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Abstract
The human herpes virus Epstein-Barr virus (EBV) latently infects and drives the proliferation

of B lymphocytes in vitro and is associated with several forms of lymphoma and carcinoma

in vivo. The virus encodes ~30 miRNAs in the BART region, the function of most of which re-

mains elusive. Here we have used a new mouse xenograft model of EBV driven carcinoma-

genesis to demonstrate that the BART miRNAs potentiate tumor growth and development

in vivo. No effect was seen on invasion or metastasis, and the growth promoting activity was

not seen in vitro. In vivo tumor growth was not associated with the expression of specific

BART miRNAs but with up regulation of all the BART miRNAs, consistent with previous ob-

servations that all the BART miRNAs are highly expressed in all of the EBV associated can-

cers. Based on these observations, we suggest that deregulated expression of the BART

miRNAs potentiates tumor growth and represents a general mechanism behind EBV asso-

ciated oncogenesis.

Author Summary

Epstein-Barr virus is a herpes virus that persistently infects essentially every human being
for life. It also has the ability to latently infect B lymphocytes and cause them to proliferate
indefinitely in culture, and is associated with several forms of carcinoma and lymphoma.
The virus contains genes for ~30 miRNAs in its BART region. The functions of these miR-
NAs are mostly unknown, but it is clear that they are not required to drive the growth of
infected cells in vitro. We have shown previously, however, that these miRNAs are all
highly expressed in the EBV associated cancers and that their expression is deregulated
suggesting they may play a role in vivo. Until now, the significance of BART miRNAs to
tumor development in vivo was unknown. Here we have used a mouse xenograft model to
show that these miRNAs, while having little or no discernible effect on the growth of in-
fected cells in vitro, potentiate the seeding and growth of EBV associated tumors in vivo.
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Introduction
Epstein-Barr virus (EBV) is a ubiquitous human herpes virus. It infects virtually every human
being for life and in the overwhelming number of people this persistent infection is benign [1].
The virus achieves this by entering into a quiescent latent state within circulating, resting,
memory B lymphocytes where no viral proteins are expressed [2, 3]. However, in order to
achieve this state the virus needs to latently infect naïve B lymphocytes and drive them to be-
come activated proliferating lymphoblasts (growth transcription program\Latency III) so that
they can then differentiate through the germinal center to become latently infected, resting
memory B cells. This ability to drive B cell proliferation has long been believed to explain why
EBV is associated with several forms of cancer, including lymphomas (Burkitt’s (BL) and
Hodgkin’s (HD)) and carcinomas (nasopharyngeal (NPC) and gastric (GaCa)) [1, 4]. However,
a major inconsistency with this idea was uncovered when detailed analysis of viral latent pro-
tein expression was performed on infected cells in vivo and in tumor cells. These studies re-
vealed that the tumors do not express the full panoply of potentially oncogenic, growth
promoting, EBV latent proteins found in the growth program. Rather, the EBV gene expression
profiles seen in the tumors reflects those found at specific stages of B cell infection in vivo [4].
This finding has led to the proposal that the tumors arise directly from these infected B cell
types. In the most extreme case (BL), only one viral protein is expressed, EBNA1 [5, 6] which is
the gene expression pattern characteristic of latently infected memory B cells [7] when they di-
vide. These counterintuitive observations strongly imply that the virus has evolved to minimize
the oncogenic risk posed by the growth program/Latency III latent proteins, which otherwise
would threaten the host within which the virus persists.

On the other hand, it is well known that the EBV episome, or plasmids derived from it, will
be rapidly lost if there is no selective advantage to their retention [8–11]. The persistence of the
viral episome within the tumors therefore implies that the virus must be contributing to the
growth and/or survival of the tumors [8, 12–17]. Since most of the growth promoting EBV la-
tent proteins are absent, the question arises as to what the virus is contributing to the tumors
that causes the viral episome to be retained. Recently, attention has become focused on abun-
dant non-coding EBV RNAs [18–23]. These include ~40 miRNAs, four of which are encoded
from the BHRF region and the remainder from the BART region. We have shown that all of
the BART miRNAs are highly expressed in all of the tumor types, especially the carcinomas
[22, 24]. This includes a subset of the BART miRNAs whose expression in vivo is specifically
associated only with the Latency III growth program (Latency III associated BART miRNAs)
and thus, would not be expected to be associated with the viral latency programs found in the
tumors (Latency I or II). To date, this represents the only example of inappropriate expression
of Latency III growth program genes in the tumors and suggests that these miRNAs may play a
role in tumor development.

Although the functions of most of the BART miRNAs remains unresolved several in vitro
studies have suggested that they may contribute to oncogenesis. BL-derived cell lines with con-
stitutive expression of BART miRNAs are able to inhibit apoptosis induced by the loss of EBV
in vitro, implicating a survival role for BART miRNAs in BLs [25]. BART 5 represses the p53
up-regulated modulator of apoptosis (PUMA), thereby protecting EBV-infected cells from vi-
rally-induced apoptosis and in addition high expression of BART 5 correlates with the low
abundance of PUMA in NPC tissues [26]. BART 13� likely plays an anti-apoptotic role by tar-
geting the Wnt-signalling enhancer CAPRIN2 [27], Bart 3� suppresses the DICE1 tumor sup-
pressor to promote cellular growth [28] and BART Cluster 1 miRNAs are able to suppress the
Bcl-2 interacting mediator of cell death (Bim), thus protecting cells from apoptosis [29]. How-
ever, until now no data in support of a role for the EBV BART miRNAs in tumorigenesis in
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vivo has been presented. Since it is not possible to study the tumors in situ in humans, we devel-
oped a mouse model of one (NPC) [30]. In this paper we use this in vivomodel to demonstrate
that the miRNAs confer a significant growth advantage to EBV associated tumors in vivo.

Results

Up regulation of EBV BART miRNAs in nasopharyngeal carcinoma in
vivo
We have previously reported an orthotopic mouse model which faithfully recapitulates locally
invasive and metastatic EBV-positive nasopharyngeal carcinoma (NPC) [30]. In this model, lu-
ciferase-tagged C666–1 cells were injected into the nasopharyngeal epithelium of the highly
immune deficient mouse strain NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG). To gain insight
into the possible role of EBV BART miRNAs in tumorigenesis we wished to ascertain if tumor
growth and/or metastasis in this model was associated with preferential expression of specific
BART miRNAs. Therefore, we examined the BART miRNA expression profiles of C666–1
cells before and after inoculation and growth as tumors in the NSG mouse model and then
again after the tumors had been explanted and grown in vitro. A complete description of the
parental lines, tumors, and tumor explant cultures developed and used in this study is given in
S1 and S2 Tables. To profile the BART miRNAs we employed a PCR based assay that we have
characterized in detail previously [24]. This assay will detect�10 copies of each mRNA with a
linear response up to�108 copies. It has the advantage that it allows the quantitative profiling
of the expression of a large number of miRNAs from small tissue samples that otherwise would
be impossible to study, such as human tissue biopsies and the moue tumors studied here.

Fig. 1A and B show examples of C666–1 derived tumors grown in the NSG mouse model.
The miRNA profiles of the cell lines before, during and after growth as tumors are shown in
Fig. 2A. We did not observe specific changes in individual miRNAs rather all of the BART
miRNAs were significantly up regulated when the cells grew as tumors in vivo compared to the
parental lines (p<0.001). When the tumors were explanted for culture in vitro to become cell
lines, the miRNA expression declined again to that of the parental line. However, this decline
was fully reversible since upon reinjection back into the mice, the miRNA level again increased.
In all, this process was reiterated three times with the same result, up regulation in vivo and
down regulation in vitro (not shown). This suggests that increased expression of the BART
miRNAs may confer a growth advantage to the tumor cells in vivo. Two of the three BHRF1
miRNAs also showed elevated copy numbers in the tumors although their expression levels
were modest when compared to the BART miRNAs (not shown).

Metastasis is generally characterized by expression of the signature protein Snail a key tran-
scriptional factor in epithelial mesenchymal transition that is known to promote metastasis
[31]. As expected, Snail expression was greatly increased in the C666–1 metastases compared
to the primary tumors (Fig. 3A). However, when we compared the BART miRNA expression
profiles of primary tumors with metastasis they were indistinguishable (Fig. 3B). Indeed we
have developed a highly metastatic derivative of the C666–1 tumor with a 100% metastasis rate
in mice and even these cells showed no variation in BART miRNA expression (not shown).
Thus, this analysis did not detect a correlation between EBV BART miRNA expression and
metastasis.

Up regulation of EBV BART miRNAs in gastric carcinoma in vivo
We wished to confirm these findings in a second carcinoma model therefore we chose to study
the gastric carcinoma (GaCa) cell line AGS-BX1. Successful engraftment of immunosuppressed
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Figure 1. Mousemodels of EBV positive carcinoma.Cells from the luciferase tagged NPC line C666–1 and GaCa line AGS-BX1 were injected into the
nasopharyngeal epithelium of NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice and tumor growth regularly monitored. A. Vital scans demonstrating the growth of
primary tumors and metastases for C666–1 NPC cells. B. Typical histology of metastases from C666–1 NPC cells. C. Vital scans demonstrating the growth
of primary tumors and metastases for AGS-BX1 GaCa cells. D. Typical histology of metastases from AGS-BX1 GaCa cells.

doi:10.1371/journal.ppat.1004561.g001
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mice with this cell line has not been reported previously. Consistent with this, mice injected
subcutaneously with 107 AGS-BX1 cells failed to develop tumors (not shown). Interestingly
though, 4 out of 10 mice injected in the nasopharyngeal epithelium (I.N.) grew tumors, with
metastatic dissemination being observed in 3 of the mice (Fig. 1 C and D) suggesting that this
is also a good model to study GaCa in vivo. We profiled the BART miRNA expression levels in
the parental line, tumors and explants and observed similar results to those seen with the NPC
model (Fig. 2B). Although not as large as the NPC line, the increase in BART miRNA expres-
sion in the tumors was nevertheless substantial when compared to the parental line (p<0.001).
However, again no significant difference was seen between the primaries and metastases (Fig. 3
C and D) and the expression level decreased when the tumors were grown in vitro. The extent
of reduction was not as dramatic as that seen with NPC and had not returned to the levels seen
in the parental line at the time the cells were tested. This likely reflects the fact that the AGS-

Figure 2. BARTmiRNA expression is up regulated when carcinoma cells are grown in vivo. A. The expression profile of the BARTmiRNAs in the
C666–1 parental cell line (grey), in vivo tumors (black) and in vitro explants derived from the tumors (white). B. The expression profile of the BARTmiRNAs in
the AGS-BX1 GaCa parental cell line (grey), in vivo tumors (black) and in vitro explants derived from the tumors (white). N.B. All BARTmiRNA levels are
expressed relative to the ubiquitous small cellular RNA U1.

doi:10.1371/journal.ppat.1004561.g002
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BX1 explant lines were grown for a much shorter time in vitro then the NPC lines and may not
have had sufficient time to fully reduce their expression level.

Specificity of the BART miRNA up regulation in tumors
To discover if the up regulation of the BART miRNAs was specific to the viral miRNAs or rep-
resented a more general phenomenon we first examined the expression of three cellular miR-
NAs mir-9, mir-34a and mir-26a. As seen in Figs. 4 A and C all three cellular miRNAs tested
were expressed at similar levels in the parental lines, tumors and in the explanted tumor cells
grown in vitro. A trend was observed as with the BART miRNAs in that levels were slightly
higher in the tumors and tended to decrease again in the explants. However, these changes
were not consistent (mir-9 was mostly highly expressed in the NPC explants) and did not al-
ways achieve statistical significance. In particular changes in the GaCa cells never achieved sig-
nificance. Thus, unlike the BART miRNAs, the cellular miRNA increases were small and not
reproducible between different cell types. This study confirms that the up regulation we have
observed in BART miRNA expression in vivo was not a consequence of a global increase in the
production of all miRNAs.

We also tested mRNA levels for two cellular genes that are associated with epithelial mesen-
chymal transition, CDH1 and Snail [32, 33] (Fig. 4 B and D). While the levels of CDH1 re-
mained unchanged, Snail levels actually decreased in the tumors compared to the parental or
explanted tumor cells grown in vitro for both NPC and GaCa. These results demonstrate that
the increased expression of the BART miRNAs was not a consequence of a general up regula-
tion in gene expression.

Lastly, we checked the mRNA levels of EB viral latent genes including the small viral RNA
EBER1 (Fig. 4 B and D). The levels of all three were higher in the tumors for both the NPC and

Figure 3. BARTmiRNA expression does not change in metastasis. A. and C. mRNA expression level of the metastasis associated transcription factor
Snail in primary tumors and metastases from C666–1 (A) and ABS-BX1 (C) cells. B. and D. Expression profile of the BARTmiRNAs in C666–1 (B) and AGS-
BX1 (D) primary tumors (black) and metastases (white). N.B. All BARTmiRNA levels are expressed relative to the ubiquitous small cellular RNA U1.

doi:10.1371/journal.ppat.1004561.g003
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the GaCa cells when compared to the parental lines. However, the levels of the EBNA1 and
LMP1 transcripts were strikingly up regulated for the NPC tumors suggesting that these latent
proteins might also play a role in NPC tumor growth.

We conclude that there is an increase in the expression of the BART miRNAs when EBV
positive carcinoma cells are grown as tumors in vivo and this is reversed upon re-culture in
vitro. However, we saw no consistent changes in BART expression when tumors underwent
metastasis. This suggests that the BART miRNAs may confer a significant growth advantage to
EBV positive tumor cells in vivo that is not reiterated in vitro.

The up regulation of EBV BARTmiRNAs in vivo is not carcinoma
specific
To test whether the up regulation of BART miRNAs is tissue specific, i.e. restricted to the carci-
nomas, we evaluated their expression in a B cell lymphoma. Single cell suspensions of the

Figure 4. Changes in cellular and viral gene expression in the tumors. A. and C. Expression of three cell miRNAs in the parental line (grey) tumors
(black) and tumor derived in vitro lines (white) for the C666–1 NPC cells (A) and for the AGS-BX1 GaCa cells (C). B. and D. Expression of cellular and EBV
encoded mRNAs in the parental line (grey) tumors (black) and tumor derived in vitro lines (grey) for the C666–1 NPC cells (B) and for the AGS-BX1 GaCa
cells (C).

doi:10.1371/journal.ppat.1004561.g004
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luciferase tagged EBV-positive BL (BL36) cells could not be successfully injected into the naso-
pharyngeal epithelial tissue of NSG mice, therefore we injected them intravenously into the tail
vein. Lymphoma developed in all injected animals (Fig. 5A and B). For a detailed description
and account of the tumors used in this study see S1 and S2 Tables. Upon profiling the BART
miRNA expression pattern we saw a similar result to that obtained with the carcinomas. The
expression level of all the BART miRNAs was up regulated (p<0.001), when compared with
the parental line (Fig. 5C). As with the carcinomas this effect was reversible when the tumors
were re-cultured in vitro.

EBV BART miRNAs potentiate tumor growth in vivo
We have reported here an increased expression of the BART miNAs in EBV associated tumors
in vivo that is not due to a general increase in cellular transcription but may be associated with
increases in expression levels of other viral latent genes. To assess the contribution of the

Figure 5. BARTmiRNA expression is up regulated when lymphoma cells grow in vivo. Cells from the luciferase tagged BL line BL36 were injected IV
into the tail vein of NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice and tumor growth regularly monitored. A. Vital scans demonstrating the growth of primary tumors
and metastases for BL36 cells. B. Typical histology of metastases from BL36 tumors. C. The expression profile of the BARTmiRNAs in the BL36 parental cell
line (grey), in vivo tumors (black) and in vitro lines derived from the tumors (white). N.B. All BARTmiRNA levels are expressed relative to the ubiquitous small
cellular RNA U1.

doi:10.1371/journal.ppat.1004561.g005
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BART miRNAs alone to tumor development we took advantage of an EBV negative derivative
(AGS) of the AGS-BX1 GaCa cell line. Luciferase tagged AGS cells were transfected with either
an empty oriP/EBNA1 vector (AGS-EBNA1-EMPTY) or one that expresses all of the BART
miRNAs (AGS-EBNA1-BART) [25]. These cells were then inoculated into the nasopharynx
of NSG mice and tumor growth and metastasis in vivo were monitored (Fig. 6). After 60 days,
2 of 5 control mice had developed small but detectable tumors. Strikingly however, all 5 mice
with AGS-EBNA1-BART (100% incidence) had malignancies, indicating that the BART miR-
NAs promote tumor formation. Furthermore, the BART-expressing tumors appeared to be
more aggressive, as these mice deteriorated rapidly, developing large tumors and requiring sac-
rifice beginning at day 74. In contrast, by this time, still only two control mice showed detect-
able tumors that remained small and the mice appeared healthy. Thus, BART miRNAs
enhanced both the rate of tumor formation (p = 0.03 by Fishers exact test at day 74) and tumor
progression/fatality (p = 0.03 by Fishers exact test at day 88).

Kaplan Meier analysis of the complete data set combined from two such experiments con-
firmed that the AGS-EBNA1-BART mice exhibited a significantly higher overall level and rate
of mortality relative to the AGS-EBNA1-EMPTY mice (Fig. 7A, p = 0.017). The more aggres-
sive nature of the BART+ tumors was confirmed by measurement of the tumor burden in the
two populations of mice. The combined data from two experiments is shown in Fig. 7B. No dif-
ferences in tumor burden (measured as luciferase radiance) were evident between the two
groups on day 60, but subsequently differences became apparent as the tumors progressed. By
day 74, when most of the AGS-EBNA1-BART mice needed to be sacrificed, the tumor burden
was approximately 10-fold higher than that of the AGS-EBNA1-EMPTY (~1.4×106 p/s/cm2/sr
in BART+ vs 1.5×105 p/s/cm2/sr in EMPTY), suggesting that the BART miRNAs promote
tumor growth in vivo. By taking measurements of luciferase emission from the same tumors
over time it was possible to estimate their relative growth rates. This estimate suggested that

Figure 6. The BARTmiRNAs potentiate tumor growth in vivo. Cells from the luciferase tagged GaCa cell line AGS expressing either an empty
vector (AGS-EBNA1-EMPTY) or a vector with all of the BARTmiRNAs (AGS-EBNA1-BART) were injected into the nasopharyngeal epithelium of NOD.
Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice and tumor growth regularly monitored. Scans of mice for luciferase expressing tumor cells at day 60 and 74 post-
inoculation are shown. The red cross denotes a mouse that had already been sacrificed prior to imaging.

doi:10.1371/journal.ppat.1004561.g006
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the AGS-EBNA1-BART tumors were growing approximately twice as fast as the AGS-EBNA1-
EMPTY tumors. We conclude that the BARTmiRNAs strongly promote tumor growth in vivo.

The BARTmiRNAs promote tumor cell growth
When we measured the BART miRNA expression profiles in the parental AGS-EBNA1-BART
line and the tumors we observed the same effect as with the EBV positive tumor lines. We did
not observe differential expression of the BART miRNAs rather all of the BART miRNAs were
elevated in the in vivo tumors (Fig. 8A). For a list of all tumors and cells used for profiling see
S1 and S2 Tables. This result confirms that BART miRNA up regulation in vivo is specific and
not simply an indirect consequence of a general increase in viral latent gene expression.

Insight into the mechanism by which the BART miRNAs potentiated tumor growth was
provided by in vitro analysis of AGS-EBNA1-BART and AGS-EBNA1-EMPTY tumors imme-
diately after explant. Both AGS-EBNA1-EMPTY and AGS-EBNA1-BART parental lines
grew at identical rates in culture prior to inoculation (Fig. 8B). However, after explant the
AGS-EBNA1-BART tumor cells grew significantly faster (~60% faster) than the AGS-EBNA1-
EMPTY tumor cells (Fig. 8C). AGS-EBNA1-BART tumors cells also showed a slightly higher
rate of colony formation after explantation (S1A and B Fig.). Surprisingly, in light of recent

Figure 7. The BARTmiRNAs potentiate tumor growth in vivo. A. Kaplan-Meier survival analysis of the
combined data from two experiments such as the one shown in Fig. 6. B. The tumor burden of mice assessed
on the brightness of luciferase emission expressed as (p/s/cm2/sr). The number of surviving tumor bearing
mice available for analysis at the given time point is shown above each bar. The data show the combined
results from two experiments such as the one shown in Fig. 6 (p = 0.03 at day 74). N.B Since AGS-EBNA1-
EMPTY and AGS-EBNA1-BART cells were derived from the same luciferase tagged AGS cell line their
luciferase emission per cell was the same.

doi:10.1371/journal.ppat.1004561.g007
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studies on the effects of BARTmiRNAs on AGS cells in vitro [29] we observed no difference
in the levels of apoptosis between the BART positive and BART negative parental lines when
treated with the DNA damaging agent etoposide (S1C Fig.). We did observe a small decrease
in sensitivity for the AGS-EBNA1-BART tumor explants when compared to AGS-EBNA1-
EMPTY tumors. (8% specific reduction in apoptotic cells) (S1D Fig.) Although the differences in
colony formation and apoptosis were statistically significant they were small suggesting that the
main effect of the BARTmiRNAs is to provide a growth advantage to the tumors that is seen in
vivo and detected upon immediate culture of the explants but lost after long term in vitro culture

These data suggests that the up regulated expression of the BART miRNAs confers a selec-
tive advantage to tumor growth in vivo that is not seen in vitro. Furthermore, they demonstrate
a direct link between the up regulation of the BART miRNAs, that we have consistently ob-
served with tumors in vivo, and enhanced tumor growth.

BART expressing plasmids are preferentially retained in tumors
Plasmids constructed from an EBV oriP/EBNA1 vector do not integrate into the host genome
when transfected into cells, but instead persist episomally [11]. However, these episomes are

Figure 8. In vitro analysis of newly explanted tumor cells and their parental in vitro lines. A. Expression profile of the BARTmiRNAs in the parental
AGS-EBNA1-BART cell line (white) and the in vivo grown tumors (black). B. and C. The proliferation in culture of the parental (B) and newly explanted tumor
(C) cells. Proliferation was measured as described in Methods. The experiment was performed in triplicate on the number of independent tumors indicated.
The value is the average ± standard deviation. n.s. represents a not statistically significant difference (p> 0.05). * represents a p< 0.05).

doi:10.1371/journal.ppat.1004561.g008
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rapidly lost in the absence of selection pressure for their retention [9, 11, 34]. In the presence of
drug selection the parental lines maintained ~450–500 copies of the EBNA1-BART and EBNA1-
EMPTY plasmids per cell and as expected, both plasmids were lost when the lines were cultured
in the absence of drug selection (not shown). This is consistent with our conclusion that the
BARTmiRNAs do not convey a growth advantage to cells in vitro. Analysis of the plasmid copy
numbers from a collection of the tumors (Table 1) revealed that the plasmid had been lost from
the AGS EBNA1-EMPTY tumors (n = 4), which had an average copy number of less than 1 per
cell (0.1±0.1 episomes per cell). However, the AGS EBNA1-BART tumors (n = 6), retained an
average of 8.9±3.5 episome copies per cell (p =<0.001) which were only lost when the tumors
were explanted and grown again in culture. Thus, the lack of drug selection in vivo, caused a pre-
cipitous drop in plasmid copy number for both cell types resulting in the loss of all the EBNA1-
EMPTY plasmids whereas the EBNA1-BART plasmids were stably retained at around 5–10 cop-
ies per cell. In parallel, the level of BARTmiRNA expression increased. Therefore, amplification
of the episome copy number cannot explain the increased expression of the miRNAs in the tu-
mors. This result demonstrates that expression of the BARTmiRNAs confers a selective advan-
tage to the tumor cells in vivo that alone is sufficient to ensure retention of the plasmid that
expresses them and confirms that this advantage applies to in vivo but not in vitro growth.

We conclude that the EBV BART miRNAs do not provide a detectable growth or survival
advantage when the cells expressing them are grown in vitro. However, in vivo they provide a
pronounced advantage to the tumors specifically causing them to be seeded more efficiently
and grow faster and more aggressively.

BARTmiRNA expression does not affect invasion/metastasis
Next we asked if expression of the EBV miRNAs in AGS cells would provide for a higher rate
of metastasis. For mice receiving AGS-EBNA1-EMPTY cells, 4 out of 6 mice with tumors
(66.7%) developed metastases (Fig. 9A), whereas only 3 out of 8 mice with AGS-EBNA1-BART
tumors (37.5%) developed metastases. Although these numbers do not achieve statistical sig-
nificance, they are consistent with a trend that the BART miRNAs do not exacerbate metastasis
and might actually impede it.

Lastly, we asked if the BART miRNAs could confer a more invasive phenotype to the tumor
cells, as cell invasion is a critical step in metastasis. To test this we performed trans-well Matri-
gel invasion assays comparing AGS-EBNA1-EMPTY cells with AGS-EBNA1-BART cells. In
this assay, the ability of cells to invade through an extracellular matrix of a Matrigel-coated po-
rous membrane in response to chemoattractants is assessed. After a 24 hour incubation, the
AGS-EBNA1-BART cells demonstrated a slightly less invasive phenotype than did the AGS-
EBNA1-EMPTY cells, as the absolute cell numbers of AGS-EBNA1-EMPTY on the trans-side
(migrated cells) were around 2-fold higher than that of AGS-EBNA1-BART (Fig. 9B and C),
suggesting that EBV BART miRNAs may also have a negative effect on invasion. We conclude
that our experiments provide no evidence for BART miRNAs contributing positively to inva-
sion and/or metastasis.

Table 1. Plasmid copy number in tumors with or without BART miRNA expression.

AGS-EBNA1-BART AGS-EBNA1-EMPTY

Plasmid Copy Number/Cell 7.2 8.9 10.7 2.4 10.5 13.9 0.02 0.02 0.1 0.3

Average 8.9±3.5* 0.1±0.1*

* p value = <0.001

doi:10.1371/journal.ppat.1004561.t001
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Discussion
In this paper we have demonstrated that the EBV encoded BART miRNAs confer a selective
growth advantage to EBV positive tumor cells in vivo. This growth promotion occurs in
parallel with an up regulation in the expression of all the BARTs. Furthermore, elevated

Figure 9. BARTmiRNA expression does not affect metastasis or invasion. A. Rate of metastases in
mice injected with AGS-EBNA1-EMPTY (white) or AGS-EBNA1-BART (black) cells. The rate is expressed as
total number of mice with metastases over the total with tumors. The percentage and actual numbers of mice
are shown above each bar. B. and C. Matrigel invasion assay of AGS-EBNA1-EMPTY (white) or AGS-
EBNA1-BART (black) cells. B. Images of cells that had invaded. C. quantitation of the number of migrating
cells. For details of the assay see Methods.

doi:10.1371/journal.ppat.1004561.g009
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expression of the BART miRNAs in vivo was observed for every EBV positive tumor type we
tested. This suggests that the BART miRNAs confer a growth advantage to all EBV positive
tumors.

The lack of a readily accessible and manipulable animal model of EBV infection and tumori-
genesis means that most studies on the virus’s biology must be conducted in vitro. Thus to
date, all studies on BART miRNA functions have been performed in vitro and have yet to be
verified or shown to be biologically meaningful in an in vivo setting. Lacking evidence from hu-
mans, mouse models can provide an alternate approach to investigate the role of EBV encoded
genes in vivo. Inoculation of immunocompromised mice (e.g. severe combined immune defi-
ciency or SCID mice) with EBV-positive tumor-derived cell lines has been extensively used to
study the role of the virus in tumorigenesis [30, 35–41]. However, these models rarely, if ever,
recapitulate key aspects of the tumors behavior, such as invasion and metastasis. We have pre-
viously described a mouse model that accurately reproduces locally invasive and metastatic
EBV-positive carcinoma [30] and have applied this model here to study the role of the EBV
BART miRNAs in tumor development. We have shown that expression of the BART miRNAs
resulted in more efficient tumor seeding, larger tumors and higher and more rapid mortality.
Indeed the tumor burden in the BART+ mouse group was ~10 times greater after 74 days of
growth in vivo than with the BART- group. Furthermore, the newly explanted tumors grew
60% faster in culture if they expressed the BART miRNAs, an increase in growth rate sufficient
to account for the differences seen in vivo. However, this effect was not sustained in long term
cultures. Although we cannot definitely rule out other activities for the miRNAs in tumor de-
velopment we saw only minimal changes in other functions we assayed including colony for-
mation and resistance to apoptosis. For example, we confirmed the work of others that the
BART miRNAs had an anti-apoptotic effect [25–29], However, this effect was very modest in
our system and only detectable after in vivo growth. Contrary to previous findings [29] we did
not observe any effect of the BART miRNAs on apoptosis when expressed in AGS carcinoma
cells in vitro.

Independent proof that expression of the BART miRNAs conferred a selective growth ad-
vantage in vivo was provided by the observations on plasmid retention. OriP based plasmids
do not integrate, but persist as episomes that are lost unless selective pressure is applied for
their retention [11]. The retention of the EBV episome has been interpreted as compelling evi-
dence that the virus is involved in the development in EBV positive tumors [12–15, 17]. Thus
our observation that the BART expressing oriP plasmids (EBNA1-BART) were similarly re-
tained in the tumor cells in vivo, whereas the empty vector (EBNA1-EMPTY) was lost, sup-
ports our conclusion that the BART miRNAs contribute to tumor growth. It follows that
expression of the BART miRNAs is responsible in part for the retention of EBV in human tu-
mors. Confirmation that our observation was an in vivo phenomenon came from the finding
that both plasmids were lost from the cells in culture. These plasmids were not only selectively
retained in vivo, but the BART miRNAs were expressed in the tumors at a much higher level
than in the parental line grown in vitro, demonstrating a direct link between high BART copy
number and rapid tumor growth. It is interesting to note that the EBNA1-EMPTY plasmid
was lost in vivo, even though it expresses the viral tethering protein EBNA1 and we did not see
an increase in EBNA1 expression when the AGS-EBNA1-BART in vitro lines grew as tumors
in the mice (not shown) Together these observations suggest that EBNA1 does not provide a
detectable advantage to tumor growth in our system. This raises the provocative question of
whether it will be possible to develop a therapy that can be applied to all EBV tumors, based on
ridding the tumors of the viral episome and therefore the virus, by silencing the BART
miRNAs.
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It is known that the BART miRNAs are not essential for the in vitro transformation and
growth of B cells [42, 43]. This is consistent with our conclusion that the growth enhancement
function of the BARTs only applies in vivo. However, deciphering the BART miRNAs respon-
sible for the effect we have observed and the target genes of those miRNAs will be extremely
challenging. Our observation that the copy number of all the BART miRNAs increases in vivo
for all the tumor types we have studied here and our previous finding that all of the BART miR-
NAs are highly expressed in biopsies from all types of EBV associated tumors raises the possi-
bility that all of the BART miRNAs may be contributing to tumor growth.

Despite the extensive effort of many laboratories there remain only a few well characterized
targets of the BART miRNAs [44]. Of these anti-apoptotic targets predominate however, as
stated above we have been unable to confirm previous studies suggesting a role in apoptosis re-
sistance in AGS carcinoma cells in vitro [29]. It is likely that the gene targets of the BART miR-
NAs are linked to specific in vivo growth functions of both normal and malignant cells. One
possible candidate is the difference in geometry between in vivo (3-dimensional) and in vitro
(2-dimensional) growth. For example, it is possible that the BART miRNAs regulate signaling
pathways that control tumor hypoxia in vivo, which could result in activation of a broad array
of mitogenic, pro-invasive and pro-angiogenic genes [45–49]. It is also possible that the growth
advantage provided by the miRNAs is a function of the interaction of the tumor cells with the
surrounding environment in vivo. For example, the miRNAs may induce the tumor cells to ex-
press factors or cell surface changes that elicit growth promoting signals from the surrounding
murine milieu in the form of soluble factors such as cytokines and/or recruited cells that poten-
tiate tumor growth.

We have also seen no evidence that the BART miRNAs contribute to invasion or metastasis.
Indeed we have observed a trend whereby the miRNAs may actually impede these processes
since the rate of metastasis was lower for the BART+ tumors. This result could have arisen be-
cause the BART+ tumors grow more rapidly and may kill the mice before the tumors have
time to metastasize. However, we also observed that the BART miRNAs have a negative impact
on invasion, an important corollary of metastasis. It may simply be that the increased prolifera-
tion rate driven by the BART miRNAs marginally diverts the cellular metabolism away from
the processes required for invasion and metastasis.

One possible concern with our studies is the high levels of expression we see for the BART
miRNAs in tumors. We have previously estimated the BART miRNA copy numbers in biopsy
material for the three tumor types studied here [50]. Even taking into account the presence of
non-tumor cells in the biopsies and imprecision caused by technical difficulties in recovering
the miRNAs from small biopsy samples it is clear that the mouse tumors are expressing the
miRNAs at levels at least 10 fold higher than in the biopsies. However, the process driving this
up regulation in the mice is physiologic, not for example an artifact of ectopic expression. This
would suggest that there may be constraints on the miRNA copy level in the human host that
are not imposed in the highly immune incompetent NSG mouse. One question that arises is
with respect to the in vivo specificity of the up regulation of the BART miRNAs. Is it conceiv-
able that if we could artificially drive the copy numbers high enough in vitro, we would see an
effect on growth? However, in this scenario it is difficult to explain why the copy numbers are
reduced again upon culturing the tumors in vitro since any growth advantage due to higher
BART copy number should ensure their maintenance. This strongly argues that the selective
growth advantage provided by the elevation of the BART miRNAs in vivo is not sustained in
vitro.

In summary, therefore, we conclude that the BART miRNAs provide a significant growth
advantage to infected tumor cells growing in vivo. This effect may be a combination of growth
promoting and survival functions provided by the miRNAs.
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Methods

Cell culture
The cell lines used in this study were: NPC line C666–1; BL cell line BL36 (gift of Dr. Jeff Sam-
ple); GaCa cell lines AGS and AGS-BX1 (gift of Dr. Lindsey Hutt-Fletcher); AGS cells trans-
fected with oriP//EBNA1 vectors; and mouse tumor-derived explant lines. The GaCa cell lines
and GaCa tumor-derived explant lines were cultured in Ham’s F-12 medium containing 10%
fetal bovine serum (FBS), 2 mM sodium pyruvate, 2 mM glutamine, and 100 IU of penicillin-
streptomycin. All other cells were maintained in RPMI 1640 medium with the same supple-
ments. All adherent lines were passaged after trypsinization.

Lentiviral infection and cell transfection
BL36, C666–1, AGS and AGS-BX1 cells were infected with the pGreenFire1-CMV, TR011VA-
1 lentivirus (System Biosciences, Mountain View, CA), which expresses green fluorescent pro-
tein (GFP). GFP positive cells were sorted and collected by Fluorescence Activated Cell Sorting
(FACS), and were subsequently cultured with appropriate medium. 2×106 luciferase expressing
AGS cells were transfected with 5 ug of plasmid DNA from either the oriP/EBNA1-EMPTY
(p220) or oriP/EBNA1-BART vector (p3829) (gift of Dr. Bill Sugden) using an Amaxa nucleo-
fector (Lonza), the V kit solution, and Program B-023. After 24 hr, transfected AGS (AGS-
EBNA1-EMPTY and AGS-EBNA1-BART) were selected in F12 medium supplemented with
150ug/ml of hygromycin.

Animal and histology studies
Female NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice (the Jackson Lab, ME, USA) ages 6–8
weeks were housed and maintained under sterile conditions with free access to food and water.
For carcinoma models, 2.5–7.5×105 cells (C666–1, AGS, AGS-BX1, AGS-EBNA1-EMPTY and
AGS-EBNA1-BART) resuspended in 50 ul of phosphate-buffered saline (PBS), were injected
with a 25-gauge needle into the nasopharyngeal compartment of NSG mice under anesthesia
[30]. For the lymphoma model, 2.5xl05 BL36 cells in 100 ul PBS were injected i.v. via the tail
vein into NSG mice. Disease progression was monitored based on overall health and biolumi-
nescent imaging. Mice were intraperitoneally injected with luciferin followed by anesthesia
with 3% isoflurane and subsequent measurement of bioluminescence using an IVIS 200 imag-
ing system (Xenogen). Tumor burden (or volume) is presented as the radiance (photons per
second per centimeter squared per steradian or p/s/cm2/sr) for each tumor by determining the
photon emission/second of a given tumor within a radius encompassing 5% or greater of maxi-
mal signal intensity. The Kaplan-Meier survival curve analysis was conducted with the Prism
program.

For histology analysis, tissue samples were fixed in 10% formalin buffer and stored in 75%
ethanol prior to paraffin wax embedding, sectioning, hematoxylin and eosin (H&E) staining by
the Animal Histology Core at Tufts Medical Center.

In vitro tumor explants
A small proportion of tumor tissue was excised at surgical operation and rinsed with DPBS.
The tissue was then transferred to a 100mm Petri dish with appropriate medium. For the carci-
nomas tissue was minced with sterile scalpels into smaller fragment (<2 mm) and pressed
under a 3.0 µm PET membrane cell culture insert (BD Biosciences) followed by incubation at
37°C in a 5% CO2-humidified incubator. Carcinoma cells started to grow as a monolayer and
attach to the dish in a few days. Occasionally, the dish also contained a few clumps of floating
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epithelial cells. For lymphoma explant cultures, the tissue was cut and minced into very small
pieces in medium. The finely minced tissue in suspension was filtered with a 70 μm cell strainer
to remove debris. The cells were pelleted by centrifugation at 1,500 rpm for 5 min and then re-
suspended in RPMI 1640 medium and grown as usual for suspension cell cultures.

Total RNA and genomic DNA isolation
Tumor tissue was ground to a fine powder in a liquid nitrogen cooled mortar and pestle. For
RNA, tissue powder was then extracted using Trizol (Invitrogen) according to the manufactur-
er’s instructions. For genomic DNA (gDNA), tissue powder was extracted with DNAzol (Invi-
trogen). Briefly, 1ml of DNAzol was added to the powder and the cell lysates were gently
passed through pipettes several times for complete extraction. Insoluble material was removed
by centrifugation at 10 000 g for 10 min at 25°C. The viscous supernatant was transferred into
another tube and DNA was precipitated using 0.5 ml of 100% ethanol followed by inversion of
the tubes several times. The tube was left at room temperature for 20 min and the DNA was
pelleted by centrifugation at 14,000 g for 15 min at 4°C. The DNA was washed twice with 1ml
85% ethanol and then air dried. The genomic DNA was finally dissolved in 200 ul 8 mM
NaOH and the pH adjusted to 7 by adding 20 uL 1 M HEPES buffer. RNA and DNA were di-
rectly purified from cell lines without using a mortar and pestle.

miRNA expression profiling
EBV miRNA expression was measured using real-time multiplex reverse transcript (RT)-PCR
[24] and is expressed relative to the ubiquitous small cellular RNA U1. Briefly, a panel of stem-
loop RT primers specific for the 30 end of each mature miRNA was pooled and used for RT of
purified RNA with the TaqMan MicroRNA RT kit (Applied Biosystems), followed by TaqMan
PCR using specific primers and probes to each miRNA. Calibration curves for estimating the
EBV miRNA copy number were generated using serial dilutions of synthetic oligonucleotides
for each miRNA. This assay has been used previously for profiling BART miRNA expression
in infected human tissue, tumor biopsies and cell lines [22, 24]. Details of the assay including
the lower limit of detection (�10 copies of each miRNA) and linearity of the miRNA qPCR
assay (up to�108 copies) is described in [24]. For the human miRNAs mir-9, 26a and 34a, the
same RT kit and human specific TaqMan MicroRNA assays were used (Life Technologies).
The expression of all miRNAs in all experiments was normalized to the ubiquitous, small cell
RNA U1.

Quantitative gene and gDNA real-time PCR
mRNAs were measured by real time RT-PCR. A list of the primers used is provided in the sup-
plemental material. RNA was reverse transcribed with an iScript cDNA synthesis kit (Biorad),
followed by real-time PCR using IQ SYBR Green supermix (BioRad) and specific primers.
EBER1 expression was assessed by TaqMan PCR as previously described. [51] The housekeep-
ing genes GAPDH, actin and tubulin were used as internal control for normalization. Values
relative to GAPDH are shown. The relative expression is expressed as 2ΔCt, where ΔCt = mean
value Ct (gene of interest) −mean value Ct (GAPDH). For gDNA real time PCR, DNA was di-
luted 100-fold prior to PCR amplification with the IQ SYBR Green supermix and specific prim-
ers. All SYBR Green real time PCRs were performed on a Bio-Rad iCycler. The protocol was as
follows: step 1, one cycle of 5 min at 95°C; step 2, 40 cycles of 15 s at 95°C and 1 min at 60°C;
step 3, one cycle of 1 min at 95°C. Fluorescence was monitored at the end of each extension
phase. After amplification, melting curves were generated to verify the specificity of amplifica-
tion. Primers for amplification are listed in S3 Table.
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Calculation of the oriP/EBNA1 plasmid copy number per cell
To measure the oriP/EBNA1 plasmid copy number per cell in each AGS-EBNA1-EMPTY and
AGS-EBNA1-BART tumor sample we divided the plasmid copy number by the number of
cells in each sample. To determine how many cells there were, real time qRT-PCR was per-
formed on each sample for the GAPDHmRNA. The Ct values were then converted to cell
number from calibration curves (cell number versus RT-PCR signal (Ct)) of serial dilutions of
the corresponding cell lines (AGS-EBNA1-EMPTY and AGS-EBNA1-BART).

The determine the total plasmid copy number in the tumor samples we performed gDNA
real time PCR for the EBNA1 gene and the Ct values were read from standard curves (Ct versus
copy number) generated by using serial 10-fold dilutions of a standard EBV (B95–8) contain-
ing suspension with 1.7 × 104 DNA copies/μl (Advanced Biotechnologies).

Growth curve and colony formation assay
For the growth curves, three separate cultures of 3×104 cells were seeded in100 mm Petri
dishes. The cell number was then counted in duplicate for each replicate using the Scepter 2.0
handheld automated cell counter (Millipore) at indicated time points. For the soft agar colony
formation assays, 1×104 cells were suspended in medium containing 0.4% agarose and overlaid
onto a solidified layer of medium-containing 0.8% agarose in 6-well plates. Three separate cul-
tures were set up for each cell line tested. After two-three weeks, colonies were counted and
photographed in five fields for each replicate. For each assay 3 independently established
BART positive cell lines and 2 independently established BART- lines were tested. The results
were expressed as the means ± SEM of the combined data for measurements on all replicates of
all the cell lines in a given group.

Apoptosis analysis
For apoptosis sensitivity 4×105 cells were plated onto 6 well plates. Three independent cultures
were set up for each cell line. After overnight incubation, cells were treated with 80 uM of eto-
poside for 72 hr prior to harvest. Harvested cells were washed with Annexin V binding buffer
and subsequently stained with Annexin V-APC (BD Bioscience) for 15 min, followed by fixa-
tion in 4% buffered paraformaldehyde at room temperature for 5 min. Apoptotic cells were an-
alyzed in duplicate by flow cytometry and defined as positive for Annexin V-APC staining.
The percentage of cells that had undergone apoptosis in response to etoposide was assessed by
subtracting that of apoptotic cells in the untreated from the treated population (%Delta
Annexin-V+).

Matrigel invasion assays
In vitro invasion assays were carried out as described previously [52] using complete Matrigel
(BD Biosciences). A total of 18 μg Matrigel at a concentration of 0.3 μg/μl was coated onto a
FluoroBlok insert (BD Biosciences) with an 8 μm pore size membrane. The transwell insert
was allowed to dry overnight at room temperature and rehydrated with 60 ul of serum-free
Ham’s F-12 medium for 2 hr. Cells were seeded in triplicate at 5×104 per transwell insert. 500
μl of media containing 5% FBS were added to the lower well of the assay chamber to act as a
chemoattractant. After 24 hr, the transwell inserts were placed onto wells containing 4 μg/ml
calcein AM in Hanks’ balanced salt solution and incubated for 30 min at 37°C in 5% CO2. Cells
that had passed through the pores and reached the trans-side of the membrane were counted
with the imaging software MetaXpress. The number of invading cells was averaged over tripli-
cate wells and presented as the means ± SD.
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S1 Fig. Effect of in vivo tumor growth on colony forming potential and sensitivity to apoptosis.
A. and B. A soft agar colony forming assay was performed on the parental (A) and explanted
tumor (B) cells as described in Methods. C. and D. Parental (C) and explanted tumor (D) cells
were treated with etoposide and the levels of apoptotic cells measured by Annexin V staining
and FACS analysis. The % Delta Annexin V+ was assessed by subtracting the percent of apo-
ptotic cells in the untreated from the treated population. All experiments were performed in
triplicate and the value was average ± standard deviation. n.s. represents a not statistically sig-
nificant difference (p> 0.05). � represents a significant statistical difference (p< 0.05).
(TIF)
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