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Abstract

Introduction

Chemotherapy-related endothelial damage contributes to the early development

of cardiovascular morbidity in testicular cancer patients. We aimed to identify

relevant mechanisms of and search for candidate biomarkers for this endothelial

damage.

Methods

Human micro-vascular endothelial cells (HMEC-1) were exposed to bleomycin or cisplatin

with untreated samples as control. 18k cDNAmicroarrays were used. Gene expression dif-

ferences were analysed at single gene level and in gene sets clustered in biological path-

ways and validated by qRT-PCR. Protein levels of a candidate biomarker were measured in

testicular cancer patient plasma before, during and after bleomycin-etoposide-cisplatin che-

motherapy, and related to endothelial damage biomarkers (von Willebrand Factor (vWF),

high-sensitivity C-Reactive Protein (hsCRP)).

Results

Microarray data identified several genes with highly differential expression; e.g. Growth Dif-

ferentiation Factor 15 (GDF-15), Activating Transcription Factor 3 (ATF3) and Amphiregulin

(AREG). Pathway analysis revealed strong associations with ‘p53’ and ‘Diabetes Mellitus’

gene sets. Based on known function, we measured GDF-15 protein levels in 41 testicular

patients during clinical follow-up. Pre-chemotherapy GDF-15 levels equalled controls.

Throughout chemotherapy GDF-15, vWF and hsCRP levels increased, and were correlated

at different time-points.
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Conclusion

An unbiased approach in a preclinical model revealed genes related to chemotherapy-

induced endothelial damage, likeGDF-15. The increases in plasma GDF-15 levels in testic-

ular cancer patients during chemotherapy and its association with vWF and hsCRP suggest

that GDF-15 is a potentially useful biomarker related to endothelial damage.

Introduction
The introduction of platinum-based chemotherapy in the late seventies has resulted in high
cure rates in patients with metastatic testicular cancer. However, this chemotherapy causes
side-effects, resulting in morbidity in successfully treated survivors [1]. Relevant issues are the
increased risks for second malignancies and cardiovascular disease (CVD) [2–5]. CVD can
arise during or shortly after treatment [6, 7], as well as years to decades later [3–5, 8–11].

One of the mechanisms involved in the development of this treatment-related CVD is direct
endothelial damage. In addition to induction of endothelial cell death [12–14], both bleomy-
cine [14–16] and cisplatin [14, 17–19] indirectly influence endothelial cell function, e.g.
through interference with inflammatory and fibrinolytic factors. Ultimately, this
chemotherapy-induced cellular activation can progress to endothelial dysfunction, accelerated
atherosclerosis and overt CVD.

Early recognition and possibly prevention of these treatment-related complications are criti-
cal to maintain an optimal health condition of testicular cancer survivors. The development of
CVD is a gradual process, and early interventions or intensified screening may slow down or
stop the progression towards overt clinical morbidity. Biomarkers for treatment-related endo-
thelial damage can identify those patients at increased risk for CVD.

In this study we back-translated the clinical finding that bleomycin and cisplatin induce en-
dothelial damage. We used an unbiased approach by analysing cDNA microarray results to
identify novel genes associated with chemotherapy-related endothelial damage. Gene expres-
sion profiles were generated from the human microvascular endothelial cell line (HMEC-1) be-
fore and after treatment with bleomycin and cisplatin at different time points and
concentrations. Quantitative Real Time PCR (qRT-PCR) was performed to confirm genes with
significant expression differences in several experimental settings. Next, based on known func-
tion of these genes in the literature, we selected one of these candidate genes for further valida-
tion as proof of principle at the protein level in a testicular cancer patient cohort. With this
translational approach we aimed to identify mechanisms of and potential biomarkers for che-
motherapy-related endothelial damage.

Materials and Methods

Cell line model
HMEC-1 is an immortalised human dermal micro-vascular endothelial cell line that retains its
morphologic and functional endothelial cell characteristics during several passages [20]. Cells
were grown as a monolayer in MCDB-131 medium (Invitrogen, Merelbeke, Belgium) supple-
mented with 10% foetal calf serum (Bodinco, Alkmaar, the Netherlands), 10 mM L-glutamine
(Invitrogen, Merelbeke, Belgium), 1 mg/mL hydrocortisone (Sigma-Aldrich, Amsterdam, the
Netherlands) and 10 ng/mL human epidermal growth factor (R&D Systems, Abingdon, UK),
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and were cultured at 37°C in a humidified atmosphere containing 5% CO2. Experiments were
performed between passages 15–30.

In an “acute”-exposure setting, HMEC-1 were left untreated as controls, or were treated
with 0.3 (IC50 (concentration inhibiting cell survival by 50%)) or 1.5 mg/mL (IC90) bleomycin
and 2.6 (IC50) or 12.9 mM (IC90) cisplatin for 6, 24, and 48 hours (S1A Fig.). The IC50 values
for both bleomycin and cisplatin fall within the plasma physiological concentrations of these
drugs in patients during active treatment [14, 21–22]. In addition, in a “chronic”-exposure set-
ting, lower doses were administered (IC10; bleomycin 0.06 mg/mL or cisplatin 0.52 mM) two
times a week; cells were collected for analysis at day 30 (S1B Fig.). Administration of cisplatin
had to be withheld at the 7th administration because of considerable cell death, but was contin-
ued at full dose thereafter. Bleomycin could be administered without interruption.

cDNAmicroarray experiments
Total RNA was isolated from HMEC-1 by a RNeasy kit (Qiagen, Venlo, the Netherlands) and
pooled for each time-point and drug from 2 independent experiments. After purification (Qia-
quick PCR purification kit, Qiagen, Venlo, the Netherlands), amplified RNA (cRNA) samples
were transformed to cDNA with reverse transcriptase, independently labelled with Cy3 (green)
and Cy5 (red), and randomly hybridised to the custom-made 18K cDNA microarrays. Fluores-
cent images of the microarray slides were obtained with the Affymetrix GMS428 scanner (Affy-
metrix, Santa Clara, CA) for both fluorophores, signal intensities for each spot were quantified
by dedicated IMAGENE 5.6 software (Biodiscovery, Marina del Rey, CA).

Quantile normalisation was applied to log2 transformed Cy3 and Cy5 intensities. Operon
v2.0 (Human Genome Oligo Set V2) probe identifiers were converted to official HUGO gene
symbols. Expression values of multiple probes targeting a single gene were averaged, resulting
in a total of 15,950 unique genes. Subsequently, expression data obtained from multiple hybri-
disations (n = 4) of the same HMEC-1 specimen were averaged.

The data have been deposited in NCBI’s Gene Expression Omnibus (GEO) and are accessi-
ble through GEO Series Accession number GSE62523 (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE62523).

Class comparison
In the “acute” exposure setting, differentially expressed genes between HMEC-1 untreated
samples and samples exposed to the different drug dosages (i.e. IC50 and IC90) were tested with
the non-parametric Cuzick test for linear trend, resulting in a Z score and a P value. This test
was done for cells collected after 6 (t = 6), 24 (t = 24) and 48 (t = 48) hours. For all three time-
points the Z score resulting from the Cuzick tests for linear trend was summed (i.e.
SZ = Zt = 6 + Zt = 24 + Zt = 48); thereby selecting on genes with the constraint that changes in ex-
pression in a consistent direction with increasing concentrations over time. Genes were ranked
according to their SZ score.

In the “chronic” exposure setting, a T-test was performed on gene expression levels obtained
from samples exposed to the drugs (IC10 cisplatin or IC10 bleomycin) versus the untreated con-
trol samples that were collected after 30 days incubation. Results of these genes were ranked ac-
cording to P-value.

Gene Set Enrichment Analysis
Gene Set Enrichment Analysis (GSEA) [23] was executed with GSEA 2.0 software package
(Broad Institute, Cambridge, MA). Expression data of all 15,950 genes were compared against
functional gene sets to determine whether any of these sets were enriched in HMEC-1 treated
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with bleomycin or cisplatin in the “acute” as well as the “chronic” exposure setting. The com-
parison was performed using 169 gene sets from Kyoto Encyclopedia of Genes and Genomes
database (KEGG; http://www.genome.jp/kegg/). Statistical significance of enrichment was de-
termined using an empirical gene-based permutation test using 1000 permutations. A false dis-
covery rate (FDR) was calculated for each functional gene set, which represent the estimated
probability that a given enrichment score represents a false positive finding. We report gene
sets with a FDR� 0.10 and P� 0.025.

Quantitative Real Time PCR
Differential expression of three genes was validated by qRT-PCR. For this purpose, RNA sam-
ples included in the cDNAmicroarray analysis were used. In addition, two independent experi-
ments were performed in which HMEC-1 was exposed to cisplatin and bleomycin according to
the “acute”-exposure setting. RNA samples were isolated after 6, 24 and 48 hours exposure to
the drugs (S1A Fig.). All RNA samples were DNase treated to eliminate genomic DNA-
contamination, and subsequently, RNA was reverse transcribed into cDNA. qRT-PCR was per-
formed using Applied Biosystems TaqMan assays, according to the manufacturers protocol.
Master Mix, primers and TaqMan probes were purchased from Applied Biosystems (Nieuwer-
kerk a/d IJssel, the Netherlands). Three genes, with highly differential expression in three out
of four experimental settings, were considered plausible candidates for qRT-PCR validation.
The genes and their respective Taqman gene expression assay numbers were Growth Differen-
tiation Factor 15 (GDF-15;Hs00171132_m1), Activating Transcription Factor 3 (ATF3;
Hs00231069_m1), Amphiregulin (AREG;Hs00155832_m1); in addition expression of the
housekeeping gene Glyceraldehyde 3-phosphate dehydrogenase (GAPDH; Hs02758991_g1)
was determined. All experiments were performed in triplicate using ABI PRISM 7900 HT Se-
quence Detection System, with the following cycling conditions: 2 min at 50°C, 10 min at 95°C,
followed by 40 cycles of 15 sec at 95°C and 1 min at 60°C. Relative quantity of target genes was
calculated by dividing the mean cycle threshold (CT) for the gene of interest by the mean CT-
value for the housekeeping gene GAPDH. Relative expression-differences were calculated by
comparing expression to the baseline time-point (t = 6, S1A Fig.). Two-sided t-test was used to
compare differences in expression. P-values< 0.05 were considered to indicate a significant
difference.

GDF-15 protein levels in testicular cancer patient plasma during and
after bleomycin- and cisplatin-based chemotherapy
To clinically validate the findings from the cell line model, we used a cohort of 41 testicular
cancer patients who participated in a prospective study on early chemotherapy-related cardio-
vascular changes during bleomycin- and cisplatin-based regimens. Patients eligible for the
study had metastatic testicular cancer, were 18–50 years old and were receiving first line cis-
platin-based chemotherapy at the University Medical Centre Groningen, the Netherlands. Ex-
clusion criteria were previous chemotherapy or radiotherapy, presence of CVD, use of
erythropoietin and glomerular filtration rate< 60 mL/min. The local ethics committee ap-
proved the study, and written informed consent was obtained from all participants. Depending
on their International Germ Cell Cancer Collaborative Group (IGCCCG) prognosis group, pa-
tients received either three or four BEP courses lasting 3 weeks each (bleomycin—30 USP, days
2, 8 and 15; etoposide—100 mg/m2, days 1–5) and cisplatin—20 mg/m2, days 1–5). During the
first 6 days patients were hydrated with 4 L NaCl 0.9%/day and received daily anti-emetic ther-
apy (dexamethason, ondansetron). Blood samples were drawn at day 1, 8 and 15 of the first
chemotherapy course, day 1 and 8 of the second and third course, (c1d1 (= baseline),
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c1d8, c1d15, c2d1, etc.), one month after completion and one year after start of chemotherapy.
EDTA plasma was serially collected and stored in -20°C until analysis. Reference data were ob-
tained from healthy male siblings of adult childhood cancer survivors, who had participated as
control subjects in a cross-sectional study on late cardiovascular sequelae of treatment for
childhood cancer [24]. Out of these healthy male siblings, a control group with a comparable
median age as the testicular cancer patients was selected. Measurements in the controls were
performed as described above.

Plasma GDF-15 protein levels were determined by sandwich enzyme-linked immunosor-
bent assay (ELISA) with a commercially available kit (R&D Systems, Abingdon, UK). Further-
more, these GDF-15 protein levels were related to plasma markers for endothelial damage (von
Willebrand Factor (vWF), measured as described earlier) [25] and systemic inflammation
(high-sensitivity C-Reactive Protein (hsCRP), as described earlier) [26]. For analysis of changes
in these markers, non-normally distributed data are represented as median (range). For com-
parisons between groups the non-parametric Mann-Whitney U test was applied; the Wilcox-
on’s signed rank test was used for paired changes. Two-sided P-values� 0.05 were considered
to indicate significance, SPSS software package version 22 (SPSS Inc., Chicago, IL) was used.

Results

cDNAmicroarray
Class comparison. The top 50 of most differentially expressed genes in the “acute” and “chron-
ic” exposure setting for bleomycin and cisplatin are summarised in Table 1. Fig. 1 shows a
Venn diagram of the overlapping genes in the top 50’s of the four different exposure settings.
From this analysis three genes, e.g. GDF-15, ATF3 and AREG, were found in the top 50 of three
out of four exposure settings. Because of this overlap in the different exposure settings we con-
sidered these three genes plausible candidates, and selected these for validation by qRT-PCR.

cDNA microarray—GSEA. Pathways enriched at a FDR� 0.10 and P� 0.025 in the GSEA
are summarised in Table 2. In the “acute”-exposure setting to bleomycin, six pathways were en-
riched (all up-regulated), while no pathways were enriched in the “chronic” setting with the set
criteria for FDR. Cisplatin exposure resulted in 12 enriched pathways in the “acute”-exposure
setting (up-regulated n = 3, down-regulated n = 9) while six pathways were enriched in the
“chronic”-exposure setting (all down-regulated). The ‘p53’ and the ‘Type I Diabetes Mellitus’
gene sets were enriched in three out of four exposure settings; genes included in this gene set
are summarised in S1 Table.

qRT-PCR
To validate changes in expression of GDF-15, ATF3 and AREG qRT-PCR was performed. In
the “acute”-exposure setting, mRNA-expression of all three genes increased in time after
exposure to bleomycin and cisplatin, in concordance with the microarray data. After 48 hours
exposure to both drugs, mRNA expression of all three genes was significantly higher compared
to untreated control cells. No change in mRNA expression of these three genes occurred in un-
treated control cells in time (Fig. 2).

Plasma GDF-15 protein levels in testicular cancer patients treated with
BEP-chemotherapy
Based on data from the literature we selected GDF-15 for further validation on the protein
level in plasma of testicular cancer patient during and after treatment, and related GDF-15 lev-
els to known plasma endothelial damage biomarkers (vWF, hsCRP) [25, 26]. Baseline
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Table 1. Top 50 genes with largest difference in expression in the different exposition settings in HMEC-1.

BLEOMYCIN - ACUTE BLEOMYCIN - CHRONIC CISPLATIN - ACUTE CISPLATIN - CHRONIC

Gene ΣZ Gene P-value Gene ΣZ Gene P-value

ATF3 *‡ " 9.574 CYP1B1 " <0.0001 CORT " 9.577 MX1† # <0.0001

KIAA1370 " 9.574 KLF12 " <0.0001 TREM2 " 9.222 GPR87 # <0.0001

RRAD " 9.552 PRSS35 ‡ " <0.001 ATF3 *§ " 9.039 IFI27 # <0.0001

C12orf5 " 9.476 GLS2 # <0.001 AVPI1 " 8.757 JMJD4 " <0.001

GDF-15 ‡ " 9.454 ENPP4 " <0.001 AK1* " 8.658 FAM155A # <0.001

GPR87 " 9.454 ZMAT1 " <0.001 VASN " 8.653 OAS3 # <0.001

MDM2 " 9.356 TMEM184C " <0.001 SESN2 * " 8.633 MX2 # <0.001

SESN2 * " 9.258 ADAM12† " <0.001 LRDD " 8.633 HLA-F # <0.001

COL7A1 " 9.16 RAB11FIP1 " <0.001 AREG§ " 8.633 AREG †§ # <0.001

ATG16L2 " 9.16 PTGER2 " <0.001 PLCD1 " 8.586 LOC158376 " <0.001

AK1* " 9.16 SERPINB2 " <0.001 ADM " 8.549 ALKBH8 " <0.001

FAS " 8.964 SCFD2 " <0.01 LRRTM2 " 8.524 ABCC4 " <0.001

LIF " 8.964 KRTAP4-8 " <0.01 DEDD2 " 8.457 HIST2H2BE # <0.001

VWCE " 8.866 C10orf136 " <0.01 RALGDS " 8.37 RFT1 " <0.001

TP53INP1 " 8.817 HES1† # <0.01 DNAJB2 " 8.364 LRRC38 " <0.001

VDR " 8.811 COL1A2 " <0.01 MSX1 " 8.328 SNAI1† # <0.001

C4orf18 " 8.768 HIST1H2BJ " <0.01 MST150 " 8.322 C19orf42 " <0.01

FERMT1 " 8.734 RBPJL " <0.01 NR4A3 " 8.157 LOC151171 # <0.01

FUCA1 " 8.691 CRTAC1 # <0.01 FDXR " 8.143 SIAE # <0.01

MCC " 8.691 CCDC148† # <0.01 ITPKA " 8.143 IQGAP2 # <0.01

NELF " 8.691 ROR1 " <0.01 KREMEN2§ " 8.143 POLA1 " <0.01

BTG2 " 8.691 EDN1 # <0.01 SLC31A2 " 8.126 PDK4 # <0.01

TGFBR1 " 8.691 TGFB2 ‡ " <0.01 CEACAM1 " 8.107 ATF3 † § # <0.01

TMEM131 " 8.572 PRKCZ " <0.01 IRF5 " 8.101 TNFSF10 # <0.01

CDH10 " 8.572 MARVELD2 " <0.01 FOXL2 " 8.101 DHX37 " <0.01

FZD2 # -7.775 ATF3 † ‡ # <0.01 VCAM1 * # -8.432 TOMM40L " <0.01

C3orf36 # -7.809 CD82 # <0.01 C7orf10 # -8.437 IFIT3 # <0.01

TRIB2 * # -7.817 XTP3TPA " <0.01 C3orf26 # -8.438 IFI44L # <0.01

SMA5 # -7.835 SPTAN1 # <0.01 MYRIP # -8.535 TNC† " <0.01

NDRG4 # -7.869 KIAA1655 " <0.01 ROR1 # -8.56 KREMEN2 § # <0.01

EBPL # -7.873 DDB2 # <0.01 QKI # -8.597 HNMT # <0.01

TGFB2 ‡ # -7.912 SNAI1† # <0.01 TRIB2 * # -8.628 BRD9 " <0.01

MYCN # -7.971 STC2 " <0.01 CDKAL1 # -8.647 BEX2 # <0.01

SEMA3A * # -7.971 TNC† " <0.01 TFPI # -8.658 MGC33894 # <0.01

GIMAP2 # -7.992 LRRIQ1 # <0.01 LTBP1 # -8.664 DUSP1† # <0.01

ZFP36 # -8.001 ASMT " <0.01 PLK1 # -8.686 C7orf54 # <0.01

UBE2G2 # -8.044 GATA6 " <0.01 NAV1 # -8.714 ID4 " <0.01

RNASE1 # -8.069 GDF-15 † ‡ # <0.01 PAPPA # -8.726 CCDC148† # <0.01

MXD3 # -8.21 PCDHGA3 # <0.01 PIF1* # -8.765 MDM2 # <0.01

HIST1H2AM # -8.218 DDX19A " <0.01 DHRSX # -8.891 PRAP1 # <0.01

C14orf94 # -8.222 RARB " <0.01 GMDS # -8.928 FOS # <0.01

PIF1* # -8.261 CCND2 # <0.01 LAMA4 # -9.02 HES1† # <0.01

OASL # -8.265 BCS1L " <0.01 DKFZP0335 # -9.02 ASPA # <0.01

PRSS35 ‡ # -8.44 BIRC7 " <0.01 CD9 # -9.051 GDF-15 † # <0.01

CLEC14A * # -8.482 MX1† # <0.01 FAT4 # -9.124 COL9A3 # <0.01

HOXD8 # -8.679 RERG " <0.01 DOCK1 # -9.222 LGALS9 # <0.01

(Continued)
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characteristics of the patients are summarised in Table 3. Although short from significance
(p = 0.06), baseline (i.e. before start of chemotherapy) GDF-15 protein levels in testicular can-
cer patients were not different from healthy age-matched males (Fig. 3A). Patients in the
IGCCCG good prognosis group had slightly lower baseline GDF-15 protein levels than patients
in intermediate or poor prognosis groups (good prognosis: median 362.9 pg/mL (range 197.6–
1059.5; n = 33), intermediate/poor prognosis: median 689.1 pg/mL (range 186.8–1935.0; n =

Table 1. (Continued)

BLEOMYCIN - ACUTE BLEOMYCIN - CHRONIC CISPLATIN - ACUTE CISPLATIN - CHRONIC

Gene ΣZ Gene P-value Gene ΣZ Gene P-value

HIST1H1D # -8.713 ADAMTS12 " <0.01 SMAD7 # -9.32 NR4A1 # <0.01

CLEC3B # -8.866 DUSP1† # <0.01 FHOD3 # -9.381 ADAM12† " <0.01

VCAM1 * # -9.16 AREG† # <0.01 CLEC14A * # -9.418 RNASE7 # <0.01

C9orf3 # -9.552 OSBPL1A " <0.01 SEMA3A * # -9.418 HHATL # <0.01

* Overlapping genes in the “acute” exposure setting for both drugs,
† Overlapping genes in the “chronic” exposure setting for both drugs.
‡ Overlapping genes in the “acute” and “chronic” exposure setting for bleomycin.
§ Overlapping genes in the “acute” and “chronic” exposure setting for cisplatin.

doi:10.1371/journal.pone.0115372.t001

Figure 1. Overlapping genes in top 50 of most differentially expressed genes in HMEC-1 exposed to
bleomycin and cisplatin.

doi:10.1371/journal.pone.0115372.g001
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Table 2. Gene Set Enrichment Analysis on gene expression profiles from HMEC-1 following “acute” and “chronic” exposure to bleomycin and
cisplatin, using pathway definitions from KEGG.

BLEOMYCIN -
ACUTE

CISPLATIN -
ACUTE

CISPLATIN -
CHRONIC

FDR P-value FDR P-value FDR P-value

Cellular Processes; Cell Communication

Adherens junction # 0.07 0.003

Focal adhesion # 0.04 <0.0001

Cellular Processes; Cell Growth and Death

p53 signalling pathway " 0.001 <0.0001 " 0.02 <0.0001 # 0.1 <0.0001

Environmental Information Processing; Signal Transduction

TGF-beta signalling pathway # 0.05 <0.0001

Genetic Information Processing; Folding, Sorting and Degradation

Ubiquitin mediated proteolysis # 0.04 0.001

Human Diseases

Endometrial cancer # 0.04 <0.0001

Cholera infection " 0.10 0.005

Type I Diabetes Mellitus " 0.07 <0.0001 " 0.05 <0.0001 # 0.01 <0.0001

Neurodegerative disease # 0.09 0.008

Prion diseases # 0.08 0.01

Metabolism; Carbohydrate Metabolism

Butanoate metabolism " 0.02 <0.0001

Glyoxylate and dicarboxylate metabolism # 0.09 0.02

Reductive carboxylate cycle # 0.04 0.002

Glycosylphosphatidylinositol(GPI)-anchor biosynthesis " 0.03 0.002

N-Glycan biosynthesis # 0.08 <0.0001

Linoleic acid metabolism " 0.08 0.005 " 0.09 0.01

Polyunsatyrated fatty acid biosynthesis # 0.04 0.002

Organismal Systems; Immune System

Antigen processing and presentation # 0.0 <0.0001

Toll-like receptor signalling pathway # 0.08 <0.0001

No pathways were enriched according to these criteria after “chronic” exposure to bleomycin.

doi:10.1371/journal.pone.0115372.t002

Figure 2. Relative differences (mean� standard deviation) in gene expression ofGDF-15, ATF3, AREG in HMEC-1 after “acute” exposure to
bleomycin and cisplatin measured by qRT-PCR.

doi:10.1371/journal.pone.0115372.g002
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8); P = 0.04). Median baseline GDF-15 level was not related to tumor stage (stage 2 disease: me-
dian 373.0 pg/mL (range 197.6–1935.0; n = 30), stage 3&4 disease: median 486.4 pg/mL (range
186.8–1875.9; n = 11); P = 0.40). Pre-chemotherapy GDF-15 protein levels were not related to
age (rs = 0.08; P = 0.61).

Table 3. Characteristics of 41 patients with disseminated testicular cancer and treated with cisplatin
containing combination chemotherapy.

Median (range) Number (%)

Number of patients 41

Age at start of treatment, years 31 (18–46)

Diagnosis

Non-seminoma 35 (85.4)

Seminoma 6 (14.6)

IGCCCG prognosis group

Good 33 (80.5)

Intermediate 7 (17.1)

Poor 1 (2.4)

Tumor Stage

II 30 (73.2)

III 4 (9.8)

IV 7 (17.1)

Treatment regimen

3 cycles BEP 29 (70.7)

4 cycles BEP 11 (26.8)

4 cycles EP 1 (2.4)

Abbreviations: International Germ Cell Cancer Collaborative Group (IGCCCG); bleomycin etoposide

cisplatin chemotherapy (BEP).

doi:10.1371/journal.pone.0115372.t003

Figure 3. GDF-15. A. Plasma GDF-15 protein levels in patients with metastatic testicular cancer (n = 41) prior to start of bleomycin- and cisplatin-based
chemotherapy, compared to healthy age-matched males (n = 10); B. Plasma GDF-15 protein levels before, during and after completion of bleomcyin- and
cisplatin-based chemotherapy for testicular cancer. The sample at c1d1 is drawn before initiation of chemotherapy. (*) p< 0,05 compared to baseline value
or indicated time-point.

doi:10.1371/journal.pone.0115372.g003
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During BEP-chemotherapy, GDF-15 protein levels increased compared to baseline, with sig-
nificantly higher levels 1 months and 1 year post-chemotherapy (Fig. 3B, Table 4). Compared
to pre-chemotherapy, plasma levels of vWF and hsCRP changed significantly during treatment
(Table 4). After completion of chemotherapy, vWF-levels remained persistently elevated,
whereas hsCRP returned to pre-chemotherapy values. At baseline, levels of GDF-15 were relat-
ed to levels of vWF (rs = 0.35; P = 0.03) and hsCRP (rs = 0.39; P = 0.014). During chemotherapy,
levels of GDF-15 correlated with hsCRP at c1d8 (rs = 0.44; P = 0.01) and with vWF at c3d8
(rs = 0.40; P = 0.017). At the follow-up visit one month after completion of chemotherapy, levels
of GDF-15 and vWF were strongly correlated (rs = 0.56; P = 0.001), whereas this relation was
not found for GDF-15 and hsCRP (rs = 0.18; P = 0.28). One year after start of chemotherapy,
no relation between GDF-15 levels and vWF or hsCRP (rs = 0.28; P = 0.12; rs = 0.10; P = 0.57)
was found.

Discussion
In this study we used an unbiased translational approach with cDNA microarray as a tool to
find novel mechanisms related to and select candidate biomarkers involved in chemotherapy-
induced endothelial damage. With this in vitro strategy, we found several single genes with sig-
nificant changes in expression upon exposure to bleomycin and cisplatin. Three genes with
strong expression differences in three out of four experimental settings, GDF-15, ATF3 and
AREG, were validated by qRT-PCR. In addition, GSEA revealed clusters of genes involved in
several pathways, including ‘p53’ and ‘Type I Diabetes Mellitus’ gene sets, which were affected
in this model. Furthermore, we showed that BEP-chemotherapy (Bleomycin; Etoposide; Cis-
platin) did indeed affect plasma GDF-15 protein levels in testicular cancer patients and that
these levels related to known endothelial damage biomarkers such as vWF and hsCRP.

Table 4. Plasma levels of GDF-15 (pg/mL), vWF (%) and hsCRP (mg/L) in testicular cancer patients (n = 41) before, during and after completion
of bleomycin- and cisplatin-based chemotherapy.

GDF-15 (pg/mL) vWF (%) hsCRP (mg/L)

Median Range Median Range Median Range

Course1

Day 1 (= baseline) 383.1 186.8–1935.0 100 42–297 2.0 0.2–87.1

Day 8 3473.7 * 1344.5–9028.3 164* 56–319 0.6* 0.2–4.9

Day 15 1587.2 * 655.2–4014.9 145* 57–394 4.2† 1.1–101.0

Course 2

Day 1 1145.5 * 593.6–3074.5 143* 34–360 5.1 1.1–39.8

Day 8 4898.0 * 2183.0–10794.9 197* 66–464 0.6* 0.2–21.1

Course 3

Day 1 2067.7 * 639.0–4918.0 194* 66–440 3.7 0.3–39.9

Day 8 5542.8 * 702.3–18958.9 197* 81–419 0.6 0.2–25.7

One month after completion of chemotherapy

1009.6 * 409.7–4737.1 135* 56–249 2.2 0.4–29.1

One year after start of chemotherapy

395.2 *‡ 246.9–913.2 115*‡ 49–218 1.5§ 0.2–14.3

* P < 0.01 compared to baseline, Wilcoxon signed rank test
† P < 0.05 compared to baseline, Wilcoxon signed rank test
‡ P < 0.01 compared to one month after completion of chemotherapy, Wilcoxon signed rank test
§ P < 0.05 compared to one month after completion of chemotherapy, Wilcoxon signed rank test

doi:10.1371/journal.pone.0115372.t004
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In the single gene analysis several genes were significantly differentially expressed in the dif-
ferent experimental settings in the HMEC-1 in vitromodel. The genes GDF-15, ATF3 and AREG
were in the top 50’s of most differentially expressed genes in three or four exposure settings.

The cytokine GDF-15 (also known as Macrophage Inhibitory Cytokine 1 (MIC-1) or
NSAID activated gene (NAG-1)) is a member of the Transforming Growth Factor β (TGFβ)
family. GDF15 is induced by all sorts of stimuli including cytokines, chemo- and/or radiothera-
py and injury in all sorts of different cells and tissues [27–30]. Release of GDF-15 can induce
anti-inflammatory, anti-apoptotic and anti-proliferative effects, thereby exerting vasculopro-
tective mechanisms. Therefore, increases in GDF-15 plasma levels in our patient cohort may
well result from increased production by endothelial cells and/or macrophages, to compensate
for chemotherapy-induced damage. In a study evaluating gene expression changes in prostate
cancer samples pre- and post docetaxel/mitoxantrone treatment, GDF-15 was one of highest
up-regulated genes post-treatment [31], illustrating that cytostatics can influence GDF-15 ex-
pression in both malignant and non-malignant cells.

Elevated levels of GDF-15 have been associated with increased risk of diseases hypothesised
to result from chronic inflammation [29, 32] and numerous studies showed that GDF-15 is a
valuable biomarker for cardiovascular disease [29, 30, 32–34]. GDF-15 is thought to play a rele-
vant role in cardiovascular damage responses [35], possibly through a pro-angiogenic response
as was demonstrated in a pre-clinical model with HUVEC [36]. GDF-15 is also described as
biomarker/predictor of albuminuria, known to reflect established micro-vascular damage [37].
In addition, several studies implicate GDF-15 in aspects of metabolic disorders e.g. insulin re-
sistance and obesity [30, 38, 39]. Recently, higher levels of circulating MIC-1/GDF-15 were
also associated with an increased risk of colorectal cancer supporting a role of chronic inflam-
mation in the development of colorectal cancer [40].

ATF3 is a downstream member of the MAP-kinase signalling pathway that encodes for a
nuclear factor that stimulates transcription upon cellular stress. Fast up-regulation of ATF3 is a
central stress response in different endothelial cell models, induced by various noxious stimuli
[41–46]. Interference with ATF3-levels protected cells from apoptosis induction, e.g. induced
by TNFα in HUVEC [47], by cisplatin in a human glioblastoma cell line [42], or related to
doxorubicin in cardiomyocytes [48]. Interestingly, immunohistochemically measured ATF3-
expression is increased in atherosclerotic areas of human iliac arteries [43]. Few studies ad-
dressed AREG, a member of the epidermal growth factor receptors that plays an important role
in cellular proliferation and survival. Breast cancer cells exposed to cisplatin secreted the
AREG-protein over extended periods of time, i.e. up to 72 hours after exposition [49].

Based on the available data we decided to study plasma protein levels of GDF-15 in testicu-
lar cancer patients before, during and after treatment with BEP-chemotherapy, and relate
changes to levels of known endothelial damage biomarkers [25, 26]. The increases in GDF-15
throughout treatment as well as post-chemotherapy may partly relate to cancer-related mecha-
nisms, as the GDF-15 protein level wasslightly higher in patients with more advanced disease
stage as measured by IGCCCG score, which may relate to release of GDF-15 from apoptotic tu-
mour cells. However, its role in endothelial damage is supported by the fact that GDF-15 levels
correlated with proteins known to reflect chemotherapy-related endothelial damage in testicu-
lar cancer patients, vWF and hsCRP [25, 26]. Therefore, it is conceivable that the observed rise
in plasma GDF15 is involved in chemotherapy-related endothelial damage, however it is prob-
ably not due to endothelial injury alone. As this protein is mechanistically related to chemo-
therapy-related endothelial damage it may be a potentially sensitive biomarker for detecting
this damage. Further extended analysis of GDF15 levels in combination with phenotyping of
cardiovascular risk factors in a larger cohort of patients is warranted. Although in this study no
relation was found between pretreatment levels of GDF15 and age, it is known that this is the
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case in the normal population and should be taken into account when analyzing GDF15 levels
in time. Moreover, the fact that the TGFβ-pathway is involved in this damage may be a clue to
interventions that decrease the amount of endothelial damage related to treatment with bleo-
mycin and cisplatin.

GSEA showed significantly enriched of several pathways, including ‘p53’ and ‘Type I Diabe-
tes Mellitus’ in “acute” exposure to bleomycin and cisplatin, and “chronic” exposure to cisplat-
in. The finding that p53-related genes were affected by bleomycin as well as cisplatin illustrates
the validity of our approach, as both drugs exert their key therapeutic effect by cellular apopto-
sis induction. The enriched ‘Type I Diabetes Mellitus’ gene set includes several genes involved
in inflammatory processes, e.g. Human Leucocyte Antigen-molecules, interleukins and TNF,
indicating that bleomycin and cisplatin induce an inflammatory response in endothelial cells.
This finding is completely in line with studies in testicular cancer patients treated with
cisplatin-based regimens, which showed higher rates of systemic inflammation and endothelial
dysfunction [25, 26, 50]. As circulating platinum remains detectable in the circulation years to
decades after cisplatin treatment [51–52], long-term testicular cancer survivors may well have
ongoing vascular damage and chronic low-grade endothelial inflammation. When chronic in-
flammatory responses prove to be an important pathogenic factor for the development of
chemotherapy-induced endothelial damage, intervention with anti-inflammatory drugs is a ra-
tionale approach to alleviate these effects.

In conclusion, we utilised cDNA microarray to detect in an unbiased way genes and path-
ways associated with chemotherapy-related endothelial damage, to find biomarkers for and
mechanisms involved in this damage. In HMEC-1 exposed to bleomycin and cisplatin, several
genes were strongly differentially expressed, e.g. GDF-15, ATF3 and AREG. In GSEA, clusters
of genes involved in cell death and inflammation were affected. The observed changes in plas-
ma GDF-15 protein levels in testicular cancer patients induced by cisplatin- and bleomycin-
containing chemotherapy indicate that this informative pre-clinical approach can be translated
to a clinical setting, and that GDF-15 may be a potential biomarker of interest that is mechanis-
tically involved in chemotherapy-related healthy tissue damage such as endothelial damage.
Further in vitro and in vivo exploration is warranted. This facilitates the rationale towards se-
lection of targets for intervention, with early surrogate biomarkers for chemotherapy-related
endothelial damage.

Supporting Information
S1 Fig. Experimental design. A. “acute” exposure setting: immortalised HMEC-1 were ex-
posed to bleomycin (0.3 mg/ml (IC50), 1.5 mg/mL (IC90)) or cisplatin (2.6 mM (IC50), 12.9 mM
(IC90)) for 6, 24 and 48 hours; B. “chronic” exposure setting: over the course of 30 days
HMEC-1 was exposed to 0.06 mg/mL bleomycin (IC10) or 0.52 mM cisplatin (IC10) twice
weekly). In both experiments untreated samples served as controls. (�) RNA-isolation and
cDNA microarray experiments; (†) RNA isolation and qRT-PCR.
(TIF)

S1 Table. Genes included in the ‘p53’ and ‘Type I Diabetes Mellitus’ gene sets in the KEGG
database, ranked in alphabetical order.
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