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Abstract

The African sweetpotato weevil (SPW) Cylas puncticollis Boheman is one of the most im-
portant constraints of sweetpotato production in Sub-Saharan Africa and yet is largely an
uncharacterized insect pest. Here, we report on the transcriptome analysis of SPW generat-
ed using an lllumina platform. More than 213 million sequencing reads were obtained and
assembled into 89,599 contigs. This assembly was followed by a gene ontology annotation.
Subsequently, a transcriptome search showed that the necessary RNAi components rele-
vant to the three major RNAi pathways, were found to be expressed in SPW. To address
the functionality of the RNAi mechanism in this species, dsRNA was injected into second in-
star larvae targeting laccase2, a gene which encodes an enzyme involved in the sclerotiza-
tion of insect exoskeleton. The body of treated insects showed inhibition of sclerotization,
leading eventually to death. Quantitative Real Time PCR (qPCR) confirmed this phenotype
to be the result of gene silencing. Together, our results provide valuable sequence data on
this important insect pest and demonstrate that a functional RNAi pathway with a strong

and systemic effect is present in SPW and can further be explored as a new strategy for
controlling this important pest.

Introduction

Sweetpotato Ipomoea batatas (L.) Lam. is an important food security crop in Sub-Saharan Af-
rica (SSA), covering around 1.8 million hectares with an estimated production of 11.3 million
tons [1]. As this crop is highly adaptable to areas with seasonal rainfalls or long drought peri-

ods, it improves consumers’ livelihoods and fulfills their daily food needs particularly for sub-
sistence farmers [2, 3]. Sweetpotato production can be devastated by the infestation of two
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African sweetpotato weevils (SPW) of which Cylas puncticollis Boheman is one [4], resulting in
total crop loss especially during periods of pronounced droughts [5]. The primary cause of
damage in sweetpotato is the SPW larvae, which tunnel and feed through vines and storage
roots. As a result, plants wilt or even die whereas storage roots are reduced in size and number
[6]. Furthermore, roots develop a bitter taste due to the presence of terpenoid compounds in
response to microbial infection generated by the weevil tunneling. This damage reduces the
quality of storage roots for human consumption and causes significant economic losses [7].
Historically, conventional breeding has been applied to develop weevil-resistant plants but the
lack of varieties with high level of resistance against SPW [8] together with the complex genetic
nature of sweetpotato make it difficult to develop these varieties [3, 9]. In addition, the use of
insecticides and diverse techniques of integrated pest management (IPM) have also been inef-
fective in SSA because of the mode of growth of SPW [10, 11]. Therefore, there is a high need
to use other strategies to control SPW which have been proven effective to control other pests
for other crops [3].

RNA interference (RNAi) can be a powerful biological tool to achieve sweetpotato resistance
against SPW as achieved for other coleopteran pest [12]. This relatively new technique, which
triggers gene silencing typically by double-stranded RNA (dsRNA), has become a significant
tool to knockdown target genes in plants as well as in insects. To induce an RNAi response in
the insect, dsRNA can be delivered into the body through different methods: ingestion, soaking
and microinjection. The latter is more frequently used in the laboratory because of the effective
delivery of a known dose into the insect, whereas uptake by ingestion or soaking is more appro-
priate for screening of target genes for future control strategies [13]. After introduction into the
cell, dsRNA is recognized as foreign by an RNasellI nuclease called Dicer and processed into
small interfering RNAs (siRNAs). One strand of the siRNA, the “guide strand” is assembled
into an RNA-induced silencing complex (RISC) in conjunction with the Argonaute multi-
domain protein, which is responsible for target recognition and degradation [14, 15]. At the
post-transcriptional level, this complex binds to mRNA complementary to the siRNAs and the
mRNA is degraded enzymatically, reducing the amount of mRNA available for protein
translation.

In eukaryotes, three main RNAi pathways have been described: microRNAs (miRNAs),
small interfering (siRNAs) and Piwi-interacting RNAs (piRNAs) [16], which differ in their bio-
genesis, type of Argonaute family proteins, mode of target regulation and substrates [17]. The
RNAi machinery involved is evolutionarily conserved in most eukaryotic organisms, including
insects [18]. In addition, the high sequence specificity of RNAi results in minimal, if any, effects
on non-target organisms, including beneficial insects [19]. To date, the potential for RNAi in
pest control has been successfully demonstrated for different insect groups [20]. Fourteen es-
sential genes were down-regulated in the coleopteran species Diabrotica virgifera virgifera after
feeding on an artificial diet containing dsRNA, resulting in very high mortality of the target
species [20]. Another Coleopteran insect pest, the red flour beetle Tribolium castaneum, also
exhibits a very strong RNAi response, including systemic RNAi and a long lasting effect [21,
22]. The evolutionary conservation within eukaryotic organisms and the successful application
to control other Coleoptera pests suggest this approach might also be successful against the Co-
leopteran SPW. However, even within insect groups a high variability of RNAi response has
been observed [23]. In fact, RNAI efficacy varies among insect species, genes, mode of dsSRNA
delivery, dsRNA uptake, spread of silencing signal and life stage [24, 25].

The RNAi response in SPW is uncertain. Therefore, it is necessary to identify the presence
of the RNAi machinery in SPW and to determine its functionality. As no substantial gene in-
formation was available for C. puncticollis prior to this study, we sequenced its transcriptome
using an [llumina platform, which has been used in transcriptome analysis of many other
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species [26-28]. After annotation using reference insect sequence databases, the genes involved
in the RNAi machinery were searched for. In addition, the present study aimed to demonstrate
the functionality of the RNAi pathway in C. puncticollis by applying dsRNA nanoinjection tar-
geting laccase2, a gene involved in the insect cuticle tanning [29], which is expected to provide
a rapid and clear phenotypic evidence for gene silencing. Effective downregulation of laccase2
can indicate the potential of C. puncticollis to initiate a systemic RNAi response.

Material and Methods
Sweetpotato weevil rearing

A SPW colony was maintained in plastic cages at standard laboratory conditions of 27°C,
65% RH under a 16:8 light:dark regime. Insects were kept for feeding and oviposition on
sweetpotato storage roots. Fresh storage roots were added every 3 days in order to obtain sec-
ond instar larvae for nanoinjection. Larvae were removed from the roots at 7-9 days

after oviposition.

cDNA libraries and lllumina sequencing for transcriptome analysis

Total RNA was extracted from second instar larvae of C. puncticollis using the RNeasy Mini
Kit (Qiagen). The cDNA library preparation and Illumina sequencing were conducted at the
North Carolina State University Genomic Sciences Laboratory. The RNA quality and concen-
tration were examined on the Agilent 2100 Bioanalyzer using a RNA Pico Chip. One micro-
gram of total RNA was used following the requirements of TruSeq RNA sample preparation v2
protocol (Illumina). Total RNA was purified using oligo (dT) magnetic beads to isolate poly-A
containing mRNA and fragmented into short sequences using divalent cations. The purified
mRNA fraction was then used for synthesis of first and second strand cDNA. After the end re-
pair on the double-stranded cDNA, 3’ ends were adenylated and adapters with indexes were li-
gated for multiplexing. The cDNA library was amplified by PCR and then AmpureXP beads
were used for purification. The final library was quantified using Agilent’s Bioanalyzer High
Sensitivity DNA Chip prior to clustering on the Illumina cBot. The cDNA libraries were se-
quenced on the Illumina sequencing platform (HiSeq2000) where each sample was collocated
in one lane of a 100bp single-end run.

The Trinity software (http://trinityrnaseq.sourceforge.net/) was used for de novo assembly
of the raw reads to generate a set of contigs. The software used a Bruijn graph algorithm and a
k-mer length of 25. The generated dataset was assembled independently under three different
conditions: A full assembly of all reads, an assembly of a reduced representation of the reads,
and an assembly following computational normalization of the reads in the dataset via the
Trinity In Silico read normalization tool.

Homology search and gene ontology annotation

The generated contigs were analyzed by searching the non-redundant (nr) insect protein data-
base at the National Center of Biotechnology Information (NCBI) with the BLASTX algorithm
(http://www.ncbinlm.gov), using a cut-off bitscore >50. For gene ontology (GO) annotation, a
second homology search was performed to annotate the generated contigs by searching the
Swiss-Prot database with the BLASTX algorithm from NCBI database using a cut-off

bitscore >50. The generated gene identifiers were used as input in QuickGo from EBI (http://
www.ebi.ac.uk/QuickGO/GAnnotation) and to calculate GO terms.
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Sequence submission

All raw reads have been deposited in the sequence reads archive (SRA) at NCBI, and could be
accessed using SRX732288 accession number.

RNAi-related genes

A list of RN Ai-related genes employed by Swevers et al. [30] was selected, covering the RNAi
core machinery (Table 1), auxiliary factors (Table 2) nucleases, antiviral RNAi and dsRNA up-
take (Table 3) (Accession numbers are listed in Tables 1, 2 and 3). Homologous sequences
from T. castaneum corresponding to these genes were used as a query to search the transcrip-
tome from C. puncticollis for the presence of RNAi-related genes using the BLAST tool (http://
breclusterrac.statgen.ncsu.edu/Niblet/). The contigs obtained from the search with
bitscore >150 were used for further analysis to verify their identity.

The program ORF Finder from NCBI was used to detect open reading frames. Homologous
proteins were searched with the Protein Basic Local Alignment Tool (Protein BLAST) against

Table 1. Overview of identified genes related to the RNAi pathways in C. puncticollis.

miRNA
Dcr-1

Ago1
Loquacious
Drosha
Pasha
Exportin-5

siRNA
Dcr2

Ago-2
R2D2

piRNA
AGO3

PIWI
Aubergine
Zucchini

Zucchini

(FS) frame shift; (RF) reading frame.

Contig

Cp.
comp36004_c0_seq2
Cp.
comp34373_c0_seqb
Cp.
comp35585_c0_seq1
Cp.
comp39990_c0_seq1
Cp.
comp38940_c0_seql
Cp.
comp39084_c0_seq1

Cp.
comp37119_c0_seqi
Cp.
comp38067_c0_seql
Cp.
comp37256_c0_seq4

Cp.
comp32215_c0_seq1
Cp.
comp31984_c0_seqi
Cp.
comp31984_c0_seq1
Cp.
comp38142_c1_seqb5
Cp.
comp38489_c0_seq8

doi:10.1371/journal.pone.0115336.t001

First hit BLASTp

Tribolium homologue Comparison to Tribolium

hypothetical protein YQE_09128, partial [Dendroctonus EFA11550 E = 0.0; bits = 1971
ponderosael)

argonaute1 [Tribolium castaneum) EFA09197 E = 0.0; bits = 1765
PREDICTED: similar to tar RNA binding protein; XP_966668 E = 0.0; bits = 545
[Tribolium castaneum]

PREDICTED: similar to ribonuclease Il [Tribolium XP_967454 E = 0.0; bits = 1684
castaneum]

hypothetical protein YQE_10523, partial; [Dendroctonus XP_971282 E = 0.0; bits = 786
ponderosae])

hypothetical protein YQE_01298, partial [Dendroctonus XP_974696 E = 0.0; bits = 1316

ponderosae]

hypothetical protein D910_09530, partial [Dendroctonus
ponderosael)

hypothetical protein D910_08685 [Dendroctonus
ponderosae]

hypothetical protein YQE_06343, partial [Dendroctonus
ponderosae]

NP_001107840

EFA04626

NP_001128425

E = 0.0; bits = 1012

E = 0.0; bits = 988

E = 1e-83; bits = 266

hypothetical protein YQE_10018, partial [Dendroctonus EFA02921 E = 0.0; bits = 1003
ponderosae]
piwi [Tribolium castaneum]) EFA07425 E = 0.0; bits = 989

piwi [Tribolium castaneum)

XP_001811159

E = 0.0; bits = 975

hypothetical protein TcasGA2_TC010319 [Tribolium EFA13216 E = 1e-46; bits = 166
castaneum]
hypothetical protein YQE_07414, partial [Dendroctonus EEZ99465 E = 1e-50; bits = 176

ponderosae])
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Table 2. Overview of identified genes associated to RISC complex in C. puncticollis. (FS) frame shift; (RF) reading frame.

Contig First hit BLASTp

RISC

Tudor-SN Cp. hypothetical protein YQE_11841, partial
comp40322_c1_seq1 [Dendroctonus ponderosae])

Vasa intronic gene (VIG) Cp hypothetical protein D910_11911

cor:np31 480_c0_seq2

Similar to fragile X mental retardation Cp.
syndrome related protein 1 (FXMR1) comp38219_c0_seqb

[Dendroctonus ponderosae])

hypothetical protein D910_07822, partial
[Dendroctonus ponderosae)

p68 RNA helicase Cp. hypothetical protein YQE_12421, partial
comp36480_c0_seq1 [Dendroctonus ponderosae])
Translin Cp. hypothetical protein YQE_05829, partial

comp40752_c0_seq1

Similar to translin associated factor X~ Cp.
comp28110_c0_seq1

[Dendroctonus ponderosae])

hypothetical protein D910_08298
[Dendroctonus ponderosae)

Armitage Cp. hypothetical protein D910_08795
comp39999_c0_seq2 [Dendroctonus ponderosae])

Homeless (spindle-E) Cp. hypothetical protein YQE_03529, partial
comp40635_c0_seq2 [Dendroctonus ponderosae])

Maelstrom Cp. hypothetical protein D910_02860, partial
comp35977_c0_seq3 [Dendroctonus ponderosae)

HENq1 Cp. hypothetical protein D910_04572, partial
comp39152_c0_seq16  [Dendroctonus ponderosae)

RNA helicase Belle Cp. ATP-dependent RNA helicase belle
comp37673_c0_seq4 [Tribolium castaneum]

PRP16, mut6 homolog Cp. hypothetical protein D910_03265
comp39484_c0_seq1 [Dendroctonus ponderosae)

Gemin3 homolog Cp. hypothetical protein TcasGA2_TC003675
comp40453_c0_seq1 [Tribolium castaneum]

Similar to Gawky Cp. hypothetical protein YQE_12796, partial
comp40223_c1_seq8 [Dendroctonus ponderosael)

Staufen Cp. hypothetical protein YQE_06727, partial
comp28896_c0_seq2 [Dendroctonus ponderosae)

Clp1 homolog (kinase) Cp. PREDICTED: similar to AGAP007701-PA
comp34766_c0_seq1 [Tribolium castaneum]

Elp-1 Cp. hypothetical protein D910_02697
comp40424_c1_seqi [Dendroctonus ponderosae]

GLD-1 homolog Cp. held out wings [Tribolium castaneum]
comp39799_c0_seq20

ACO-1 homolog Cp PREDICTED: similar to aconitase

comp40176_c0_seq1 [Tribolium castaneum]

doi:10.1371/journal.pone.0115336.t002

Tribolium
homologue

XP_974879
EFA12812
XP_969396
NP_001164095
EFA07522
XP_975473
XP_969071
XP_971741
EFA02892
EEZ98969
NP_001153721
XP_969616
EFA00789
XP_973043
EFA11564
EFA06994
XP_970736
NP_001164152

XP_972101

Comparison to
Tribolium

E = 0.0; bits = 735

E = 9e-96; bits =
301

E = 0.0; bits = 730
E = 0.0; bits = 806

E = 4e-105; bits =
313

E = 3e-107; bits =
333

E = 0.0; bits =
1119

E = 0.0; bits =
1300

E = 1e-67; bits =
234

E = 2e-145; bits =
462

E = 0.0; bits =
1037

E = 0.0; bits =
2094

E = 0.0; bits = 551

E = 0.0; bits =
1212

E = 0.0; bits = 947
E = 0.0; bits = 673
E = 3e-137; bits =
335

E = 0.0; bits = 649

E = 0.0; bits =
1544

the non-redundant protein database at NCBI. Upon indication of the presence of frame shifts,

sequences were further analyzed with BLASTX against the non-redundant protein database at

NCBL

dsRNA synthesis and purification

The dsRNAs for laccase2 (362 bp) and gfp (495 bp) were synthesized using the MEGAscript kit
(Ambion). The C. puncticollis transcriptome was searched for the laccase2 sequence using the
homologous sequence from T. castaneum as a query. The fragment was amplified by PCR
using cDNA of second-instar C. puncticollis larvae as template, prepared with SuperScript
First-Strand Synthesis System (Invitrogen). The primers used for the PCR are listed in Table 4.
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Table 3. Overview of identified genes associated to RNAi in C. puncticollis. (FS) frame shift; (RF) reading frame.

dsRNA uptake
Scavenger receptor SR-C-like

protein

Eater

SID1-related C precursor
SID1-related C precursor
FBX011

CG4966 = orthologous to the
Hermansky-Pudlak Syndrome4

Antiviral
Ars2

CG4572
Egghead
ninaC

Nucleases
Snipper = Erit

Nibbler

Sdn1-like
dsRNAse
Exosome

Poly(A) polymerase

doi:10.1371/journal.pone.0115336.t003

Contig

Cp.
comp35050_c0_seq1
Cp.
comp38230_c1_seq1
Cp.
comp38247_c0_seq1
Cp.
comp38991_c0_seq20
Cp.
comp39489_c1_seq2
Cp.
comp40396_c0_seq2

Cp.
comp36546_c1_seq2
Cp.
comp36338_c0_seql
Cp.
comp38318_c0_seq1
Cp.
comp38683_c0_seq2

Cp.
comp37539_c0_seq1
Cp.
comp36632_c0_seq4
Cp.
comp36451_c0_seq1
Cp.
comp35928_c0_seq3
Cp.
comp37176_c0_seq1
Cp.
comp37990_c0_seq4

First hit BLASTp

PREDICTED: similar to scavenger receptor SR-
C-like protein [Tribolium castaneum]

hypothetical protein D910_03817 [Dendroctonus
ponderosae]
hypothetical protein D910_05186 [Dendroctonus
ponderosae]
hypothetical protein D910_05186 [Dendroctonus
ponderosae]
hypothetical protein D910_09724 [Dendroctonus
ponderosae]

hypothetical protein TcasGA2_TC002372
[Tribolium castaneum]

hypothetical protein YQE_07634, partial
[Dendroctonus ponderosae]

PREDICTED: similar to salivary/fat body serine
carboxypeptidase [Tribolium castaneum]
PREDICTED: similar to conserved hypothetical
protein [Tribolium castaneum)]

Neither inactivation nor afterpotential protein C
[Acromyrmex echinatior]

Snipper [Tribolium castaneum]

hypothetical protein TcasGA2 TC002596
[Tribolium castaneum]

hypothetical protein D910_06808 [Dendroctonus
ponderosae]

hypothetical protein YQE_04599, partial
[Dendroctonus ponderosae]

PREDICTED: similar to Rrp6 CG7292-PB
[Tribolium castaneum]

hypothetical protein YQE_12311, partial
[Dendroctonus ponderosae]

Tribolium
homologue

XP_001812043
XP_969372
NP_001099128
NP_001099128
EFA07112

XP_969589

EFA00685
XP_969249
XP_975496

XP_968286

NP_001107798
EEZ99816
EFA00159
XP_970494
XP_966807

EFA00912

Comparison to
Tribolium

E = 4e-150; bits =
455

E = 1e-43; bits =
171

E = 0.0; bits = 963
E = 5e-143; bits =

449

E = 0.0; bits =
1677

E = 0.0; bits = 632

E = 0.0; bits = 625
E = 0.0; bits = 717
E = 0.0; bits = 731

E = 0.0; bits =
1112

E = 1e-91; bits =
281
E = 0.0; 952bits

E = 0.0; bits = 942
E = 7e-119; bits =
363

E = 0.0; bits = 711

E = 0.0; bits = 862

The PCR products were cloned into the pJET1.2/blunt cloning vector (Thermo Scientific). The
insertions were confirmed by Sanger sequencing. The dsRNA templates were produced by
PCR using DNA plasmids linearized with Ncol and primers with a T7 promoter region (TAA-
TACGACTCACTATAGGGAGA) at the 5” end of each primer (Table 4). The PCR products
were purified using the CyclePure E.Z.N.A. kit (Omega Bio-Tek) and immediately used for in
vitro transcription using MEGAscript kit (Ambion) according to the manufacturer’s instruc-
tions. Nuclease-free water was used for dsSRNA elution. The dsRNA synthesis was verified by
gel electrophoresis and quantified in a NanoDrop ND-1000 (Thermo Scientific).

Larval injection

Nanoinjection was performed using second-instar larvae of C. puncticollis. Larvae were anes-
thetized with diethyl ether for 5 min and immobilized in an agarose plate at 1.5%. The dsRNA
for laccase2 and gfp (control) was injected into the hemocoel at a concentration of 0.2 pg/mg
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Table 4. Primers used in PCR for cloning and real-time quantitative PCR.

Primer
Cloning lac2 -F
lac2 -R
dslac2-F
dslac2-R
dsgfp-F
dsgfp-R
gRT-PCR rpl32-F
rpl32-R
B-actin-F
B-actin-R
lac2-F
lac2-R

Sequence (5’-3’) Product size (bp)
GGCACCAACGATTTCTACAC 970
TCAACGTGTGTCCTTGAATG
TAATACGACTCACTATAGGGAGATGTACTCCAAACGCAACCAA 362
TAATACGACTCACTATAGGGAGAACGATGCTGCCGTAAATACC
TAATACGACTCACTATAGGGAGATACGGCGTGCAGTGCT 495
TAATACGACTCACTATAGGGAGATGATCGCGCTTCTCG
TACGTTTCCTCGCAGACACA 205
ATCGACAACAGGGTGAGGAG

GAATTGCCTGATGGACAGGT 225
CTTCTGCATACGGTCAGCAA

ACCACCAAATCTTGACCCCA 102
AATCTTTCGGCGGCATCTTC

body weight (BW) using a nanoinjector (Femto]Jet, Eppendorf) and needles prepared with glass
capillary tubes. At least 85 larvae were injected per treatment of which 25 and 60 individuals
were used for phenotypic evaluation and real-time quantitative PCR (qPCR), respectively.
After injection, larvae were placed into sweetpotato root slices of 1x1 cm in petri dishes and in-
cubated at 27°C and 65% RH. Larvae were evaluated phenotypically every day for 15-20 days.

Real-time quantitative PCR

Total RNA was extracted from the whole insect body at 1, 3, 5 and 10 days after injection, each
time point containing three biological samples of 5 pooled insects. The RNeasy Mini Kit (Qia-
gen) was used for RNA extraction following the manufacturers’ instructions. After DNasel
treatment (Ambion), RNA was quantified using a NanoDrop ND-1000 (Thermo Scientific)
and verified by 1.5% agarose gel electrophoresis. Total RNA (0.9 pg) was reverse transcribed
using the SuperScript II kit (Invitrogen) according to manufacturer’s instructions. Real time
quantitative PCR was performed in the CEX 96"™ real-time system and the CFX manager soft-
ware (Biorad). The primers used in the analysis (Table 4) were validated with a standard curve
based on a serial dilution of cDNA to determine the primer annealing efficiency and a melting
curve analysis with temperature range from 60 to 95°C. The reaction included 10 ul of Sso-
Fast™ EvaGreen Supermix (Biorad), 0.4 pl of 10 uM forward primer (Invitrogen), 0.4 ul of 10
uM of reverse primer (Invitrogen), 8.2 pl of nuclease-free water and 1 ul of cDNA, in a total
volume of 20 pl. The amplification conditions were 3 min at 95°C followed by 39 cycles of 10 s
at 95°C and 30 s at 58°C. The reactions were set-up in 96-well format Microseal PCR plates
(Biorad) in triplicates. The endogenous controls, ribosomal protein L32e (rpl32) and B-actin,
were used for normalization of the data. Appropriate controls, no-template control and no re-
verse transcriptase control, were also included in the assay. Relative transcript levels of laccase2
were normalized to the endogenous reference genes rpl32 and f-actin by the equation

ratio 241 [31]

Results and Discussion
Analysis of Cylas puncticollis transcriptome

The C. puncticollis transcriptome was sequenced to gain insights into the RNAi-related genes
and for further exploration of essential genes to be silenced through RNAi technology. Se-
quencing was performed using an Illumina platform, which generated a total of 213,207,004
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50%

= hits

no hits

reads of 100 bp long, corresponding to an accumulated length of 21,320,700,400 bp. The full
dataset was assembled using Trinity software resulting into 89,599 contigs with a mean length
of 1,630 bp and an average GC content of 39%.

For BLAST annotation, contigs were first searched for similar insect protein sequences using
BLASTX against the non-redundant (nr) protein NCBI database, This BLASTX analysis pro-
duced 44,824 hits, representing 50.0% of total contigs (Fig. 1). The number of non-significant
hits (50.0%) indicates that the C. puncticollis transcriptome contains unknown sequences that are
not yet described in the insect protein sequences databases. For those sequences with a significant
match, 87.68% of the contigs are most similar to sequences from coleopteran species: 40.31% to
the red flour beetle Tribolium castaneum, which is a worldwide pest of stored food products,
36.51% to the mountain pine beetle Dendroctonus ponderosae sequences, which is a serious forest
pest [32] and 10.87% to the Asian long-horn beetle Anoplophora glabripennis sequences, also
found to be destructive of forest trees [33]. The remaining 12.32% of all contigs were more similar
to the hemipterans Acyrthosiphon pisum (1.78%) and Triatoma infestans (0.94%), the hymenop-
terans Camponotus floridanus (0.78%) and Cerapachys biroi (0.60%), the dipteran Corathrella
appendiculata (0.65%), the lepidopteran Bombyx mori (0.57%) and others (7.1%).

Gene ontology classification

To functionally classify the generated contigs, BLASTX similarity searches were performed
against the Swiss-Prot database (bitscore >50), resulting in 36,198 (40.4%) significant hits. The
resulting identifiers from this search were used to calculate GO terms, which were grouped
into 3 main categories: cellular component, biological process and molecular function. A total
of 706,945 predicted GO terms were obtained. The most dominant GO terms within the

1% 1%
1%

1%
1%
2%

m Tribolium castaneum = Dendroctonus ponderosae
= Anoplophora glabripennis = Acyrthosiphon pisum
= Triatoma infestans = Camponotus floridanus
= Corethrella appendiculata = Cerapachys biroi
Bombyx mori = other hits

Figure 1. Sequence comparison to other insect genera from the distribution of BLASTX hit (bitscore >50) against the nr protein database of the
National Center for Biotechnology Information.

doi:10.1371/journal.pone.0115336.9001
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cellular component were nucleus (29,759; 14.8%), for the biological processes it was metabolic
processes (7,607; 2.5%) and for the molecular function it was protein binding (24,774; 12%)
(Fig. 2). Similar results were found in the D. ponderosae transcriptome, which was the second
best hit in the homology search. The most dominant GO term within the biological process
was metabolic process as in C. puncticollis. However, for the cellular component and molecular
function, cell part and binding were the most dominant, respectively [31].

Cellular component

cellular_component
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extracellular region

cytosol

integral component of membrane

plasma membrane
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Figure 2. Percentage of Cylas puncticollis contigs assigned to a certain gene ontology term as predicted by QuickGO from EBI.

doi:10.1371/journal.pone.0115336.9002
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Identification of RNAi-related genes

To gain insight in the potential of C. puncticollis to exhibit an RNAi response, the C. puncticol-
lis transcriptome was screened for the presence of the most important genes related to the
RNAi machinery. T. castaneum, like C. puncticollis, belongs to the order of Coleoptera and is
more phylogenetically related to C. puncticollis than C. elegans and D. melanogaster. Moreover,
the complete genome of T. castaneum has also been sequenced and fully annotated [34]. There-
fore, homology searches were performed using as reference the T. castaneum sequences for the
homologous genes listed by [30]. Accordingly, 47 RNAi-related genes from C. puncticollis
could be annotated. After identification of these contigs, a BLASTp similarity search was per-
formed against the NCBI database to confirm their identity. Sequences of D. ponderosae and

T. castaneum showed closest similarity to C. puncticollis.

Core RNAi machinery. The core components of the RNAi machinery are proteins that, to-
gether with the small RNA fragments, are involved in gene silencing. There are three major
pathways studied in eukaryotes: miRNAs, siRNAs and piRNAs [35]. The miRNA and siRNA
pathways have an important role in gene regulation by suppressing mRNA translation or in-
ducing mRNA degradation [36]. The difference between the miRNA and siRNA pathways is in
their biogenesis, but not in their function. The piRNA pathway has been less characterized and
is, in contrast to the two first classes, restricted to germlines [37].

In the miRNA and siRNA pathways, orthologous sequences to the three RNasellI proteins
Drosha, Dicer-1 and Dicer-2, were identified in C. puncticollis with a bitscore >150. The main
domains of the typical Drosha and Dicer proteins were found to be conserved in C. puncticollis.
The Dicer domains are: amino-terminal DExH-box helicase domains, PAZ domain, two RNa-
selll domains, and carboxi-terminal dsRNA-binding domain (dsRBD). Unlike Dicer, Drosha
has no PAZ and amino-terminal DExH-box helicase domain [38]. Three cofactors with con-
served domains, Pasha, Loquacious and R2D2, were also identified in C. puncticollis. These
proteins are required to interact with the RNasellIl genes Drosha, Dicer-1 and Dicer-2, respec-
tively (Table 1, S1 Supporting Information).

Drosha, Dicer] and Dicer2 are key factors to process dsRNA into small RNAs. Both Dicers
were also found in D. melanogaster, Dm-Dicer-1 and Dm-Dicer-2, responsible for the miRNA
and siRNA pathway, respectively [39]. In T. castaneum, Dicer-2 (Tc-Dcr-2) has been found to
play an important role in systemic RNAi, while Dicerl (Tc-Dcr-1) is not involved. In C. ele-
gans, a single Dicer was found to govern both pathways [40]. The presence of Dicer-1 and
Dicer-2 as well as their cofactors in C. puncticollis, suggests that they could have a role in the
miRNA and siRNA pathway, respectively.

Another crucial RNAij-related gene is Argonaute, which is a component of the RISC com-
plex and is involved in post-transcriptional silencing. A contig containing the main domains
(PAZ domain and PIWI domain) usually found in Argonaute (Ago) proteins, is also present in
C. puncticollis (Table 1, S1 Supporting Information). Five types of Ago were found in T. casta-
neum and D. melanogaster and 27 in C. elegans [22, 41]. Agol and Ago2 are critical in the
miRNA and siRNA pathway, respectively [42]. In the present study, we have identified 5 mem-
bers of the Argonaute protein family: Agol, Ago2, which belong to Argonaute subfamily and
Ago3, Aubergine (Aub) and Piwi, which belong to the Piwi subfamily [43].

Aub and Piwi, as well as Zucchini are proteins involved in the third pathway of piRNA [37].
Searching Aub and Piwi from T. castaneum resulted in two protein sequences that matched the
same contig in C. puncticollis. This result suggests that either Aub or Piwi is present in C. punc-
ticollis (Table 1, S1 Supporting Information). For Zucchini, which is an endoribonuclease with
arole in piRNA maturation, a 61% of similarity was observed with two analyzed sequences
(bitscore >150). Even though the observed similarity for Zucchini was slightly lower than for
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the other blasted sequences (bitscore >200), the full conserved domain could be identified, sug-
gesting that Zucchini is present in C. puncticollis, (Table 1, S1 Supporting Information).

Auxiliary factors (RISC). The presence of auxiliary factors to the RNAi machinery was also
examined in the C. puncticollis transcriptome (Table 2, S2 Supporting Information). These in-
cluded 19 intracellular factors that are associated with (or regulate) the activity of the RISC
complex. The protein sequences for Tudor-SN (TSN), Vasa-intronic gene (VIG), fragile X re-
lated protein 1 (FXMR1) and p68 RNA helicase, that are present in the holo-RISC complex as
found in D. melanogaster [44, 45], were identified in C. puncticollis, all with conserved main
domains.

The two conserved subunits of the C3PO (component 3 promoter of RISC), Translin and
Translin-associated factor X, which were characterized to promote RISC activation [46], were
also identified in C. puncticollis. The nucleases involved in piRNA biogenesis, Armitage
(Armi), spindle-E (Spn-E) and Maelstrom, as well as Hen-1 were present in C. puncticollis with
all conserved domains. Armi, Spn-E and Maelstrom are required for piRNA production
and/or stability. Mutation of these genes showed depletion of piRNAs in fly ovaries [47, 48].
Hen-1 is a methyltransferase associated with Piwi proteins in ovaries. This protein methylates
small RNAs through a 2’-O-methyl modification at their 3’ ends, playing a critical role in gene
silencing suppression. [49, 50].

Full-length fragments were found for the DEAD-box RNA helicases, Belle and PRP16 in
C. puncticollis. Belle has a function in the endo-siRNA pathway, interacting with Ago2 and
endo-siRNA-generating loci and is localized in condensing chromosomes in a dcr-2- and ago2-
dependent manner [51]. PRP16 has an important role in the pre-mRNA splicing [52] with ac-
tivity in RNAi, and it is a homologous protein to Mut6 in Chlamydomonas [53]. For another
DEAD-box RNA helicase, Gemin3 homolog [54], a partial fragment is present in C. puncticol-
lis, only covering 50% of the full sequence; however the main domains are present.

The proteins Gawky, localized in GW-bodies in D. melanogaster and required for miRNA
function [55], Staufen (STAU1), a dsSRNA-binding protein, and Clp-1, a RNA kinase able to
phosphorylate siRNAs, were all present in C. puncticollis. Elp-1, a component of the pol II core
elongator complex involved in the RNAi silencing, was also identified in C. puncticollis. Two
fragments covered the full-length sequence of this protein [56]. A full-length sequence is also
present for the protein GLD-1 homolog, a KH motif containing RNA-binding protein of the
GSG/STAR subfamily, involved in different aspects of germline development. It is known to
prevent translation of mRNA into proteins through target mRNA binding [57]. For ACO-1, an
RNAij-binding protein involved in translational inhibition, a partial fragment was identified in
C. puncticollis [58].

dsRNA uptake. The proteins sequences for SID1, FBX011, Scavenger receptor SR-C-like
protein and Eater were searched in the C. puncticollis transcriptome as well (Table 3,

S3 Supporting Information). SilC and SilB were found in C. puncticollis as a first and second
hit, respectively; whereas SilA and SID1 were not. The sidI gene in C. elegans encodes a multi-
transmembrane domain protein, which is essential for uptake of dsSRNAs into cells and for the
spreading of the RNAI signal in C. elegans [59]. Three sid1-like genes were found in T. casta-
neum (SilA, SilB and SilC) [60], while in D. melanogaster no homologs for Sid proteins were
found. Initially, it was thought that the presence or absence of these genes explained the robust
and systemic RNAi response in T. castaneum and the lack of systemic RNAi in D. melanoga-
ster, respectively. However, later research has shown that these Sils in T. castaneum are not crit-
ical for the systemic RNAi response, as silencing these genes did not affect the systemic RNAi
response [58]. Furthermore, other mechanisms, including endocytosis, have been shown to be
involved in dsRNA-uptake in certain insects as well [61, 62]. Whether or not these Sils play a
role in dsRNA uptake in insects from other orders remains unclear.
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FBXO011 was found in C. puncticollis with a conserved F-box domain and three beta-helices.
Scavenger receptors, such as Eater and SR-CI, were found to be important for dsSRNA uptake
[63]. Scavenger receptors are known to act as receptors for large molecules and/or microbes
and play a role in phagocytosis. Eater encodes a Nimrod family protein that contains multiple
NIN-type EGF domains. All these protein sequences are present in the C. puncticollis
transcriptome.

Antiviral RNAi. Four protein sequences involved in antiviral RNAi found in D. melanoga-
ster, were searched in C. puncticollis: Ars2, a regulator of the RISC complex, CG4572, a protein
with an unknown function, Egghead (egh), a seven transmembrane-domain glycosyltransferase
and ninaC, a protein involved in vesicle transport [64, 65] (Table 3, S4 Supporting Information).
In C. puncticollis, full-length sequences were identified for CG4572 and ninaC, but only partial
fragments for both Ars2 and Egghead proteins.

Nucleases. Little is known about the nucleases that interact in RNAI. Six nucleases believed
to have RNAi-related activity were found present in the C. puncticollis transcriptome: Eri-1
like, Nibbler, Sdn1-like, the homolog of the B. mori DNA/RNA non-specific alkaline nuclease,
Exosome and Poly(A) polymerase (Table 3, S5 Supporting Information). A full-length se-
quence of the Eri-1 protein is present in C. puncticollis. Eri-1 is an evolutionary conserved pro-
tein involved in intracellular siRNA degradation, and of which the SAP/SAF-box domain and
DEDDh family exonuclease domain [66] are conserved in C. puncticollis. For the small RNA-
degrading nuclease Sdn1-like, which has a 3’ to 5" exonuclease activity, and which can degrade
mature miRNAs in plants [67], a full-length sequence with conserved domains was identified.
For the nucleases, Nibbler, which processes 3’-ends of miRNAs [68], dsSRNAse, a dsSRNA-de-
grading enzyme [69]. Exosome, which has a 3" to 5" exonuclease activity [70] and Poly(A) poly-
merase, which is involved in the mRNA degradation [71], partial sequences with conservation
of the main domains also are present in C. puncticollis.

In summary, these results revealed the presence of 47 known RNAi-related genes in
C. puncticollis, which is a first condition for the use of RN Ai-based pest control methods for
this weevil. Furthermore, our results confirmed the conservation of these RNAi-related genes
among coleopteran species as T. castaneum, which show a very robust RNAi system [22, 72].

Silencing of laccase2 gene

To demonstrate the functionality of the RNAi pathway in C. puncticollis, dSSRNA targeting lac-
case2 was synthetized. This gene is involved in insect cuticle sclerotization and provides a rapid
and clear phenotypic evidence for gene silencing in T. castaneum [29]. Prior research showed
that a high concentration and longer fragments of dsRNA (>300 bp) are critical for an efficient
inhibition of laccase2 expression and longer duration of the RNAI effect [72]. Therefore, we in-
jected a 362 bp-long dsRNA molecule targeting laccase2 into the hemocoel of second-instar lar-
vae with a final dsRNA concentration of 0.2 ug/mg of body weight. The control group was
injected with the same concentration of a 495 bp-long dsRNA molecule targeting the gfp gene
being absent in C. puncticollis.

Inhibition of laccase2 expression could be observed phenotypically in 21 of 25 (84%) indi-
viduals as early as 3 days following injection. Treated larvae exhibited lack of sclerotization in
the head capsule resulting in an untanned cuticle (Fig. 3C.1) compared to the control larvae in-
jected with gfp dsRNA (Fig. 3B.1). Injection trauma in the control resulted in 8% of mortality.
Suppression of laccase2 expression can be detected after 24 h when tested by qPCR (Fig. 4).
These results demonstrate that laccase2 mRNA levels were reduced 91.7% compared to the
control injected with gfp dsRNA (p-value 0.0193) after 24 h. This reduction was also observed
at the other two time points, where the expression levels on day 3 and day 5 showed a reduction
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Figure 3. Effect of inhibition of laccase2 expression after injection with dsRNA in second-instar larvae of Cylas puncticollis. (A) Mortality after
injection with dsRNA targeting laccase2 (dslac2) (day 14—20) expressed in percentage. Mortality in larvae injected with dsRNA targeting gfp (dsgfp) (control)
was only 8% (B) Larvae injected with dsgfp as a control and (C) treated larvae after 3 days; (D) Pupa development 6 days after injection with dsgfp as a
control and (E) dslac2; (F) Adult development injected 10 days after injection with dsgfp as a control (G) dslac2 (H) Surviving individual 13 days after injection
with dslac2. Larvae were injected with the dsRNA solution into the hemocoel at a concentration of 0.2 pg/mg body weight. The insects were keptin
sweetpotato roots after injection for the duration of the experiment.

doi:10.1371/journal.pone.0115336.9003
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Figure 4. Inhibition of laccase2 expression in second-instar larvae of Cylas puncticollis at 1, 3, 5 and 10 days after injection with dsRNA targeting
laccase2 at 0.2 ug/mg of body weight. Injection with dsRNA targeting gfp was used as a control. As internal controls, ribosomal protein L32 and Actin were
used. Values are based on two repetitions of three biological samples and expressed as mean + SEM. Each sample contains 5 pooled insects. The p-values
were calculated by unpaired t-test.

doi:10.1371/journal.pone.0115336.9004
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0f 92.9% (p-value 0.0107) and 93% (p-value 0.001), respectively. Interestingly, expression of
laccase2 was found to be variable between different larval stages and even within a certain
stage. Possibly, laccase2 expression only exhibits a peak at a certain time after the molt, given
its role in the cuticle tanning. However, further studies should be conducted in order to con-
firm this. Nevertheless, despite this natural variability, the silencing we observed was strong
when compared to the control for each time point. and consistent in all experiments and
repetitions.

At 5-6 days post-injection, the pupal stages showed no tanning in cuticular structures as
pronotum, prothoracic, mesothoracic and metathoracic legs, elytral and wing sheath and uro-
gomphi (Fig. 3E) whereas an initiation of tanning for these structures was obvious in the con-
trol (Fig. 3D). In adults, a complete inhibition of the cuticular sclerotization in the exoskeleton
was observed (Fig. 3G) compared to the control (Fig. 3F). Moreover, they exhibited a mal-
formed and soft cuticle with no pigmentation, which complicated their normal mobilization.
Additionally, a partial recovery of the cuticle tanning of adults was observed at 13 days post-in-
jection (Fig. 3H). On transcript level, the gradual recovery could already be shown after 10
days, where a smaller difference (34%) in transcript levels between control and treatment could
be observed (p-value 0.0170) (Fig. 4). The evaluation of treated insects at 15 to 20 days post-in-
jection showed no survival of adults (Fig. 3A), which could be due to the difficulty of feeding as
a result of the malformed and soft cuticle in the mouthparts.

These results clearly demonstrate that an RNAi response is activated in C. puncticollis to
laccase2; furthermore, the lack of cuticle tanning suggests that the RNAi activity is systemic
with a persistence of the RNAI signal for at least 10 days. Similar results were also demonstrat-
ed by [73], who determined that RNAi in T. castaneum is systemic by injecting dsRNA target-
ing Tc-achaete-scute in larvae. Our results demonstrate that targeting C. puncticollis using
RNAI as a pest control agent has a clear potential, given the strong and systemic RNAi effect
shown here.

Conclusions

Our data demonstrate that the necessary components of the three major RN Ai-related path-
ways described in insects are present and expressed in C. puncticollis. The presence of the core
RNAi machinery genes in the transcriptome indicates the potential to initiate an RNAi re-
sponse in this weevil. Direct injection of dsRNA targeting laccase2 into the larvae efficiently
downregulated gene expression, occurring after 24 h and lasting for at least 10 days after a sin-
gle injection. This result demonstrated that C. puncticollis exhibits a strong and systemic RNAi
effect, suggesting the potential of RNAi as a future strategy to control SPW. Furthermore, our
research provides valuable sequence data on this important pest insect that will be useful for
further research on this economically important weevil.
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