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Peptide toxins provide valuable therapeutic leads for many diseases. As they bind 
to their targets with high affinity, potency is usually ensured. However, toxins also 
bind to off-target receptors, causing potential side effects. Thus, a major challenge in 
generating drugs from peptide toxins is ensuring their specificity for their intended 
targets. Computational methods can play an important role in solving such design 
problems through construction of accurate models of receptor–toxin complexes and 
calculation of binding free energies. Here we review the computational methods used 
for this purpose and their application to toxins targeting ion channels. We describe 
ShK and HsTX1 toxins, high-affinity blockers of the voltage-gated potassium channel 
Kv1.3, which could be developed as therapeutic agents for autoimmune diseases.

Peptide toxins from venomous animals have 
evolved with the purpose of rapidly immobi-
lizing their prey or predators. This is achieved 
most efficiently by targeting the nervous sys-
tem, and in particular the voltage-gated ion 
channels that are responsible for electrical 
signaling along the axons. Thus, many tox-
ins bind to voltage-gated potassium (Kv) or 
sodium (Na

V
) channels with very high affin-

ity, either blocking the pore against ion per-
meation or binding to the voltage sensor and 
interfering with the channel gating. Besides 
electrical signaling in nerves, ion channels are 
involved in a diverse range of cellular func-
tions, and their dysfunction due to mutations 
or environmental effects is associated with 
numerous diseases called channelopathies [1]. 
Because of their high affinity for ion channels, 
toxins represent natural leads for developing 
drugs for the treatment of channelopathies [2–

6], which would be especially useful in cases 
where traditional drugs have failed. The typi-
cally high affinity of toxins for their targets 
solves the dosage problem but one still has to 
deal with the specificity problem, which arises 
when a toxin binds to unintended targets 
with a similarly high affinity. These alterna-
tive targets are often within the same chan-
nel or receptor family as the desired target, 

but this does not diminish the importance 
of avoiding activity against them. This could 
lead to undesirable side effects and must be 
resolved before a toxin could be considered as 
a drug lead.

The specificity problem is well illustrated 
by the efforts to develop drugs from peptide 
toxins for treatment of autoimmune diseases 
such as multiple sclerosis, rheumatoid arthri-
tis and Type 1 diabetes [6]. The Kv1.3 channel 
in effector-memory T cells is an established 
target for autoimmune diseases [7]. ShK toxin 
from the sea anemone Stichodactyla helianthus 
binds to Kv1.3 with a picomolar affinity, and 
hence is well suited for development as a ther-
apeutic agent [6]. However, ShK has a simi-
larly high affinity for Kv1.1 in the nervous 
system, and, to avoid side effects, it is essen-
tial to find analogs of ShK that are selective 
for Kv1.3 over Kv1.1. Over the past decade, 
some 400 analogs of ShK have been devel-
oped in the lab for this purpose, and some of 
them had the desired selectivity, for example, 
ShK-186 [8] and ShK-192 [9]. However, these 
analogs contain non-natural amino acids or 
adducts, which are not entirely satisfactory 
for drug development as they cannot be pro-
duced by recombinant expression as cheaply 
and conveniently as peptides based on the 
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20  common amino acids. Developing Kv1.3-selective 
analogs of ShK that contain only common protein 
amino acids would be a preferable option.

Computational methods are potentially valuable in 
solving the specificity problems in drug design in two 
ways. First, one can construct accurate models of the 
receptor–ligand complexes using docking methods 
and molecular dynamics (MD) simulations [10–12]. 
Binding modes obtained from such models provide 
valuable hints for identifying suitable mutations that 
could achieve the desired selectivity. Second, one can 
perform free-energy calculations to determine the 
binding free energies of toxins and their analogs from 
potential of mean force (PMF) calculations or pre-
dict the effect of mutations directly from free-energy 
perturbation (FEP) calculations [11–16]. Here we give 
a brief review of computational methods used in the 
construction of channel–toxin complexes and the cal-
culation of absolute and relative binding free energies 
in such complexes. We then discuss how these methods 
have been employed to generate analogs of peptide tox-
ins with improved selectivity profiles, using ShK and 
HsTX1 toxins as examples. There is increasing accep-
tance of peptides as human pharmaceuticals, as illus-
trated by the abundance of peptides amongst recent US 
FDA-approved biologics [17], even though they present a 
number of challenges in terms of delivery, stability and 
circulating half-life [18]. We therefore expect the meth-
ods reviewed here to find widespread application in the 
development of new peptide therapeutics.

Computational methods 
Complex structure prediction from docking  
& MD simulations
Only a few crystal structures are available for com-
plexes of membrane proteins. Thus, the first step in a 
computational study of toxin binding to ion channels 

is the construction of complex structures. The accuracy 
of the model structure is very important here because 
an incorrect binding mode will result in prediction of 
completely misleading mutation sites for improving the 
affinity/selectivity properties of a ligand. Moreover, an 
accurate model structure is essential for correct calcu-
lation of the binding free energy of the ligand or the 
free-energy change arising from mutation of the ligand. 
To determine the structure of a channel–toxin com-
plex, one needs the individual structures of the chan-
nel and the toxin. Those of toxins can be determined 
from nuclear magnetic resonance (NMR), and many 
are available from the Protein Data Bank. Structures 
of channel proteins are determined from X-ray crys-
tallography. Because it is much harder to crystallize 
membrane proteins, not many channel structures are 
available. Hence, one has to rely on homology model-
ing in most cases. For potassium channels, several crys-
tal structures exist, including the mammalian voltage-
gated potassium channel Kv1.2 [19]. Thus, homology 
models of other Kv1 channels can be constructed rela-
tively easily using the Kv1.2 structure as a template. Of 
course, a high homology does not guarantee the accu-
racy of the constructed model, which must always be 
validated using the available functional data. The situa-
tion is murkier in sodium channels. While several crys-
tal structures have been solved for bacterial Na

V
 chan-

nels [20–22], their homology with the mammalian Na
V
 

channels in the critical pore region is not as high as in 
Kv channels. For example, the TVGYG sequence in the 
selectivity filter is conserved across the Kv channels but 
there is no such conserved motif in Na

V
 channels. In 

fact, the signature DEKA motif in the selectivity filter 
of mammalian Na

V
 channels is replaced by an EEEE 

motif in the bacterial Na
V
 channels. Construction of 

homology models for the mammalian Na
V
 channels 

will therefore be much more challenging compared 
with Kv channels.

Docking is the most commonly used method for pre-
diction of protein–ligand complexes [23,24]. There are 
many commercial docking programs that are used 
in the pharmaceutical industry. Some of the academic 
programs that are freely available are AUTODOCK 
[25], ZDOCK [26] and HADDOCK [27,28]. The first two 
are mainly for small, relatively rigid molecules while 
HADDOCK is more suitable for docking of peptide 
toxins, which is the main focus of this review. Dock-
ing programs allow rapid screening of many ligands for 
a given target, but their accuracy is limited owing to 
neglect of water molecules and lack of sampling [29]. 
These are naturally taken into account in MD simula-
tions, which provide an accurate representation of the 
protein–ligand interactions, but these simulations are 
too slow to predict the complex structure from scratch. 

Key terms

Molecular dynamics: Program used in atomistic 
simulation of biomolecular systems based on Newton’s 
equation of motion.

Potential of mean force: Free-energy profile of a ligand 
along a reaction coordinate determined from the integral 
of the average force acting on the ligand.

Free-energy perturbation: A method to calculate the 
free-energy difference between two states from molecular 
dynamics simulations. Used in conjunction with an 
alchemical transformation in practice. 

Docking programs: Software used for finding 
approximate binding poses for a protein–ligand complex 
based on minimization of an energy scoring function.

Alanine scan: Systematic replacement of all non-cysteine 
residues in a peptide or protein with Ala residues.



www.future-science.com 1647future science group

Computational approaches for designing potent & selective analogs of peptide toxins    Review

Combining the two methods by using MD simulations 
to refine the initial poses predicted by docking avoids 
the shortcomings of either method, and thus provides 
an improved approach for finding complex structures. 
Initially, this approach was applied to small ligands (<50 
atoms) using the docking programs AUTODOCK and 
ZDOCK, and promising results were obtained [10,30–

32]. For docking of larger and more flexible peptide 
ligands, it is essential to use a more sophisticated pro-
gram such as HADDOCK that allows flexibility and 
ensemble docking. This was first shown for the binding 
of charybdotoxin to a KcsA potassium channel mimic 
[33], whose complex structure was determined from 
NMR [34]. Thus, the accuracy of the docking plus MD 
refinement approach and the effectiveness of the dock-
ing programs could be tested. The suitability of HAD-
DOCK for peptide toxins was further demonstrated 
in a systematic study of the binding of scorpion toxins 
to Kv channels [35]. For most complexes, a consensus 
complex was obtained from cluster analysis of the top 
100 poses.

Once an initial pose is chosen for the complex struc-
ture, it needs to be refined in MD simulations. For 
membrane proteins, this requires embedding of the 
complex model in a lipid bilayer and solvating the sys-
tem with salt and water. The VMD program [36] has 
routines that enable preparation of the simulation sys-
tem relatively easily. An important step in MD simula-
tions of membrane proteins is the gradual relaxation 
of the system using restraints to ensure that various 
bonds and interactions in the complex system are pre-
served. This is especially relevant for homology mod-
els, where side-chain conformations may not be well 
defined and may change. There are well-established 
protocols for this purpose that can also be adapted for 
complex structures [37]. After the system is relaxed, it is 
equilibrated in MD simulations, where the root mean 
square deviations (RMSDs) of the protein and ligand, 
as well as the distances between interacting residues are 
monitored. Charge interactions in a complex are well 
predicted by docking programs, and these are expected 
to be retained and better defined during the refinement 
process. However, docking programs are not as good 
in predicting hydrophobic interactions, and the forma-
tion of such interactions is the main contribution of 
refinement via MD. The complex system is assumed 
to be equilibrated when the RMSDs reach a plateau 
and the time series of distances between interacting 
pairs fluctuate around a stable base line. In the final 
stage, trajectory data are collected from a production 
run for visualization of the complex structure and 
analysis of the binding mode. A quantitative descrip-
tion of the binding mode is obtained by calculating the 
average pairwise distances for the strongly interacting 

residues. For example, charge interactions, where the 
N–O distance between the charged residues is less than 
3 Å, and hydrophobic interactions involving the benzyl 
groups yield the strongest couplings (2–3 kcal/mol). 
Hydrogen bonds and charge interactions at larger dis-
tances are of intermediate strength (1–2 kcal/mol). 
The binding-mode results can be compared directly to 
alanine scanning mutagenesis data, which provide 
the best means for validation of a complex model. We 
note that mutation of some residues (e.g., Arg) could 
result in a different binding mode. In such a case, a 
direct comparison with the data is not possible, and the 
docking and refinement procedure has to be repeated 
for the analog peptide. Because alanine-scanning 
experiments are laborious, they are available for only 
a limited number of complexes. In their absence, one 
has to rely on binding free energies for validation of 
complex models, which we discuss in the next section.

Several programs are available for performing MD 
simulations. The NAMD code [38] is quite user-friendly 
and therefore a popular choice in academia. It can be 
used with a number of different force fields but the usual 
choice for proteins is the CHARMM force field [39]. 
MD simulations of biomolecules are typically performed 
using the NpT ensemble, with the temperature and pres-
sure maintained at the standard values of 300 K and 1 
atm using temperature and pressure coupling. Employ-
ment of the periodic boundary conditions avoids artifacts 
arising from using small-boundary boxes and also facili-
tates computation of the long-range electrostatic interac-
tions without cutoff using the particle-mesh Ewald algo-
rithm. The short-range Lennard–Jones interactions can 
be switched off within a distance of 10–13.5 Å without 
causing errors. Time steps used in MD simulations var-
ies between 1 and 2 fs. Details of the basic formalism of 
MD simulations are given in several monographs [40,41], 
and recent reviews of MD simulations of membrane pro-
teins can be found in [42–44].

Free-energy calculations
Free-energy calculations can be helpful in design prob-
lems in two ways: validation of complex models and 
prediction of free-energy changes due to mutations. 
Binding constants of toxins are available for most 
channel–toxin complexes and, in the absence of muta-
tion data, they provide the only means for validating a 
complex model. There are many methods that could 
be used for this purpose, from docking and scoring 
[23,24] to molecular mechanics with Poisson–Boltzmann 
surface area [45] and free-energy calculations based on 
MD simulations [13–16]. An essential requirement for 
a method to be used for validation purposes is that it 
must enable computation of free energies accurately. 
Otherwise one does not know whether any discrepancy 
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with experiment is a consequence of shortcomings of 
the method or an incorrect complex model. The dock-
ing and scoring methods are very fast, which confers 
on them a computational advantage, but their accuracy 
for binding affinities is too poor to be considered for 
validation [29,46–47]. Molecular mechanics with Pois-
son–Boltzmann surface area is also a high-throughput 
method and has a relatively better accuracy for bind-
ing affinities compared with docking and scoring but 
is still not sufficiently accurate [48,49]. Currently only 
the methods based on MD simulations have the poten-
tial to satisfy the accuracy requirement for binding free 
energies [50–53]. These methods can be classified into 
two groups: path-independent alchemical transfor-
mation methods where the ligand is destroyed in the 
binding pocket while it is created in bulk and path-
dependent PMF methods where the ligand is physi-
cally pulled from the binding pocket to bulk [13–16]. 
Alchemical methods are computationally cheaper and 
easier to use, and hence would be the preferred option 
if there were no other concerns. For example, for small, 
uncharged molecules, they yield quite accurate results 
for binding free energies [14–16]. Unfortunately, their 
accuracy is compromised for larger, charged molecules 
such as peptide toxins [50], which leaves the PMF 
method as the only choice at present.

The PMF gives a continuous free-energy profile of a 
ligand along a chosen reaction coordinate. The bind-
ing constant K

eq
 of a ligand is obtained from the inte-

gration of the PMF, which is related to the standard 
binding free energy via G

b
= -kT ln(K

eq
C

0
), where C

0
 is 

the standard concentration of 1 M. The most common 
method used in PMF calculations is umbrella sampling 
MD simulations, where a harmonic biasing potential 
is introduced at small steps along the reaction coor-
dinate in order to enhance sampling of the ligand at 
high-energy positions [40,41]. The sampled coordinates 
of the ligand are unbiased and combined in an optimal 
way using the weighted histogram analysis method [54]. 
That the PMF method could yield an accurate bind-
ing free energy for a toxin peptide was first shown for 
binding of charybdotoxin to a KcsA potassium channel 
mimic [55]. This provided an important test case for 
the viability of the method because the structure of the 

complex was known [34], and there was no uncertainty 
in that regard. Since then, the PMF method has been 
used in several computational studies of toxin binding 
to ion channels (see [11,12] for reviews). Provided that 
a validated complex structure was employed and the 
PMF was calculated properly, the standard binding free 
energy was obtained accurately in all cases. An alterna-
tive method for PMF calculations – which has become 
popular in recent years due to its simplicity – is to use 
Jarzynski’s equation in steered MD simulations [56]. 
However, comparisons with umbrella sampling simula-
tions indicate that application of this method to ligand 
binding suffers from sampling problems, limiting its 
accuracy in practice [57].

The second use of free-energy calculations in design 
problems is determination of the free-energy change 
due to a mutation that is predicted to improve affinity 
and/or selectivity of a peptide drug from the analysis 
of its binding mode to the target protein. The method 
that can be used for this purpose depends on whether 
the binding mode is altered by the mutation or not. If 
the mutation results in a substantially different binding 
mode, one has no choice but to calculate the binding 
free energy of the analog from the PMF, and subtract 
it from that of wild-type toxin to find the free-energy 
change. If the binding mode is preserved, the free-
energy change can be calculated more efficiently using 
the alchemical transformation methods such as FEP 
and thermodynamic integration (TI) [40,41]. In 
both methods, one introduces a hybrid Hamiltonian, 
H(λ) = (1 – λ)H

0
+ λH

1
, where H

0
 represents the Ham-

iltonian in the initial state (wild-type ligand) and H
1
 in 

the final state (mutant ligand). The alchemical transfor-
mation is performed by changing the parameter λ from 
0 to 1 in small steps, which ensures that the change in 
the free energy in each step is small enough to enable 
sufficient sampling of the system in a reasonable time 
frame. In the FEP method, the interval [0,1] is divided 
into n subintervals, and for each subinterval the free-
energy difference ΔG

i
 is calculated from the ensemble 

average. The free-energy difference between the initial 
and final states is obtained from the sum of all G

i
. In 

the TI method, the ensemble average of the deriva-
tive ∂H(λ)/∂λ is obtained at several λ values, and the 
free-energy difference is calculated from the integral 
of this quantity from 0 to 1. The TI method is espe-
cially advantageous for charge mutations because using 
Gaussian quadrature, the integral can be evaluated with 
a small number of windows. This allows longer simula-
tion of each window to check convergence of the results. 
In both methods, it is important to perform the calcula-
tions both in the forward and the backward directions 
in order to check for hysteresis effects. If the difference 
between the forward and backward results is much 

Key terms

Alchemical transformation: Transforming one set of 
elements to another as in mutation of an amino acid using 
a continuous, nonphysical path to facilitate free-energy 
calculations.

Thermodynamic integration: An alternative method to 
free-energy perturbation for calculation of free-energy 
differences that may be more advantageous for charge 
mutations.



Figure 1. Example of a thermodynamic cycle used in 
free-energy calculations. The superscript 0 denotes 
a residue with no charges on the side chain atoms. 
Reverse transformation is performed simultaneously 
in bulk to preserve the charge neutrality of the system 
during the free-energy perturbation/molecular 
dynamics simulations.

Discharging/charging
of Lysine in the
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transformation in the
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of Alanine in the
binding site/bulk
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larger than 1 kcal/mol, the calculated free energies are 
not reliable due to insufficient sampling of the system.

Mutation of a charged residue to a neutral one is 
a more challenging problem and requires additional 
considerations to avoid sampling problems. Tradition-
ally, FEP/TI calculations are performed separately in 
the binding site and bulk because the latter requires a 
much smaller system. However, this creates a problem 
for charge mutations because the system needs to be 
kept neutral in MD simulations. Moreover, substantial 
errors could arise from large solvation energies, and 
they do not necessarily cancel when the calculations 
are performed in different systems. By increasing the 
system size slightly, the binding site and bulk calcu-
lations can be performed simultaneously and in the 
same system. That is, while a charged residue on the 
toxin is mutated to a neutral one in the binding site, 
the reverse transformation is applied simultaneously to 
the mutant toxin in bulk, which is well separated from 
the binding pocket. A second problem arises when the 
Coulomb and Lennard–Jones interactions are switched 
on or off simultaneously, leading to stability and con-
vergence problems. This can be resolved by handling 
the two interactions separately, by introducing residues 
with uncharged side chains (denoted with a superscript 
0) as intermediate steps. For example, the free-energy 
change due to a Lys to Ala (K→A) mutation can be 
expressed as:

The thermodynamic cycle that combines these 
procedures in the FEP/TI calculations is illustrated 
in Figure 1. The first term represents the discharging 
of the side chain of a Lys residue on the bound toxin 
while the reverse process is performed on a toxin in 
bulk with an uncharged Lys side chain. In the second 
term, the uncharged Lys side chain is transformed to 
an uncharged Ala side chain while the reverse is per-
formed on the bulk toxin. Finally, the third term corre-
sponds to charging of the Ala side chain in the binding 
site while the Ala in the unbound state is discharged. 
Each of the contributions to the free-energy differ-
ence can be calculated using the FEP or TI methods. 
The viability of this method for free-energy calcula-
tions was first demonstrated for binding of Asp to the 
glutamate transporter Glt

Ph
 [58,59], followed by binding 

of charged and polar ligands to the glutamate receptor 
GluA2 [60]. More recently it was used in calculation of 
the free-energy change associated with the K18A muta-
tion in ShK in complex with Kv1.3 [61]. The binding 
free-energy differences obtained from the FEP/TI 
results were in good agreement with both the PMF and 
experimental results, demonstrating the feasibility and 

accuracy of this approach for calculation of free-energy 
changes due to charge mutations. Because the FEP/TI 
calculations are computationally less demanding, they 
would be preferable to PMF calculations when feasible.

Potassium-channel toxins
Most of the computational work on toxin binding to ion 
channels has been done on potassium channels [11,12], 
because their crystal structures have been available since 
1998 [62]. Here we will focus on Kv1 channels, and in 
particular Kv1.3, which is an established target for the 
treatment of autoimmune diseases. There is one-to-
one correspondence among the pore domain sequences 
of Kv1 channels, so construction of homology models 
based on the Kv1.2 crystal structure is rather straight-
forward. However, care still needs to be exercised in pre-
paring the system for MD simulations to ensure that the 
conformations of interacting residues are preserved dur-
ing relaxation. An homology model of Kv1.3 provides 
an apt example. The V381 residue in the pore periph-
ery of Kv1.2 is replaced with H404 in Kv1.3. The side 
chains of H404 residues were observed to make cross 
links with the side chains of D402 in the neighboring 
domains [63]. The equivalent residues in Kv1.1 are Y379 
and D377, which do not cross link. As will be pointed 
out below, this difference could be exploited to enhance 
Kv1.3/Kv1.1 selectivity. In some computational stud-
ies of toxin binding to Kv1.3 channels, the protein was 
not properly relaxed, leading to breaking of these cross 
links [64,65]. As a consequence, the H404 side chains 

( ) ( ) ( )G G K K G K A G A Ab
0 0 0 0

" " "99 99 99 99= + +



Figure 2. Solution structure of ShK toxin (PDB id 
1ROO). ShK is oriented such that the pore-inserting 
lysine (K22) points downward. Three disulfide bridges 
between C3-C35, C12–C28 and C17–C32 are indicated, 
as well as the following interactions: D5–K30, K18–
R24 and T6–F27. NMR structure of ShK toxin was 
determined in [66].

ShK K30

D5

T6

F27

C35

K18

K24

K22 R1
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protruding into the pore interfered with the toxin bind-
ing in these models and prevented their proper docking 
to Kv1.3 in MD simulations. These examples highlight 
the importance of validating the model structures using 
the available data from mutagenesis and binding con-
stant experiments. Below we discuss binding of ShK and 
HsTX1 toxins to Kv1 channels, paying special attention 
to validation issues.

ShK toxin
As discussed in the introduction, Kv1.3 is an estab-
lished target for the treatment of autoimmune diseases, 
and ShK toxin provides a good lead for development of 
immunosuppressant drugs [3,6]. ShK is a 35-residue pep-
tide with a net charge of +6e, which facilitates its attrac-
tion to the negatively charged pore of Kv channels. It 
has a stable structure thanks to the three disulfide bonds 
and three other inter-residue interactions (Figure 2, [66]). 
Most of the past efforts to develop a Kv1.3-selective 
analog focused on non-natural amino acids and adducts 
[6,9]. Recent guidance from accurate modeling of the 
Kv1.x–ShK complexes [63] indicated that Kv1.3/Kv1.1 
selectivity may also be achieved using natural amino 
acids in ShK analogs, which would be preferable for drug 
development. In this work, the Kv1.x–ShK complexes 
were constructed using docking and MD simulations as 
described in the previous section. 

Snapshots of the equilibrated Kv1.1–ShK and 
Kv1.3–ShK complexes are shown in Figure 3. For the 
Kv1.3–ShK complex, alanine-scanning mutagenesis 
data were available [67], allowing a rigorous valida-
tion of the complex model. All the functional toxin 
residues identified in the experiments were accounted 
for in the proposed binding mode except the R24A 

mutation, which was shown to be an allosteric effect 
[63]. MD simulations of ShK[R24A] revealed that loss 
of the R24–K18 bond changed the shape of the toxin 
and thereby its binding mode. Further evidence for the 
validity of the complex models was provided by the 
binding free energies, which were obtained from inte-
gration of the PMFs. In all cases, the PMF calculations 
of the binding free energies reproduced the experimen-
tal values within 1 kcal/mol [63]. Results of the bind-
ing free-energy calculations for ShK and its analogs are 
summarized in Table 1.

Comparison of the binding modes of the Kv1.1–ShK 
and Kv1.3–ShK complexes in Figure 3 provides valuable 
hints for improving the selectivity of ShK for Kv1.3 over 
Kv1.1. The side chains of K18 and R29 in ShK are seen 
to form ionic bonds with the side chains of the gluta-
mate residues in Kv1.1, but they do not interact with any 
residues in Kv1.3. Thus, neutralization of these residues 
in ShK via mutation to alanine is expected to enhance 
significantly the selectivity of the toxin for Kv1.3 over 
Kv1.1. This conjecture was tested in computational 
studies of the binding of ShK[K18A] and ShK[R29A] to 
Kv1 channels. The R29A mutation had a drastic effect 
on the binding mode of the toxin to both Kv1.1 and 
Kv1.3. As it was unlikely to improve selectivity, it was 
not considered further. In the case of K18A, by contrast, 
the binding mode was preserved in both the Kv1.1 and 
Kv1.3 complexes. This also allowed calculation of the 
free-energy change due to the K18A mutation using the 
FEP and TI methods [61]. Convergence of the FEP and 
TI calculations for charge mutations has not been well 
established previously. In order to check their accuracy, 
the binding free energies of ShK[K18A] with Kv1.1 and 
Kv1.3 were also determined using the PMF method. 
Consistent results were obtained for the Kv1.3/Kv1.1 
selectivity free energy from the FEP, TI and PMF cal-
culations, which predicted that K18A should enhance 
selectivity by about 2 kcal/mol [61]. This prediction was 
confirmed in subsequent experiments (Table 1). Fur-
ther improvements in Kv1.3/Kv1.1 selectivity of ShK 
analogs may be achieved by mutating the R29 residue. 
However, because of alterations in the binding mode, a 
simple alanine mutation is unlikely to achieve this aim, 
and additional mutations would have to be considered.

Another example illustrating how computational 
methods could be used to complement and interpret 
experimental results was provided by ShK-K-amide, an 
amidated analog of ShK. ShK-K-amide was observed 
to enhance the Kv1.3/Kv1.1 selectivity relative to wild-
type ShK, but it was not clear how this was achieved 
as the C-terminus was not involved in binding of the 
toxin. To understand the basis of this selectivity, the 
binding of ShK-K-amide to Kv1.1 and Kv1.3 channels 
was studied via docking and MD simulations. It was 



Figure 3. Snapshots of the Kv1.1–ShK and Kv1.3–ShK complexes. Only the strongly interacting residues involved 
in the binding are indicated explicitly. In order to show all the interacting pairs, two views of the complex are 
presented. In both cases, the pore-inserting lysine (K22) blocks the pore.  
Reproduced with permission from [12]. 
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found that addition of a C-terminal Lys and amidation 
changed the binding mode of the toxin with Kv1.1 sub-
stantially, reducing its affinity, while the binding with 
Kv1.3 was preserved [68]. The binding free energies of 
ShK-K-amide determined from the PMF calculations 
was also in good agreement with the experimental 
values (Table 1), increasing the confidence in the com-
plex models and the computational methods used in 
free-energy calculations [68].

HsTX1 toxin
The scorpion toxin HsTX1 has a similarly high affin-
ity for Kv1.3 and also exhibits 700-fold selectivity for 
Kv1.3 over Kv1.1 [69]. HsTX1 has a very different struc-
ture from ShK, which is even more stable (Figure 4, 
[70]). Hence it may offer a valuable complement to ShK 
as a therapeutic for autoimmune diseases. In order to 
understand the mechanism of its Kv1.3/Kv1.1 selectiv-
ity, a computational study of HsTX1 binding to Kv1 
channels was performed [71] similar to that of ShK. 
Because no mutagenesis data were available for the 

Kv1.x–HsTX1 complexes, the models were validated 
using the binding free energies determined from PMF 
calculations, which were in good agreement with the 
experimental data. It was observed that the pore-insert-
ing lysine (K23) on HsTX1 was unable to fully insert 
into the selectivity filter of Kv1.1 and form hydrogen 
bonds with the tyrosine carbonyls, as happened in 
Kv1.3. This was traced to three factors: the β-sheet 
interface of HsTX1, the lack of cross linking between 
Y379 and D377 residues, resulting in the bulky tyro-
sine side chains sticking out of the pore, and the strong 
coupling between three arginine residues with three 
aspartates in the Kv1.1 turret, which holds the toxin 
back [71]. The insights gained from the study of the 
selectivity mechanism in Kv1.x–HsTX1 complexes will 
be useful in developing selective analogs of ShK and 
other peptides.

Comparison of the binding modes of HsTX1 with 
Kv1.1 and Kv1.3 showed that R14 in HsTX1 is strongly 
coupled to a glutamate in Kv1.1 but has no interactions 
with Kv1.3. Thus, the R14A mutation could further 



Figure 4. Solution structure of HsTX1 toxin (PDB id 
1QUZ).  HsTX1 is oriented with the pore-inserting 
lysine (K23) pointing downward. Four disulfide bridges 
between C3-C24, C9–C29, C13–C31 and C19–C34 are 
shown in yellow, as well as the following hydrogen 
bonds: A1–C29 and C3–R27. 
Adapted with permission from [70] © 2014 Wiley.
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enhance the Kv1.3 selectivity of HsTX1. This was 
followed up by performing PMF calculations for the 
binding of HsTX1[R14A] to Kv1.1 and Kv1.3. From 
binding free-energy differences, a > 2 kcal/mol gain 
in selectivity was predicted, which was confirmed in 
functional assay experiments [72]. Further studies of 
the pharmacological properties of HsTX1 indicate that 
its analogs could provide viable alternatives to ShK 
analogs in the development of therapeutic agents for 
the treatment of autoimmune diseases [72].

Sodium channel toxins
As sodium channels are involved in more channelopa-
thies and are targeted by more peptide toxins compared 
with potassium channels, there is even greater potential 
for developing therapeutics from sodium channel toxins 
[73–76]. Until recently there were no crystal structures 
for sodium channels, which has made interpretation of 
experiments difficult, and, in general, hindered progress 

in the field. The recent solution of bacterial sodium 
channel structures [20–22] gives hope that this situation 
will improve quickly, similar to what happened after 
the structure determination of the bacterial potassium 
channel KcsA [62]. However, as pointed out in the last 
section, homology between the bacterial and mam-
malian sodium channels is not as high as in potassium 
channels, and construction of validated mammalian 
Na

V
 channels remains a challenging task. In particular, 

modeling of the S5-P1 and P2-S6 linkers in the extra-
cellular turret regions will be rather difficult because 
they differ substantially across the four domains and 
have no similar counterparts in the Protein Data Bank. 
Even in the pore domain and selectivity filter, place-
ments of gaps could result in quite different models. On 
the positive side, an enormous amount of functional 
data has been gathered on the mammalian Na

V
 chan-

nels over the years, which facilitates the validation pro-
cess. In this regard, the binding of μ-conotoxin GIIIA 
to Na

V
1.4 provides almost a unique system. μ-GIIIA is 

the first conotoxin found to block Na
V
 channels [77], and 

numerous functional studies of its binding to Na
V
1.4 

have been performed (for recent examples, see [78–80]). 
Thus, there is a wealth of mutation data with which to 
validate Na

V
1.4–μ-GIIIA complex models, and thereby 

the pore domain of Na
V
1.4.

This has been taken up in a recent computational 
study of the Na

V
1.4–μ-GIIIA system [12], where good 

agreement with the available mutation data and the 
binding free energy has been obtained. The pro-
posed binding mode provides a complete blocking 
of the pore as observed experimentally (Figure 5). In 
potassium channels a single pore-inserting lysine is 
sufficient to block the pore but this is much harder 
to achieve in sodium channels because of the larger 
vestibule. As seen in Figure 5, multiple interactions 
between the toxin and channel residues are required 
for a complete block.

A similar study has also been performed for binding 
of μ-conotoxin PIIIA to Na

V
1.4 [81], where two distinct 

Table 1. Binding free energies of ShK, ShK-K-amide and ShK [K18A]†.

Complex Gb(PMF) Gb(exp)

Kv1.1–ShK -14.3 ± 1.1 -14.5 ± 0.1

Kv1.1–ShK-K-amide -11.8 ± 1.0 -12.3 ± 0.1

Kv1.1–ShK[K18A] -11.7 ± 0.7 -11.3 ± 0.1

Kv1.3–ShK -14.2 ± 1.2 -15.0 ± 0.1

Kv1.3–ShK-K-amide -14.0 ± 0.3 -14.4 ± 0.1

Kv1.3–ShK[K18A] -13.9 ± 0.6 -14.2 ± 0.1
†Binding free energies calculated from the PMFs compared with experimental values (kcal/mol). Kv1.3/Kv1.1 selectivity of analogs is 

enhanced by about 2 kcal/mol.

Data taken from [61,63,68].



Figure 5. Snapshots of the NaV1.4–μ-GIIIA complex. Only the strongly interacting residues involved in the binding 
are indicated explicitly. The binding mode for domains I and III (top) and II and IV (bottom) are shown separately 
for clarity.
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binding modes with very similar binding free energies 
have been found. This situation is very different 
from toxin binding to potassium channels where the 
pore-inserting lysine ensures a unique binding mode 
and a complete blocking of the narrow selectivity fil-
ter. The larger vestibule in sodium channels is expected 
to allow multiple binding modes for toxins, although 
not all may result in complete blocking of the chan-
nel. Thus, one can use the channel-blocking capacity 
of a toxin to distinguish among the predicted binding 
modes. Unfortunately, there are limited functional data 

on binding of μ-PIIIA [82,83], so it is difficult to check 
the validity of the complex structure and the Na

V
1.4 

model used in [81]. The possibility of multiple binding 
modes with similar binding free energies needs to be 
investigated further using the Na

V
1.4 model that has 

already been validated with the μ-GIIIA data [12]. In 
two other computational studies, the binding of tetro-
dotoxin to Na

V
1.4 has been investigated [84,85], where 

completely different binding modes were predicted. 
Again, it is not clear whether this is due to the differ-
ences in the Na

V
1.4 model used or the computational 
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methods employed, and further investigation of the 
binding mode of tetrodotoxin using a validated Na

V
1.4 

model is warranted.
To date there are no models of Na

V
1 channels that 

include the S5-P1 and P2-S6 linkers in the turret region. 
While these linkers do not appear to be involved in the 
binding of μ-GIIIA [86], there is evidence from a sys-
tematic study of binding of 11 μ-conotoxins to Na

V
1 

channels that the residues in the S5-P1 linker do play 
a role in binding of other μ-conotoxins [87]. The affini-
ties of μ-conotoxins for the various Na

V
1 channels vary 

widely [87], and provide a further example of the lack of 
target specificity of toxins across the subtypes of a given 
ion channel family. For a complete understanding of 
the affinity data, it is necessary to construct models of 
Na

V
1 channels including the full turret region. There 

are ongoing efforts to harness the therapeutic potential 
of μ-conotoxins by designing analogs that selectively 
bind to a target Na

V
1 channel [75,76]. The availability 

of accurate models of Na
V
1 channels and their com-

plexes with μ-conotoxins will facilitate such efforts by 
providing critical information on their binding modes.

Toxins can also inhibit the function of a voltage-
gated channel by binding to the voltage sensor [88]. 
An important target from a pharmacological point of 
view is the sensory Na

V
1.7 channel, which plays key 

roles in inflammatory and neuropathic pain [74]. Thus, 
selective inhibitors of Na

V
1.7 could be used in treatment 

of chronic pain. The most potent known inhibitors of 
Na

V
1.7 are the spider toxins protoxin-I and II [89,90], 

and huwentoxin-IV [91]. Mutagenesis experiments have 

shown that both protoxin-II and huwentoxin inhibit 
channel activation by trapping the voltage sensor of 
domain II in its resting state [92,93], while huwentoxin-
IV can also inhibit inactivation by binding to the volt-
age sensor of domain IV [94]. Computational studies of 
toxin binding to the voltage sensor of Na

V
1.7 are needed 

to characterize the binding mode and suggest analogs 
with improved affinity/selectivity profiles for Na

V
1.7. 

While this problem is being pursued by some groups, 
no results have been published yet. To date, computa-
tional studies have been performed for binding of the 
scorpion toxins Css4, Cn2, AahII and LqhaIT to the 
voltage sensors of Na

V
1.2 and Na

V
1.6 channels [95,96].

Conclusion & future perspective
Thanks to continued increase in computing power and 
developments in computational methods, we now have 
the ability to determine the structure of protein–ligand 
complexes and their binding free energies accurately. 
Initially, small ligands with < 50 atoms were considered, 
but, as discussed here, the computational methods can 
now be applied to binding of peptide ligands to proteins. 
Such methods will be very useful in drug design in gen-
eral and will facilitate development of drugs from natural 
sources such as peptide toxins. The availability of accu-
rate complex models means that one can make knowl-
edge-based choices of mutations to improve the affinity 
and/or selectivity of a toxin for a given receptor target. 
The effect of the chosen mutations on the binding free 
energy of a ligand can be determined from free-energy 
calculations so that only those mutations that improve 

Executive summary

Background
•	 Peptide toxins provide alternative therapeutics for several diseases. They will be especially useful in cases 

where more effective treatments are needed, such as chronic pain and autoimmune diseases.
•	 Thanks to evolution, toxins bind to their targets with very high affinity, but they can also bind to other 

receptors with high affinity, causing potential side effects. Thus, specificity is a major impediment to 
developing drugs from toxin peptides and needs to be addressed by designing analogs that retain the affinity 
of the wild-type toxin for the target but are more selective.

Computational methods
•	 Computational methods will be very useful in such design problems by providing accurate models of the 

protein–peptide complex, binding free energies of peptides and free-energy changes due to mutations on 
analog peptides.

•	 Accurate complex models can be obtained using a high-end docking program such as HADDOCK, followed by 
refinement in molecular dynamic simulations. As with any computational work, validation of a complex model 
using all the available experimental data is essential before moving in to the design stage.

•	 Complex models provide initial seeds for improving the selectivity of a toxin. The mutations proposed from a 
model can be further quantified by performing free-energy perturbation calculations and predicting the free-
energy changes associated with the mutations.

Potassium & sodium channel toxins
•	 These methods have been applied successfully in developing analogs of ShK and HsTX1 toxins that are 

selective for Kv1.3 channel over Kv1.1, and hence could provide safer treatments of autoimmune diseases, 
for which Kv1.3 is an established target. There is also significant potential for developing therapeutics from 
sodium channels toxins, and computational methods are expected to play a significant role in this endeavor.
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the properties of the peptide need to be tested in the lab. 
Initial applications of the computational methods have 
focused on potassium channel toxins because of the 
availability of well-established structures for these chan-
nels. The lack of crystal structures for other important 
ion channels such as sodium, calcium and nicotinic ace-
tylcholine receptor have so far hindered the use of com-
putational methods in drug-design problems involving 
these channels. The structures of several bacterial Na

V
 

channels have been solved recently, which has initiated 
intense efforts to construct homology models for the 
mammalian counterparts. The available functional data 
on ion permeation and toxin binding will be critical in 
construction and validation of such homology models. 
Once reliable models of the mammalian Na

V
1 channels 

are obtained, computational studies for binding of rel-
evant toxins can be performed with a view to enhancing 
their affinity/selectivity profiles for the intended target. 
We anticipate that there will be substantial activity in 
computational studies of ligand binding to Na

V
1 chan-

nels in the next few years. For other ion channels, the 
lack of crystal structures remains a significant bottle-
neck, preventing application of computational methods 
to rational drug design.

Although we have focused on peptide toxins tar-
geting ion channels in this article, the computational 
methods described are quite general and can be applied 
to any receptor–ligand system, provided that structures 
of the receptor and the ligand are available. This should 
be moderated with a word of caution: toxin binding to 
ion channels is driven largely by strong charge–charge 

interactions, which results in unique binding modes 
and facilitates convergence in free-energy calculations. 
In protein–ligand systems dominated by hydrophobic 
interactions, sampling is more likely to be an overt 
problem, which may compromise the accuracy the 
binding free energies [97]. Finally, we have proposed 
here docking as a general method to find the initial 
binding poses to be refined in MD simulations, but it is 
also possible to use mutation data directly in MD sim-
ulations to determine the complex structure [98]. This 
would be a more suitable approach where mutational 
data on a protein–ligand complex are available.
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