of awake monkeys that demonstrate neuronal av-
alanche organization in the local field potential [1, 27] (Fig. 1a). They are also similar to near
zero-mean correlations found for spiking in vivo in both rats and monkeys, and simulations of
large balanced networks that do not exhibit continuous synaptic plasticity [28, 29]. While the
firing rate achieved in our model is higher than observed in mammalian neuronal networks
[3, 20], we find that as network size increases, firing rate decreases to below 5 Hz for networks
larger than 100,000 neurons (Fig. 1c).

In order to quantify the irregularity of spiking in the network, we calculated distributions of
the coefficient of variation, CoV = o of inter-spike-intervals (ISIs). That is, the ratio of the

standard deviation of a series of ISIs to the mean ISI. If the standard deviation is greater than
the mean, i.e. if CoV > 1, the ISIs are considered irregular. Fig. 1d shows the distribution of fir-
ing rates for the network. For a range of ISIs between 3 ms and 1000 ms, equivalent to a range
between 300 Hz and 1 Hz, the distribution of CoV is as shown in Fig. 1e. This CoV distribution
is heavily skewed and centers near 2.5, demonstrating highly irregular spiking. If the range of
ISIs is restricted further to those between 10 ms and 1000 ms (100 Hz to 1 Hz) (Fig. 1f), then
the distribution of CoV peaks slightly below unity, suggesting an exponential distribution of
ISIs close to that expected from a Poisson process. Thus, a considerable contribution to spike
irregularity originates from action potential bursts at 100-300 Hz.

Treating the firing rate of the network as a dynamical system in its own right, it is possible
to estimate fixed points in order to identify stable (and unstable) firing rates. Assuming a Lan-
gevin model for the firing rate, Fig. 2b shows a reconstruction of the deterministic dynamics
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Figure 1. Neurons are uncorrelated during PABA and exhibit Poisson-like irregularity. A) Neuronal firing is weakly correlated during ongoing activity in
awake monkeys that display neuronal avalanches in the local field potential (LFP) Distributions of pair-wise correlation coefficients of firing in the pre-motor
cortex of two awake monkeys, S1 (1.2 Hz mean rate) and S2 (5.2 Hz mean rate). For details see the Materials and Methods section and [1, 27].

B) Distributions of pair-wise correlation coefficients for 50 excitatory and 50 inhibitory simulated spike-trains from 200 s to 300 s (pre-pulse), 300 s to 400 s
(during pulse), 800 s to 900 s (post-pulse), and 20 s to 900 s (full). All distributions are centered close to or at 0 demonstrating uncorrelated firing. In addition,
if responses to inputs are included (see below) (during pulse and full), the distributions are slightly right-tailed reflecting the increase in correlation due to
common input. C) Dependence of firing rate on network size. As the number of neurons increases, the average firing rate decreases. At sizes above 100,000
neurons, i.e. on the order of a small collection of cortical columns, firing rates drop to below 5 Hz, which is comparable to biological networks. Each data point
represents the results of a parameter search at that network size, minimizing firing rate. D) Distribution of firing rates in the network. E) Coefficient of Variation
for ISIs between 3 ms and 1000 ms. F) Coefficient of Variation for ISls between 10 ms and 1000 ms. The CoV plots show that including ISIs between 3 ms
and 10 ms greatly affects the measured irregularity of spiking intervals, possibly suggesting a high-frequency bursting process.

doi:10.1371/journal.pcbi.1004043.g001

[30, 31]. Firing rates greater than 50 Hz exist entirely in the first 500 ms of the simulation,
when the network goes through a stabilization period. During this period, firing rates visit a se-
quence of multi- and meta-stable states until settling into a stable fixed point near 30 Hz. More
study is required to know whether the fixed points at greater firing rates still exist or have been
annihilated due to bifurcations, a bifurcation being a change in the number or type of fixed
points. It is worth noting that a stable and unstable fixed point pair near 10 Hz (see Fig. 2b
inset) is very near a bifurcation.

Network criticality

Even though the spiking behavior of the network is classified as uncorrelated, i.e. asynchronous
and irregular, there might still be identifiable structure. Specifically, causal spikes, or spikes
that cause other spikes, can be grouped into avalanches of particular sizes; the inflation or de-
flation of causal spikes as they propagate through the network can be balanced or unbalanced;
and fluctuations in ISI can be correlated or uncorrelated. If these three measures take on partic-
ular values, the network is said to be in a critical state, which we detail below.

The first measure is based on avalanche sizes, where an avalanche is identified as a set of
contiguous spiking events. If a neuron spikes without any input from a presynaptic neuron, it
is the beginning of an avalanche. If a neuron spikes due to incoming spikes, the new spike is a
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Figure 2. Criticality analyses. A) The exponent A was measured during network evolution for a sliding time-window, then further grouped into a sliding
window of A estimates in order to show histograms changing over time. The top right inset shows sub-critical behavior (t=20s, A = —2.49, R® = 0.9855,

p < 0.001). Once the network reaches a steady state exhibiting PABA, the network becomes critical with A ~ —1.5. For example, the late stage inset (top left)
shows critical behavior (t = 500 s, A = —1.481, R? = 0.9984, p < 0.001). B) Estimated deterministic dynamics for the firing rate of the network. Data for firing
rates over 50 Hz come entirely from the first 500 ms of the simulation, where the network goes through a period of stabilization. Firing rates during that period
visit a sequence of multi- and meta-stable states until settling into a stable fixed point near 30 Hz (inset). C) The branching ratio 0. The two insets show o at
different stages. The early stage shows a very high firing rate regime, and a steep drop to a relatively low firing rate during which o fluctuates widely.
Eventually the network settles down, at about 0.7 s, and oscillates around o = 1 for the remainder of the simulation. D) The distribution of scaling exponents
a measured from 1 s to 900 s for 1000 randomly chosen neurons. All exponents lie between 0.5 and 1.0, indicating correlated fluctuations.

doi:10.1371/journal.pcbi.1004043.g002

member of the same avalanche as the spiking presynaptic neurons. In a causally closed net-
work, this definition only makes sense for a subgraph of the network, where inputs that start
avalanches are allowed to come from neurons outside of the subgraph.

Avalanche size is defined as the number of spikes that belong to an avalanche, and the distri-
bution of sizes is particular to the properties of the network. If this distribution follows a
power-law, it will produce a straight line when plotted on a log-log scale. The slope of this line,
/, is related to the power-law exponent.

It has been observed, both experimentally and following from theory [4], that neuronal net-
works behaving in the critical regime have A = —3/2. Using an avalanche tracking algorithm
(see Methods), we measured the avalanche size distribution for a sliding 100 s window, produc-
ing estimates for / over time, which were further grouped into sliding windows of 20 4
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estimates to produce histograms over time (Fig. 2a). After about 300 s into the simulation,

A =2 =3/2. In our analysis, 12.5% of neurons were randomly sampled by the avalanche tracking
algorithm (see Methods). Random sampling produces a relatively normal distribution of 4 esti-
mates. After 500 samples for the period of time between 500 s and 600 s, the distribution of cor-
responding / estimates had a mean of -1.620 with standard deviation 0.0700.

The second measure assessed the branching ratio ¢ of the network. The branching ratio
¢ measures the average ratio of postsynaptic spikes to presynaptic spikes. If ¢ < 1, or is sub-
critical, the spiking activity in the network decays. If ¢ > 1, or is super-critical, then spiking activ-
ity in the network grows. A branching parameter ¢ = 1 signifies a stationary network where, on
average, the number of spikes received by a neuron results in about the same number of spikes
emitted by postsynaptic neurons [32]. The branching ratio over the course of the simulation was
measured and is plotted in Fig. 2c. Oscillations of ¢ about unity indicate that the network is stable
in the context of critical branching. Such stability is a necessary, but not sufficient, condition for
the more subtle property of criticality as measured by avalanche size distributions above.

As a third measure of criticality, the network simulation was analyzed using detrended fluc-
tuation analysis (DFA) [8, 33], which measures how the variance of fluctuations in spiking ac-
tivity changes over changes in measurement scale (see Methods). DFA estimates a scaling
exponent o, which, when in the range 0.5 < o < 1, indicates positive long-range correlations in
the fluctuations. Results of DFA for individual spike-trains are presented in Fig. 2d as a distri-
bution of scaling exponents with mean o = 0.68 (SD = 0.061). This distribution shows that scal-
ing exponents are spread among the range that coincides with correlated fluctuations.

Critical networks are finely balanced

As alluded to above, critical networks, and critical systems in general, are so called because they
are balanced between two otherwise stable states or behaviors. Avalanche size distributions,
branching ratios, and scaling exponents are designed to test properties of criticality, but it is
possible to verify the balance question directly. First, the currents from excitatory and inhibito-
ry synapses were separated and tallied. Fig. 3 shows excitatory and inhibitory currents, as well
as their difference. The small difference between both currents demonstrates that excitation
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Figure 3. Balance between excitatory and inhibitory currents during stable expression of PABA. A) During the initial 0.7 s when the network dynamics
evolves towards lower firing rates, the network is not balanced as shown by E (green) and | (red) synaptic currents and net synaptic current (blue). Balance in
E/I develops after about 0.7 s at lower firing rate even when the network is not yet critical (cf. Fig. 2a). As the overall strength in E/I currents increases, the
network establishes critical dynamics (about 200 s, cf. Fig. 2a). B) The net synaptic current shows a balance between E and / synaptic currents for the
perturbed case despite brief, temporary imbalances due to the perturbations.

doi:10.1371/journal.pcbi.1004043.g003
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Figure 4. Divergence due to a single spike perturbation. A) Spike vector distance at each time-step between a control simulation without perturbations
and an otherwise identical simulation with a single extra spike introduced at t = 300 s. The x-axis is plotted in time relative to the introduction of the single
spike. B) Divergence of spike vector distance follows an exponential function (exp &, &= 0.1087 & 0.0017, 95%CI = (0.1070, 0.1104), R? = 0.9782) until it
reaches a saturation point that is near the expected distance between two random spike vectors.

doi:10.1371/journal.pcbi.1004043.g004

and inhibition are in a state of balance. Strong perturbations, described below, caused the bal-
ance to be offset, but balance was regained after perturbations ceased.

The maintenance of balance suggests an active mechanism, the sensitivity of which can be
probed by injecting a single spike into the simulation. At 400 s into the simulation, a single
neuron was made to spike when it would not have ordinarily. The network was otherwise un-
perturbed. Since our network evolves deterministically, it is possible to directly compare the
evolution of its activity in the presence and absence of the single-spike perturbation. The corre-
sponding spike vector differences between the perturbed and unperturbed cases are shown in
Fig. 4. As can be seen in this figure, the addition of a single spike leads to a significant spike vec-
tor difference of about 25 spikes, which remains approximately constant throughout the re-
mainder of the simulation. At high temporal resolution (Fig. 4b), the single spike initiates an
exponential departure from the unperturbed state over the course of about 40 ms before a new,
stable state is reached.

Self-tuning and the role of synaptic plasticity

A network could be balanced, or positioned, at a critical state by, among other possibilities, the
adjustment of network parameters or input properties. In order for a network to seek criticality,
instead of merely being positioned there, it must be able to alter itself. The ability of the simu-
lated network to alter itself was tested by subjecting a subset of excitatory neurons to externally
applied perturbations. Perturbations were organized into a series of 10 pulses of 300 Hz spik-
ing, each lasting 500 ms and separated by 500 ms of silence. Three such perturbations were ap-
plied, at 300, 400, and 500 s, respectively.

The three criticality analyses were repeated to confirm that criticality was reattained after
such perturbations. These three measures, /, g, and o are shown for the perturbed simulation
in Fig. 5. Together, they show that the network did indeed reattain criticality. As a point of in-
terest, the deterministic dynamics of the network firing rate were again reconstructed, this time
showing the dynamics present during external perturbation. The stable point reached during a
perturbation is visible as a stable fixed point near 100 Hz. Notably, the perturbations have ap-
peared to push the low firing rate fixed point near 10 Hz through a bifurcation (see Fig. 5b
inset). Care must be taken with this interpretation, however, as the data only represent an ap-
proximation of deterministic dynamics.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004043 January 15,2015 7/28
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Figure 5. Criticality analyses showing the effect of strong perturbations. A) The power law exponent A was estimated during network evolution for a
sliding time-window, then further grouped into a sliding window of A estimates in order to show histograms changing over time. The network settles into critical
behavior with PABA as shown in the top left inset (t = 200 s, A = —1.5415, R? = 0.9998, p < 0.001). During the perturbation the network goes into a super-critical
regime as shown in the second inset (t =500 s, A = —1.8851, R? = 0.9967, p < 0.001) with A for the initial part of the distribution between —1.75 and -2, but with
a concentration of larger avalanches. The network returns to criticality after the perturbation as in the bottom right inset (t = 600s, A = —1.5592, R? = 0.9991,

p < 0.001). B) Estimated deterministic dynamics for the firing rate of the network. Data for firing rates over 150 Hz come entirely from the first 500 ms of the
simulation (see Fig. 2b), where the network goes through a period of stabilization. Rates between 50 and 150 Hz are due to external perturbation, with an
evident fixed-point near 100Hz. Otherwise, the network settles into a fixed point near 30 Hz (inset). C) The branching ratio o. The two insets show o during a
perturbation and after recovery. The latter inset should be compared to Fig. 2c, to see that branching ratio dynamics return to the same qualitative state. D) The
distribution of scaling exponents a for 1000 neurons. All exponents lie between 0.5 and 1.0, indicating correlated fluctuations. The bulge in the tail of the
distribution for 0.6 < a < 0.85 is due to the change in structural connectivity caused by STDP after the three perturbations.

doi:10.1371/journal.pcbi.1004043.g005

We may also note the effect of constant random perturbations. Such input to the network
would provide starting points for new avalanches throughout the whole simulation. Providing
a constant 1 Hz input of Poisson-distributed spikes causes the network to tune towards critical-
ity faster (possibly due to increased activity of STDP), but does not alter avalanche size distri-
butions. Another method of disturbing the network is to add variation to the network

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004043 January 15,2015 8/28
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Table 1. The eight parameters for the candidate network obtained from a parameter search to
identify neuronal networks that exhibit PABA, critical behavior and self-tuning to criticality.

Parameter Description Value

A" Max value for change in potentiation for E-STDP 0.0015

B Ratio of area under E-STDP curve for depression over potentiation 1.21

g Max synaptic conductance for E — E and E — [ synapses 1.94 nS
am Max synaptic conductance for/ — E and | — | synapses 4.74 nS
TAMPA Time constant for AMPA kinetics 19 ms
TGABA Time constant for GABA kinetics 14 ms
TF STP facilitation time constant 41 ms
/%) STP depression time constant 26 ms

doi:10.1371/journal.pcbi.1004043.t001

parameters in Table 1. We added 1% noise to each parameter throughout a simulation and ob-
served that self-tuning to criticality was still manifested.

As argued above, self-tuning to criticality requires change within the network, which is
most readily effected by altering synaptic conductances. Fig. 6 shows the changing distribution
of these synaptic “weights” over the course of the simulation. While the effect of perturbations
on E and I synaptic weights is evident visually, by the three ridges in the weight-time plot re-
spectively (Fig. 6a,c) it can be further quantified by comparing the perturbed and unperturbed
weights using a simple mean square error measure (see Methods). This measure shows that
each perturbation caused strong change to the synaptic conductances in both E and I weights,
which outlasted the perturbation. Thus, these perturbations also significantly changed the ef-
fective network topology as well.

Speaking more directly to topology, it is possible to define an in-degree, the number of in-
coming connections to a neuron, using a synaptic weight threshold. In this manner, a connec-
tion was considered present if its strength had a value of at least 0.1. Applying this threshold,
the unperturbed simulated network began (Fig. 7a) with a mean excitatory in-degree of 80.07
(SD = 8.862) and a mean inhibitory in-degree of 20.06 (SD = 4.471). Since pre and post neurons
for all connections were chosen using the same random selection procedure, in- and out-
degrees were approximately equal. After 300 s of simulation time (Fig. 7b) the mean in-degree
of excitatory synapses dropped significantly to 15.19 (SD = 3.845, £(15998) = 600.7, p < 0.001).
Inhibitory in-degree remained largely unchanged at 19.93 (SD = 4.341, #(15998) = 1.901,

p =0.057). Fig. 7c shows the in-degree time-series for both perturbed and unperturbed cases.

It is unclear from the relatively stable mean in-degree depicted in Fig. 7c whether the degree
of connectivity between neurons is statically or dynamically stable. That is, the stability of the
mean could be due to slowly changing connectivity, or connectivity could be changing rapidly
while maintaining a near constant mean value. This question was addressed by examining
which and how often synapses transitioned between strong and weak (see Methods). The oc-
currence of these so-called “flips” is summarized in Fig. 8, showing that connectivity is most
likely the result of rapidly changing synapses that combine to a mean value that changes over a
slower time-scale.

Inhibitory plasticity

Plasticity of inhibitory synaptic connections is supported by recent experimental and theoreti-
cal findings [22, 34]. To judge the importance of inhibitory plasticity, the network was simulat-
ed both with and without inhibitory STDP. Fig. 9a shows firing rates achieved as a function of
one of the varying network parameters,  (the E-STDP depression to potentiation ratio). In the
presence of inhibitory STDP, there is a reasonably wide range of f ~ [1.1, 1.7] for which the
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Figure 6. Evolution of synaptic conductances in the network. A) The evolution of E synapses in the E-/ network shows that conductances develop a
bimodal distribution, heavily favoring weights close to zero. The initial E synaptic conductances were set to 0.5 nS for all synapses. B) The mean square error
(MSE) between E synaptic conductances with and without perturbations during network evolution. Each perturbation causes a jump in weight differences,
with weights continuing to diverge between perturbations. C) The evolution of / synapses in the E-/ network shows that the synaptic weights develop a
unimodal, and qualitatively exponential, distribution of synaptic conductances. The initial / synaptic conductances were set at 0.5 nS for all synapses. D) The
MSE between / synaptic conductance histograms with and without perturbations. Inhibitory weights tend to recover from perturbations more than excitatory
weights.

doi:10.1371/journal.pcbi.1004043.9g006

network can attain reasonable firing rates. In the absence of inhibitory STDP, small changes
of f either saturate firing rate at 320 Hz or neurons are quiescent, and no intermediate regime
can be established.

Reasonable firing rates, i.e. rates that do not tend to either a maximum or zero, suggest a
kind of balance, such as the balance of a critical network. To test the hypothesis that in our
model this balance results from inhibitory plasticity, avalanche distributions were measured
for a simulation in which inhibitory STDP was shut off after an initial period of time. That is,
inhibitory synapses were frozen at whatever level they had reached at that point in the simula-
tion, which was otherwise left to complete as usual. Avalanche distribution measurements for
this simulation, following the same method as above, are shown in Fig. 9b. The data shows that
after inhibitory STDP is turned off, avalanche distribution power-law exponents drift away
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doi:10.1371/journal.pcbi.1004043.9g007

from criticality. Other measures behave differently (Fig. 9¢,d), highlighting the difference be-
tween balance and criticality. While the power law in avalanche size is lost and thus the system
deviates from critical dynamics, the system remains stationary in its activity resulting in a
maintained current balance close to zero and a branching ratio close to 1. These two measures,
as said above, are necessary conditions for criticality; here that distinction is made clear.

Short and long-term plasticity

Synaptic plasticity appears to be responsible for a network’s ability to self-tune, both for main-
tenance of background activity and reaction to strong perturbations. Given two types of plastic-
ity at work, we judged their relative roles by examining the Shannon entropy of their respective
changes to synaptic weight (see Methods). Fig. 10 shows the entropy of synaptic efficacy, pro-
duced by STP, and conductance change, produced by STDP, as they change over time. A great-
er entropy suggests greater role of the corresponding plasticity mechanism. Our analysis shows
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Figure 8. Occurrences of a synaptic weight either transitioning from low (< 0.1) to high (> 0.9) or vice versa. A) Transitions during an unperturbed
simulation. B) Transitions during a perturbed simulation.

doi:10.1371/journal.pcbi.1004043.g008

that during early states of the simulation, STDP is primarily responsible for changes to synaptic
connection strength. STP dominates when the network is at rest. During strong perturbations,
I-STDP becomes more active than STP, further demonstrating the importance of I-STDP to
maintain the network at criticality.

Discussion

Here we show how synaptic plasticity allows neuronal networks to attain a number of desirable
network dynamics and properties. First, it helps to produce PABA, persistent asynchronous
background activity, which acts as a foundation for more specific behavior. Second, this foun-
dational activity takes on characteristics of so-called critical networks. Lastly, synaptic plasticity
enables the critical network, once established, to remain critical in the face of perturbations.
Spiking in the simulated network is only weakly correlated and irregular, shown by examin-
ing pairwise correlations between spike-trains and coefficient of variation within spike-trains.
By restricting the range of ISIs considered, it can be concluded that spike bursts are responsible
for a high coefficient of variation in otherwise Poisson-like spiking. Spiking with bursts can re-
sult from tonic input [35], but in this network bursts are favored by a V., voltage that is
higher than V.. After a spike, membrane voltages are decreased to V.., which gives integra-
tion a head-start toward reaching the spiking threshold. This mechanism produces spikes on a
time-scale near the refractory period of the neuron (see Fig. 12). Another possible source of
bursts, most likely on a longer time-scale, is the action of STDP to create a bimodal distribution
of synaptic strengths, which could take the place of manually increasing the J parameter in
[35]. In any case, spike bursts contribute to high dimensional network activity, which increases
input separability and dynamical memory capacity[35]. Avalanche size distributions, branch-
ing ratio, and correlated spike-interval fluctuations leading to DFA « > 0.5 show that the ap-
parently irregular spiking activity is consistent with a critical network. A hallmark of self-
organizing systems is a composition of relatively “dumb” units connected together and con-
strained by “interaction dominant dynamics” [36]. In the case of the simulated network pre-
sented above, the connection strength between units is altered by synaptic plasticity, effectively
changing the network topology. The individual units, however, remain primarily unchanged.
The structure of the network self-organizes such to combine uncorrelated units in a balanced
way to produce network-level behavior that meets several criteria for criticality. This approach
is different from other robust, balanced networks that rely on pre-constrained synaptic weights
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criticality. D) Distributions of current balance after the switch at 300 s, showing that balance is retained even after I-STDP is switched off.

doi:10.1371/journal.pcbi.1004043.g009

[37] and do not address the more subtle features of criticality, such as power-law avalanche
sizes. In contrast, the network presented here adapts to perturbations with lasting changes to
synaptic conductances (see Fig. 6) while maintaining the ability to self-tune towards a critical
state.

The balance created is especially evident when following the reaction of the network to a
single extra spike. Since the network dynamics are fully deterministic, we were able to follow
two parallel realities for the network: one in which a particular spike occurred and one in
which it didn’t. What results are two spike histories that begin to diverge exponentially, mean-
ing that the network is sensitive to small changes in state. Since the network is finite, the spike-
vector difference settles at a new value near the expected difference for two random spike-
vectors. Balance in the network is also present at the level of excitatory and inhibitory currents.
These currents are observed to balance each other, leaving the resultant current near zero. The
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Figure 10. The difference in entropy AH between excitatory and inhibitory synaptic conductance changes due to STDP and change in synaptic
efficacy due to STP. A) During early states, STDP is primarily responsible for changes to synaptic connection strength (AH > 0). Otherwise, STP appears
more active (AH < 0) when the network is at rest. B) During strong perturbations, I-STDP becomes much more active than STP.

doi:10.1371/journal.pcbi.1004043.9010

level at which the currents balance is slightly excitatory, which makes sense for a spontaneously
active network.

This last type of balance points towards the key mechanism for self-tuning. There are a lim-
ited number of ways that current into a neuron can be altered. In the present model, those
ways are limited to changing synaptic conductance, via STDP, or changing synaptic efficacy,
via STP.

It cannot be overstressed that both excitatory and inhibitory long-term plasticity are impor-
tant, as it is the interplay between these two effects that results in the balanced, critical network
achieved above. Networks without inhibitory STDP fail to reach this state for any of a large set
of possible parameters. Even otherwise balanced networks without inhibitory STDP succumb
to runaway positive feedback when stimulated by strong perturbations [38].

Fig. 9b shows a drift away from criticality after inhibitory STDP is switched off. A close in-
spection of the size distributions reveals that they contain a large amount of large avalanches,
i.e. global bursts. Such global bursts tend to interrupt temporal correlations and spatial hetero-
geneity by globally depleting network resources. This interpretation is further supported by the
finding that while a balance between excitatory and inhibitory current is maintained, the net
positive current has increased making the network too excitable. Our simulations suggest that
inhibitory STDP allows the network to respond rapidly enough to transient over-excitability to
prevent resource depletions, which is crucial to maintain long-term temporal correlations in
the system.

It is not only a practical matter that inhibitory STDP is required, but there are deep connec-
tions to self-organizing systems as well. Self-organization, especially self-organized criticality, is
usually the result of two opposing effects, often some mutually-referring function of each other
[39-42]. Here, excitatory and inhibitory STDP play these roles, and together produce various
forms of compensatory feedback, depending on temporal differences between pre- and post-
synaptic spikes [43, 44]. Fig. 11 shows a schematic description of how these two STDP func-
tions combine to create a balanced network, in the hopes of attacking the “how” and “why” of
the mechanisms involved. Further study on these points is required. We can discriminate
roughly 4 different types of feedback depending on these temporal differences.
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The inhibitory STDP function is symmetrical, supporting an increase in synaptic conduc-
tance, i.e. synaptic inhibition, for closely timed pre- and postsynaptic spikes regardless of their
order. In contrast, the excitatory STDP function is anti-symmetric and biased towards depress-
ing action. Together, averaged over the firing activity of a network, these two STDP functions
combine such that along the At = t,,, — £, time-line, there are four qualitative regions: proxi-
mal causal and anti-causal, for those spikes that occur relatively close together, and distal causal
and anti-causal, for those that occur farther apart. The difference in symmetry between
E-STDP and I-STDP causes these regions to behave asymmetrically at the population level. In
the Balanced regime, causal spikes that occur close to each other lead to a similar strong in-
crease in excitation and inhibition. In the Accelerated Potentiation regime, where causal spikes
occur at larger temporal distance, excitatory potentiation dominates whereas inhibitory STDP
is absent or slightly negative. These leads to a temporal tightening of these causal spikes. In
contrast, Pruning affects anti-causal spikes that are close in time. The decrease in excitatory
drive and strong increase in inhibition for these spike pairs should loosen their temporal tight-
ness and greatly reduce their probability of occurrence. Finally, in the Decelerated Depression
regime, we encounter anti-causal spikes that are far-apart in time. In this regime E-STDP
slightly dominates leading to reduction of the corresponding excitatory synapses, tempered by
slight decreases in inhibition. The combined effect of the symmetry breaking is to foster bal-
ance among neurons that form networks of causal spiking, quickly reduce those that are
strongly anti-causal, and maintain all other connections at a low, but non-vanishing level.

It is not surprising that inhibitory plasticity leads to balanced networks, as this phenomenon
has been shown many times before [22, 43, 44]. The stabilizing nature of inhibitory plasticity is
not the main issue here, but rather how that stability allows tuning towards critical spiking be-
havior. Furthermore, a stable network is not necessarily a critical one, as stability is necessary
but not sufficient for criticality. Running the parameter search described in Code S1 on net-
works without plasticity results in some balanced networks that are not critical. Stability itself
might come from or be enhanced by another homeostatic mechanism, such as synaptic scaling
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doi:10.1371/journal.pcbi.1004043.9012

[45], however such mechanisms normally occur on much longer time-scales than the duration
of the simulations presented above. Future investigations could focus on such questions.

The co-existence of PABA and self-tuning to criticality in our model is consistent with sev-
eral experimental observations of the mammalian cortex. The cortex is spontaneously active
both during development and in a fully developed cortex and this activity is asynchronous
with low firing rates [28]. Neuronal avalanches are observed in animals [1], humans [7, 8], and

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004043 January 15,2015 16/28



®PLOS

COMPUTATIONAL

BIOLOGY

Synaptic Plasticity Tunes Critical Networks

in vitro cell cultures [4-6]. This suggests that natural neuronal activity exhibits PABA and has
a tendency, on average, to operate close to its critical state.

While the model presented here takes many of its features from biological networks, and as
just argued, shares important behaviors as well, there are still many differences. These differ-
ences reflect themselves in the model parameters that best show self-tuning. For instance, there
is empirical evidence that the ratio of 75 to T4psp4 sits near 20 [46]. For this model, however,
that ratio sits near 2. As such, this model is not intended to be a biological model in itself, but
to encapsulate the driving dynamics for spiking networks that exhibit critical branching and
avalanches. Networks of different size, topology, and with more or fewer biological features are
expected to have different parameter sets for optimal self-tuning. Here, the qualitative dynam-
ics of STDP and STP, and their role in critical networks, have been clarified. Furthermore, they
have been quantified for a specific neuromorphic implementation of an E-I neuronal network
using LIF neurons, two different STDP rules, and synaptic short-term depression. When con-
sidering neuromorphic systems in general, biological networks may be taken as a special case.
Discovering which mechanisms in the general case are responsible for desired behavior, such
as self-tuning to a critical state, provides insight into their presence in biological systems, but
may also help to direct the design of large-scale artificial neuromorphic systems.

Materials and Methods
Network model overview

The recurrent neuronal network (Fig. 12a) consisted of 10,000 neurons composed of 8000
excitatory (E) neurons and 2000 inhibitory (I) neurons with a connection probability of 1%.
Neurons were simulated as single compartments with leaky integrate-and-fire (LIF) dynamics.
For this non-conservative network, synaptic input currents were modeled as exponentially de-
caying functions with a temporal time course approximating excitatory o-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid (AMPA) and inhibitory gamma-aminobutyric acid
(GABA) postsynaptic currents (Fig. 12b). Each combination of pre- and postsynaptic connec-
tions based on neuronal type were modeled, resulting in two excitatory (E — E, E — I) and
two inhibitory (I — I, I — E) types of synapses. All synapses in the model continuously exhib-
ited both short- and long-term plasticity. A notable aspect of our model is that its dynamics are
completely deterministic and there is no explicit source for asynchronous or irregular firing
such as external and irregular input or probabilistic synaptic transmission or action potential
generation. Instead, PABA in the model emerged from intrinsic, deterministic dynamics. As
shown, this deterministic design of the network allows for a detailed and precise analysis of
the network response to extremely small changes such as the addition or removal of a single
spike.

Two types of plasticity were implemented in the network. Short-term plasticity (STP),
which transiently changes synaptic efficacy as a function of spike frequency in the presynaptic
neuron (Fig. 12¢) was simulated using a phenomenological model [47, 48] that combines
short-term synaptic facilitation and depression. Long-term synaptic plasticity was imple-
mented based on spike timing-dependent plasticity (STDP) rules at the level of network con-
nectivity. In STDP, the temporal relationship between the arrival of synaptic input at a
postsynaptic neuron and the action potential generation in the presynaptic neuron determines
the magnitude and direction of the change at that particular synapse [22, 49-52]. We imple-
mented STDP for excitatory synapses using the well established asymmetrical function
(Fig. 12d). For inhibitory synapses (Fig. 12¢), we used a recently reported symmetrical function
(34, 53] (Fig. 12e).
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Detailed Neuron Model

The leaky integrate-and-fire neuron (LIF) [54, 55] is used to model neuronal dynamics. Neu-
rons were represented by a single compartment; no somatic, dendritic, or axonal specialization
were modeled. In response to multiple input currents coming from excitatory and inhibitory
presynaptic neurons in the sets Pre,,. and Pre;,,, respectively, the membrane potential V for
postsynaptic neuron i is determined by

av,
dt = (

Vrest - sz) + (Eex - sz) Z uljxijgw‘ij + (Einh - Vr) Z uij‘xijgz‘ij (1)

JEPreex JjEPreip,

TWI

When V reaches a threshold voltage V1 (Fig. 12b), the neuron fires a spike, and V'is made
equal to V., which was chosen to be 14 mV more positive than V.. This basic model pro-
vides several control variables for the membrane voltage including conductances g,, and g, for
excitatory and inhibitory synaptic inputs respectively, synaptic efficacy ux (see STP Model),
the membrane time constant 7,,,, the constant reversal potential for excitatory (E,,) and inhibi-
tory (E;,») synaptic currents, and a fixed voltage threshold V7, at which the neuron fires a
spike. Synaptic inputs to the neuron are modeled as conductances where a set of excitatory or
inhibitory presynaptic spike times, S, or S;,;, respectively, gives conductance dynamics,

d _

%zﬁ—&-wz&(t—s) (2)
t TamPA e

. 8.

+z) o(t—s) (3)

dt TGaBa €Sy

Here, the time constants 74/pa and Tgapa approximate the average decay of AMPA and

GABA currents respectively (Fig. 12b). The value of the excitatory and inhibitory synaptic con-
ductances w and z are controlled by STDP. In all of our simulations, 7, = 20 ms, Vy= -54 mV,
Viess = =74 mV, Vs = 60 mV, E,, = 0 mV, E;,,;, = —80 mV. The parameters T,yps and Tgapa
were estimated using a parameter search process (Table 1) to establish PABA at low average firing
rate. Simulations were based on fourth-order Runge-Kutta integration with a time step of 1 ms.

E-STDP Model

The E-STDP function modulates the change in excitatory synaptic conductance w based on the
timing difference (£, — t,5:), Or At, between the spike times of corresponding pre- and post-
synaptic neurons (Fig. 12c). The control parameters t* = 20 ms and 7~ = 20 ms determine the
temporal window over which STDP is effective. The change in synaptic conductance is com-
puted as

Wnew = Wold + AW (4)
where
Aw = grF(At) (5)
and
A
Atexp —f, At <0
F(At) = ! (6)

—At
—Aexp —, At>0
=

Ifw,, > g, thenw,, = g .On the other hand, if w,,,,, < 0, then w,,,,, = 0. The factors
A" and ff = |A” 17|/|A" ©7| control the increase or decrease in synaptic weight during learning
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[52], i.e. when STDP is active. The parameters A", 5, and g"* were estimated using a parame-

ter search process (Table 1). The initial excitatory synaptic conductance was set to 0.5 nS for all
synapses.

I-STDP Model

The I-STDP function modulates the inhibitory synaptic conductance z [22, 34] based on the
timing difference At between the spike times of corresponding pre- and postsynaptic neurons
(Fig. 12d). The synaptic conductance is computed as

Zoew = Zoia T AZ (7)

new

The change Az = B" is governed by the following equations,

—|At
Btexp L, |At| <1
Az = ! (8)
Y
—Bexp — |At| > 1

If z,,.,, < 0 then z,,,,, = 0. On the other hand, if z,,,,
all of our simulations are set as: B" = 0.0015 nS, B~ = 0.0003 nS, and t = 10 ms. The parameter

max j— max 1
> g then z,,, = g . The parameters in

g was estimated during the parameter search process (Table 1). The initial inhibitory synap-
tic conductance was set to 0.5 nS for all synapses.

STP Model

STP was implemented using a well-established phenomenological model [47, 48], which mod-
ulates synaptic efficacy (ux) based on the dynamics of available resources x and the fraction u
of these resources that are utilized by each presynaptic spike (Fig. 12¢). The dynamics of these
two parameters are described as

@_l—x
a1,

— uxo(t —t,) 9)

du_U—u
a1,

+ U —w)d(t—t,) (10)

where U is the baseline utility fraction set to 0.5 in all of our simulations and ¢ is the Dirac
delta function, which models the presynaptic spike event t,,. The model reproduces the behav-
ior of cortical synapses for both depressing (tp > tr) and facilitating (tr > 1) cases. The pa-
rameters Tp and Ty were estimated using a parameter search process (Table 1), resulting in a
network with 1 > 1p, for all synapses.

Parameter Search

We first performed a parameter search (see Discussion for comments about self-tuning) to
identify neuronal networks that exhibit PABA with relatively low firing rates when compared
to other simulated networks of this type, e.g. [17].

The role of a parameter search in a model that claims to be self-tuning is worthy of further
discussion. At first, any parameter search seems to be at odds with the concept of “self-tuning”.
The search, however, is at a broad level that identifies networks that subsequently have the self-
tuning property. That is, there are at least two levels at which manual parameter tuning might
take place. Here, a parameter search is performed at one level, such that no manual tuning is
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needed at the other level. The benefit provided by this process is that the parameter tuning that
is done is not problem specific, but yields networks that self-tune at the problem level.

While plasticity allows some amount of self-tuning, the parameters of a network must be
within particular ranges for it to do so. To find reasonable values for the parameters in Table 1,
we employed a biased random-walk searching algorithm. This search was primarily used to
find networks with lower firing rates than would otherwise have occurred for random or arbi-
trary selection of parameters, as well as lower firing rates than other simulated networks of this
type, e.g. [17]. As such, recent (1) and maximum (r,,,,) firing rates were placed into a rate per-
formance index, R, = 1> + 12 .

The eight parameters comprising the search space were: four parameters for STDP (g*,
g, B, AY), two STP time constants for facilitation (tz) and depression (zp), and two receptor
kinetic parameters 745pa and Tgapa for the neuron [48]. Networks with various combinations
of these eight parameters received a 15 ms lasting initialization of Poisson-distributed spikes at
300 Hz to a randomly chosen set of 20 E neurons, and left to run for 900 s.

During the search, each parameter was perturbed by Gaussian noise with standard deviation
equal to 2% of the parameter value. If such a perturbation resulted in an R less than the current
best, those parameters became the new starting point for perturbations. Typically, a good re-
gion in the parameter space was found within 100 iterations. The parameter search algorithm
is described in Code S1.

The first attribute to guide the search was to ensure that the network exhibited PABA. The
criterion for determining if a network exhibited PABA was based on measuring the duration of
time for which the average spiking activity of the network was non-zero after a brief external
initialization with Poisson spikes. We selected networks that exhibited PABA for the full 900 s
after initialization. We filtered the selected networks further on the basis of the second attribute
that the average firing rate remained less than 35 Hz with a peak firing rate less than 100 Hz.

We then evaluated the resulting networks for criticality using three measures: a branching
parameter g, the avalanche power-law exponent /, and the distribution of correlated fluctua-
tions parameter o. We arrived at the final set of candidate networks that simultaneously have
an average branching ratio ¢ = 1, critical exponent / /2 —3/2 for avalanche activity and a corre-
lated fluctuations parameter in the range 0.5 < o < 1. The results of these tests on each combi-

nation of parameters tried in the search are shown in Fig. 13.
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Figure 13. Number of desired properties (PABA and three measures of criticality) exhibited by simulations during the parameter search. Regions
within a parameter’s normalized range are evident as showing more or fewer desired properties. Each property is normalized within its observed range to the
interval [0, 1]. Vertically, each property is shifted slightly to aid visibility, so that a marker between two vertical axis tick-marks indicates a cumulative property
count of the lower tick-mark. Each data-point represents a single network, simulated for 900 s with a particular set of parameters.

doi:10.1371/journal.pcbi.1004043.g013
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Criticality Measures on deterministic spike train sets

The output of a neural network exhibiting PABA is a relatively dense set of spike trains. The
continuous nature of PABA makes analysis of spike propagation a non-trivial task. For in-
stance, many avalanches, as described below, might overlap in a way that makes their detection
difficult. In the paragraphs that follow, the techniques used to analyze such data are described.
Unless otherwise specified, we used the following conventions: a neuron i is taken to generate a
spike train X;(n), where X;(n) = 1 when there is a spike at time-step #, and X;(n) = 0 otherwise.
Synaptic connections form a graph with matrix G, where G;; = 1 if neuron 7 has a post-synaptic
connection to neuron j. A particular spike is referenced as a tuple (i,n) implying X;(n) = 1. Asa
convenience, also let X(n) = {i : Xj(n) = 1}, i.e. the set of neurons that spiked at time-step #.

Branching Ratio
The branching ratio of a spiking network measures the tendency of spikes to increase or de-
crease in number as they propagate through the network [4, 10]. In the first case, spiking
activity grows over time, while in the latter it diminishes. Generally, the measure is a ratio
of post spike activity to pre spike activity, such that if post activity is higher than pre activity,
the branching ratio is greater than unity. Likewise, if post activity is lower than pre activity,
the branching ratio is less than unity. Critical branching obtains when there is a balance
between the two. Below, we define both a local and network level measure of branching
ratio.

The local branching ratio at neuron i and time-step #n was calculated for a given time win-
dow A and offset ¢ according to

Z U:—(Zi?wrl j Gif
n—¢p—1
Z Um n—p—A J Gji

ai(n) = (11)

(12)

That is, a ratio of the number of post-synaptic neurons that spiked within the post time-
window to the number of pre-synaptic neurons that spiked within the pre time-window. See
Fig. 14 for a depiction of time windows and offsets. The per-neuron ratio can be averaged over
each neuron that spiked at time-step # to define a whole-network measurement of local
branching.

A network-level branching ratio can be defined slightly differently by computing the ratio
for the sum of all pre-synaptic and post-synaptic spikes in the network at time-step .

- Z X n Z U:t:iH J Gli
n—¢p—1
Z Z Um n—p—A -’ GJ’

This measurement is more representative of the network branching ratio, as it takes into ac-

a(n) = (13)

count shared connections more readily. For instance, if spiking neurons a and b both have c as
a post-synaptic connection, then a subsequent spike from c is counted towards the post-count
of both a and b. This is the method used in the presented analysis, with ¢ = 1 due to a 1 time-
step delay in the network and A = 3. Both methods show branching ratios near unity when the
network is exhibiting PABA.
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While a branching ratio near unity is supporting evidence of criticality, it is not specific to
it. Any self-maintaining deterministic network is expected to have this feature. As such, this
measurement should be taken together with the other measures of criticality that follow.

Avalanche distributions

An avalanche is a sequence of causally contiguous spikes. If a pre-synaptic spike causes a subse-
quent, post-synaptic spike, those spikes are said to be members of the same avalanche. A spike
that is not caused by a pre-synaptic spike, instead caused by either spontaneous activity or
some other external influence, is the start of a new avalanche. In a complex network that con-
tains decay times and delays the notion of a causal chain loses some meaning. As such, it is nec-
essary to describe what counts as a contributing cause.

In the present analysis, a spike at time-step # is said to be the product of all pre-synaptic
spikes that occur within a time window prior to n with width A and offset ¢ (see Fig. 14). That
is, pre-synaptic spikes that fall between n — ¢ — A and n — ¢ — 1 inclusive, are contributing
spikes. Alternatives exist to this assumption, such as picking a single pre-synaptic spike or
choosing a set using a synaptic strength threshold. It is not straightforward to say for certain
whether a small current did or did not contribute to a spike. As such, we choose to assume that
any pre-synaptic spike may count as causal. The choice of An and ¢ depend on the nature of
decays, delays, and other non-linear effects in the network. Decay and refractory times deter-
mine a meaningful A, while delay times determine ¢. The effect of altering parameters ¢ and A
has not yet been characterized analytically. Qualitatively, however, there are limits to the ranges
that make sense for a given network and that will produce reasonably representative avalanche
size distributions. For instance, if A is too large, then the time window can overlap causal pre-
post relationships. Breaking the causal links between time windows destroys the ability to track
avalanches, and so results in many avalanches of very small size. Likewise, choosing a ¢ that is
too large will skip over causal links, resulting in the same kind of degenerate avalanche size dis-
tribution. On the other end, choosing a small A will discount the effects of leaky currents and
underestimate causal responsibility. Finally, a small ¢ includes spikes that are outside of the
“light-cone” of the network, and couldn’t be causal.

Taking the kth avalanche as a set of spikes Ay, then spike (i, n) € Ay ifIs€ [n-¢p-A,n—¢
= 1] ((G, 5) € Ax A Gj; = 1). Otherwise, it is the beginning of a new avalanche and A contains only
(i,n). The distribution of avalanche sizes is then taken to be the distribution of set cardinalities.

A o ¢ A

—H P ——

no

Figure 14. A schematic spike raster diagram consisting of a set of spikes over time. Rows and columns
correspond to neurons and time-steps, respectively. Each blue dot represents a particular neuron spiking at a
particular time-step n. Additionally, there are pre- (left of np) and post- (right of ng) time windows and offsets.
Time windows are offset by a value ¢ and have width A. Branching ratio requires both pre- and post-time-
windows, while avalanche tracking requires only the pre-time-window.

doi:10.1371/journal.pcbi.1004043.g014
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It is possible to use this same procedure in order to examine a subset of neurons. For in-
stance, neurons can be sampled from the network with some probability p, 12.5% in our analy-
ses. This is meant to be analogous to measuring activation in a patch of in vivo tissue [56]. This
assertion is further examined below.

Connectivity is initially random. That is, for all nodes v € V, edges are created uniformly
with probability c. This is equivalent to an Erdds-Rényi graph G(N, c) where N = #V. Other-
wise, G(N, ¢) is known as G(V, E) with nodes V and edges E. Random sampling selects nodes
w e W C V with probability p. A sampled subgraph can then be defined as H(W, E ), where
E= {(x,9): (x,y) € EAx € WAy € W} That is, the subgraph contains the sampled nodes
and all and only those edges that exist between sampled nodes.

The analogy to in vivo sampling is motivated by the ability to take any such graph H and to
arbitrarily distribute its nodes W along a region of a manifold, such as a surface patch of corti-
cal tissue. It is prudent to note that the degree distribution of H is reduced from that of the full
graph G. For an arc (x, y), x € H, P(y € H) = ¢cp and P(y ¢ H) = c(1 — p). If the expected in and
out degree of G are both cN, the reduced out degree would then be cpN. Empirically, the ava-
lanche distributions obtained via sampling do not show peaks at multiples of the sample size,
suggesting that the sample is large enough compared to large avalanches [57], however sub-
critical deviations at large avalanche sizes might still be a result of sampling (see Results). The
implementation of this process is described in Code S2. The method described above produces
a discrete distribution of avalanche sizes. In order to estimate a scaling exponent, the distribu-
tion, without binning, was fit using linear regression.

Detrended Fluctuation Analysis

Detrended Fluctuation Analysis [58] (DFA) aims to find the functional relationship between
fluctuations and time scale. A spike train X;(n) has an equivalent representation of inter-spike-
intervals, where Y;(s) is the time interval between spike s and spike s+1 from neuron i. To deter-
mine the DFA fluctuation function, Y;(s) is first centered and integrated,

7, = %Z ,(5) (14)

s=1

where N; is the number of spike intervals in Y;.

The integrated series is then split into M equal segments 2, of length I such that N; = ML
From this point, the index i for a particular neuron is assumed. Each segment # is individually
detrended by removing some fit of the segment, z,,,, such as a least squares approximation.
Typically this is a first order linear regression. Fluctuations are measured at the segment level
and averaged to achieve a fluctuation measurement at that scale.

Pl=2) (e~ 2,) (16)

For a range of possible segment scales, F*(I) will show how the measure of fluctuation varies
with those scales. It has been shown [59] that processes with algebraically decaying autocorre-
lation functions, as opposed to exponentially decaying, have a power law fluctuation function

F(l) oc I, (17)

where o is said to be the scaling exponent. If the underlying fluctuations conform to a power
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law with exponent o, that exponent can be estimated using a linear regression in log-log coordi-
nates. Note, however, that there are significant caveats when doing so [60, 61].

Entropy of weights and synaptic efficacy

Each neuron in the network receives input from many other neurons, each with an associated
synapse. In turn, each synapse maintains what amounts to a connection strength or weight.
These weights change over time due to the effects of STDP. Synaptic efficacy, on the other
hand, is an instantaneous property affected by STP. Both of these changing synaptic parame-
ters affect the strength of connection between two neurons, but they do so in different ways
and might be more or less active at different times. One way to capture this difference is to ex-
amine the entropy of each measure over time.

For neuron i and synapse j, there are synaptic weights g and synaptic efficacies ux. Entropy
over a time window At was computed for each neuron at each time-step nAt. For quantity y,
which can either be g or ux, the quantity’s distribution within the time-step must be deter-
mined

e = [ hk+l5(x—yj(r))dxdf (18)
[

pi(t) = fhk (19)

so that h(t) is the number of times by < y; < by, within the time-window beginning at ¢,
which can be expressed as a probability px(f). Given a probability distribution, it is straightfor-
ward to compute the Shannon entropy for the quantity y over time,

H,(t) = = p(1)log,p,(1) (20)

where K is the total number of bins. We used this measure of Shannon entropy to track the re-
spective contributions of STDP and STP by computing a difference in entropy AH as

AH(t) = H,(t) — H,(t) (21)

g

where H, represents entropy due to STDP, while H,,, represents entropy due to STP. Further-
more, we may reserve H, for excitatory STDP and additionally take the difference of inhibitory
STDP and STP factor, H,(t) — H,, or excitatory and inhibitory STDP, H(t) — H.(%).

Weight analyses

Synaptic weights were compared between pulsed and non-pulsed conditions using a simple
mean square error (MSE). That is, for a weight vector w;, containing the weights of all of the
synapses in the first network, and w,, containing the same for the second, the distance between
the weights was calculated using

MSE = (22)
where N is the total number of synapses.

A second way to measure synaptic weight evolution was to identify times at which individu-
al synapses transition from high weight to low weight, or vice versa. High weight for neuron i
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was defined to be g; > 0.9, and low weight g; < 0.1. Transitioning from one regime to the other
is termed a flip, and represents a particular synaptic connection being turned on or off. To de-
termine flipping points, each synaptic weight was tracked over time at a resolution of 1000 ms.
Time points at which a synapse left the high or low regime were recorded. If at a subsequent
time a synapse entered the other regime, a flip was recorded at that time.

Deterministic component estimation

Given a first-order dynamical system,
x(t) = h(x) +T'(¢) (23)

h(x) and zero-mean stochastic component I'(#), it is possible to recover the deterministic com-
ponent using an ensemble average [30, 31]

(x(t)) = h(x) (24)

Approximation of the ensemble average from a discrete time-series y, sampled from dynam-
ical system x, can be achieved by binning the range of y into bins b,..,b,.. For each data point
Ym inbin k, by < y,,, < by, take the mean Ay(k) = (V41 — ¥m)- The resulting mapping from
k to Ay approximates h(x), the deterministic component of x. From this point, zero-crossings
of Ay denote stable (negative slope) or unstable (positive slope) fixed points in the dynamics
of x. This interpretation cannot be made with confidence if the system undergoes bifurcations
(a change in the type or number of fixed points) during the analyzed time or contains more di-
mensions than are represented by y.

Primate Recordings and Comparison

Ongoing LFP (1-100Hz) and extracellular spike (300 - 3000 Hz; offline sorted; Plexon Offline
sorter; PCA based) activities were recorded using microelectrode arrays (BlackRock; 400 mm
inter-electrode distance; shank length: 1 mm) chronically implanted in the premotor cortex of
two monkeys (Macaca Mulatta), sitting in a primate chair, alert, but not engaging in any task.
Measurements were taken for 20-30 minutes. The power law in avalanche sizes for this resting
activity was published in [27].

Supporting Information

S1 Code. Parameter search algorithm. This algorithm uses biased random walk, similar to a
simplified Metropolis algorithm, in order to find a collection of parameter sets that result in
PABA.

(TXT)

$2 Code. Algorithm for tracking overlapping avalanches in a set of spike trains. Every pre-
synaptic spike is assumed to be possibly causal, and therefore part of an avalanche. A single
spike can be part of multiple avalanches, in order to track many overlapping avalanches.
(TXT)
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