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Abstract
Genetic imprinting, or called the parent-of-origin effect, has been recognized to play an important role in the for-
mation and pathogenesis of human diseases. Although the epigenetic mechanisms that establish genetic imprinting
have been a focus of many genetic studies, our knowledge about the number of imprinting genes and their chromo-
somal locations and interactions with other genes is still scarce, limiting precise inference of the genetic architecture
of complex diseases. In this article, we present a statistical model for testing and estimating the effects of genetic
imprinting on complex diseases using a commonly used case^ control design with family structure. For each subject
sampled from a case and control population, we not only genotype its own single nucleotide polymorphisms
(SNPs) but also collect its parents’ genotypes. By tracing the transmission pattern of SNP alleles from parental
to offspring generation, the model allows the characterization of genetic imprinting effects based on Pearson
tests of a 2� 2 contingency table. The model is expanded to test the interactions between imprinting effects and
additive, dominant and epistatic effects in a complex web of genetic interactions. Statistical properties of the
model are investigated, and its practical usefulness is validated by a real data analysis. The model will provide a
useful tool for genome-wide association studies aimed to elucidate the picture of genetic control over complex
human diseases.
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INTRODUCTION
Genetic imprinting arises from a gene when either its

maternally or paternally derived copy is expressed

while the other copy is silenced [1]. As a conse-

quence of epigenetic marks due to differential

DNA methylation during gametogenesis, genetic

imprinting has been found to play a pivotal role in

regulating the formation, development, function and

evolution of complex traits and diseases [2–5].

Tremendous efforts have been made to study the

epigenetic and molecular mechanisms of this phe-

nomenon [6], but the number and distribution of
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imprinted genes and their epistatic interactions are

poorly understood, thereby limiting our ability to

estimate the effects of imprinting genes on complex

traits or diseases. Several authors have used linkage

analysis to identify the regions of the genome that

contain imprinted sequence variants and further

understand the epigenetic variation of complex

traits extended the transmission disequilibrium test

to test imprinting effects [7–12]. Howey and

Cordell reviewed two packages of software for esti-

mating maternal and imprinting effects based on

child–parent configurations [13].
As one of the simplest and most powerful

approaches for genome-wide identification of disease

genes, association studies based on a case–control

design have been widely used in human genetics

[14]. This design allows the inheritance modes of

genetic control to be tested and estimated.

Statistical analyses based on a contingency table sug-

gest that some genes function additively, whereas the

others function in a dominant or overdominant

manner [15]. A recent model by Liu et al. [16] inte-

grates traditional quantitative genetic principles into

a case–control design, producing a 2� 2 contin-

gency table, in which epistasis of different kinds

and orders can be characterized. More recently,

Zhang et al. [17] have embraced haplotype discovery

procedures and Liu et al.’s model to identify genetic

interactions between haplotypes located at different

positions of the genome. Sui et al. [18] have incor-

porated DNA methylation mechanisms into Liu

et al.’s model, allowing the effect of epigenetic

marks on complex disease to be tested.
In this article, we describe a statistical model for

estimating genetic imprinting based on a commonly

used case–control design by implementing family

structure. Unlike classical case–control studies in

which random samples of cases and controls are

drawn, respectively, from a natural population, a

family-based case–control design includes genotyp-

ing both these random samples and their parents. By

classifying cases and controls into different groups of

genotypes at individual genes based on their own

genotypes and their parents’ genotypes, we can dis-

cern the discrepancy of alleles in their origin, which

allows imprinting effects to be characterized.

We performed simulation studies to test the statistical

behavior of the model and validate its utilization.

The new model was used to analyze a real data set

collected for inflammatory bowel disease (IBD) [10],

leading to the detection of significant imprinting

effects at several loci.

BASICMODEL
Population sampling
The study is based on a case–control study, in which

a group of patients (cases) are randomly sampled

from a natural population, matched with normal

subjects (controls) of a similar size in terms of demo-

graphical factors. Genome-wide genotyping is con-

ducted for both case and control groups. For each

case and control, their maternal and paternal parents

are also genotyped, no matter whether these parents

have a disease or are normal. Thus, our case–control

design is constructed using random samples of

families rather than random samples of individuals

from a population.

Consider a single nucleotide polymorphism (SNP)

with two alleles, A and a, which generate three geno-

types AA (coded as 2), Aa (coded as 1) and aa (coded

as 0). Owing to sex-linked selection, the genotypes

have different segregating proportions in a population

of each sex. Let P2, P1, P0 and Q2, Q1, Q0 denote

three genotype frequencies in the female and male

population, respectively. A mating between the ma-

ternal and paternal parents forms nine different geno-

typic combinations (Table 1). If the population is at

Hardy–Weinberg disequilibrium (HWD), in which

the mating is not random, then the frequencies of

genotypic combinations are expressed as the products

of maternal and paternal genotype frequencies plus

disequilibria, D1, D2, D3 and D4. Let nij denote the

size of the combination between maternal genotype i
and paternal genotype j (i, j¼ 2, 1, 0), from which

the genotype frequencies are estimated as

P̂2 ¼
1

n::
ðn22 þ n21 þ n20Þ, P̂1 ¼

1

n::
ðn12 þ n11 þ n10Þ,

P̂0 ¼
1

n::
ðn02 þ n01 þ n00Þ, Q̂2 ¼

1

n::
ðn22 þ n12 þ n02Þ,

Q̂1 ¼
1

n::
ðn21 þ n11 þ n01Þ, Q̂0 ¼

1

n::
ðn20 þ n10 þ n00Þ,

D̂1 ¼
n22

n::
� P̂2Q̂2, D̂2 ¼

n21

n::
� P̂2Q̂1,

D̂3 ¼
n12

n::
� P̂1Q̂2, D̂4 ¼

n11

n::
� P̂1Q̂1,

ð1Þ

where n:: ¼
P2

i¼0

P2
j¼0 nij is the total number of

families sampled for cases or controls.

If there is a segregation distortion in a unisex popu-

lation, the genotype frequencies are expressed as

P2¼ p2
þDf, P1¼ 2p(1 – p) – 2Df and P0¼ (1 – p)2

þDf for the female population and Q2¼ q2
þDm,

Q1¼ 2q(1 – q) – 2Dm and Q0¼ (1 – q)2þDm for

the male population, respectively, where p and q are
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the frequency of allele A, and Df and Dm are the

coefficient of distortion in the female and male popu-

lation, respectively. If the population is at Hardy–

Weinberg equilibrium (HWE) and also there is no

distortion, we express the genotype frequencies as p2

or q2 for AA, 2p(1 – p) or 2q(1 – q) for Aa, and (1 – p)2

or (1 – q)2 for aa (Table 1).

Whether the population is at HWE can be tested

by formulating the hypotheses H0: D1¼D2¼D3¼

D4¼ 0 versus H1: at least one of D’s 6¼ 0, from which

the log-likelihood ratio test statistic is calculated and

compared with a chi-square critical threshold with

four degrees of freedom. The HWD test provides

basic information about the mating behavior of the

original population.

It is also interesting to investigate how the popu-

lation has diversified between two sexes by testing

H0: p¼ q and Df¼Dm versus H1: at least one of

equality does not hold. The sex-dependent differ-

ences in allele frequency and distortion coefficient

can be tested separately. If these tests are significant,

this indicates that sex-linked selection has played a

pivotal role in affecting the genetic diversity and

evolution of populations, which can be thought of

an important cause of genetic imprinting.

Offspring genotyping
In Table 1, we also give segregation ratios of

offspring genotypes from each mating type under

Mendel’s first law. As the genotypes of the parents

are known, we can infer the maternal or paternal

origin of the alleles in the offspring for all mating

types, except for type Aa�Aa in which the parental

origin of the alleles for the heterozygous offspring is

unknown. For example, type AA (maternal)�Aa
(paternal) produces offspring genotype AA and Aa,
but it is clear that heterozygote Aa has allele A in-

herited from the maternal parent and allele a from

the paternal parent. We use configuration Aja to

separate the parental origin of alleles with one at

the left side of the vertical line being from the ma-

ternal and the other at the right side from the pater-

nal. Type Aa (maternal)�AA (paternal) produces

genotypes AA and Aa, the latter of which should

be configuration ajA. For type Aa (maternal)�Aa
(paternal), which produces genotypes AA, Aa and

aa, we do not know whether a given offspring of

Aa is Aja or ajA.

Let nijk and mijk denote the observations of off-

spring genotype k (k¼ 2 for genotype AA, 1 for

Aa, 0 for aa) derived from the i� j mating type in

the cases and controls, respectively. The total obser-

vations for the cases and controls are expressed as

n::: ¼
P2
i¼0

P2
j¼0

P2
k¼0

nijk and m::: ¼
P2
i¼0

P2
j¼0

P2
k¼0

mijk. It is

not difficult to give the observations of offspring
genotypes AA and aa in case and control groups,
respectively, by summing the numbers of the corres-
ponding genotypes over all possible mating types.
The same thing can be done for two configurations
Aja and ajA, but for the offspring heterozygote
Aa derived from Aa�Aa, these two configurations,
despite mixed, can take a half of n111 for each ac-
cording to Mendel’s segregation ratio. Table 2 pre-
sents a 2� 4 contingency table having four offspring
genotypes/configurations in cases and controls,

Table 1: Mating types of three genotypes, their observations and frequencies under HWD or HWE and no
distortion as well as Mendelian ratios of their offspring genotypes

Frequency Offspring genotype

Mating type Observation HWD Equilibrium AA Aja ajA aa

AA� AA n22 P2Q2þD1 p2q2 1 0 0 0

AA� Aa n21 P2Q1þD2 2p2q(1^q) 1
2

1
2 0 0

AA� aa n20 P2Q0 ^D1^D2 p2(1^q)2 0 1 0 0

Aa� AA n12 P1Q2þD3 2p(1^p)q2 1
2 0 1

2 0

Aa� Aa n11 P1Q1þD4 4p(1^p)q(1^q) 1
4

1
4

1
4

1
4

Aa�aa n10 P1Q0 ^D3 ^D4 2p(1^p)(1^q)2 0 1
2 0 1

2

aa� AA n02 P0Q2 ^D1^D3 (1^p)2q2 0 0 1 0

aa� Aa n01 P0Q1^D2 ^D4 2(1^p)2q(1^q) 0 0 1
2

1
2

aa�aa n00 P0Q0þD1þD2þD3þD4 (1^p)2(1^q)2 0 0 0 1

Note:The parent-of-origin of the alleles for the heterozygous offspring is separated by a vertical line.
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which is generated using observations of offspring
genotypes.

Test and estimation
Contingency table for genotypes and configurations
The derivation of our model starts with Table 2. Let

Ruv denote the actual frequency of observations in

the uth row (u¼ 1 for cases and 2 for controls) and

vth column (v¼ 2 for AA, 1 for Aja, 10 for ajA and

0 for aa), let Ruþ and Rþv denote column and row

marginals, respectively, and let Rþþ denote the

grand total. If the genotypes/configurations are in-

dependent of the disease, then the probability of cell

uv is simply the product of the probabilities of mar-

ginal categories u and v, expressed as ruv ¼
RuþRþv
Rþþ

.

A Pearson statistic for testing the genotype/con-

figuration–disease association can be calculated by

w2
G ¼

X2

u¼1

X2

v¼0

ðruv � RuvÞ
2

ruv
ð2Þ

which follows a chi-square distribution with (2 – 1)

� (4 – 1)¼ 3 degrees of freedom. If w2
G >w2

0:05ðdf¼3Þ,

this suggests that the genotypes/configurations are

significantly associated with the disease. Otherwise,

there is no significant association between the geno-

types/configurations and the disease.

Testing imprinting effect
Based on Table 2, we will test various genetic effects,

including additive genetic, dominant genetic and

imprinting genetic effects. According to Liu et al.’s
model, we construct a 2� 2 contingency table to test

the additive effect (a) as

AA aa
Case n2 n0

Control m2 m0

ð3Þ

a 2� 2 contingency table to test the dominant effect

(d ) as

Aa AAþ aa
Case n1 þ n10

1
2
ðn2 þ n0Þ

Control m1 þ m10
1
2
ðm2 þ m0Þ

ð4Þ

a 2� 2 contingency table to test the imprinting effect

(I ) as

A aj a Aj
Case n1 n10

Control m1 m10

ð5Þ

Chi-square test statistics are calculated for each effect,

i.e. w2
a , w

2
d and w2

I , based on the corresponding con-

tingency tables (3)–(5). As cell counts in these tables

are formed by a weighted combination of observed

cell counts in Table 2, these test statistics may not

obey a chi-square distribution with one degree of

freedom. Liu et al. [16] have proved that under the

null hypothesis, these test statistics are asymptotically

smaller than w2
0:05ðdf¼1Þ. They further derived an

approximation approach for determining the critical

thresholds.

Estimating imprinting effects
The effect sizes of a, d and I are estimated by odd

ratios (OR). A general form of contingency

tables (3)–(5) is expressed as the joint distribution

of two binary random variables X and Y, i.e.

Y ¼ 1 Y ¼ 2

X ¼ 1 N1 N2

X ¼ 2 M1 M2

from which an OR is calculated as

OR ¼
N1M2

N2M1

ð6Þ

describing the extent to which the two variables are

related through a particular effect. OR¼ 1 suggests

no relationship. The confidence interval of the OR

effect value is calculated as eln ÔR�z�SE, where z is a
standard normal deviate corresponding to the level of
confidence (z¼ 1.96, 2.576 for 95% and 99% confi-
dence, respectively), and SE is the standard deviation

of OR calculated as SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1
þ 1

n2
þ 1

m1
þ 1

m2

q
.

Missing data
In practice, it is possible that some individuals

have no information about the genotype of their

Table 2: Observations for four offspring genotypes/configurations in cases and controls

AA Aja ajA aa Total

Case n2¼ n222þ n212þ n122þ n112 n1¼n211þn201þ 1
2n111þn101 n10 ¼n121þ 1

2n111þn021þn011 n0¼ n110þ n100þ n010þ n000 R2þ

Control m2¼m222þm212þm122þm112 m1¼m211þm201þ
1
2m111þm101 m10 ¼m121þ

1
2m111þm021þm011 m0¼m110þm100þm010þm000 R1þ

Rþ2 Rþ1 Rþ10 Rþ0
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parents. This missing problem does not affect the

grouping of homozygote AA and aa but makes it

difficult to distinguish between Aja and ajA. Later

in the text, we describe a procedure for constructing

a contingency table for four genotypes/configur-

ations when one parent is missing. Consider a

family-based control design in which the genotypes

of maternal parents are available but those of paternal

parents are missing with data structure tabulated

in Table 3. In this situation, a 2� 4 contingency

table, as shown in Table 4, can be generated from

Table 3.

From Table 4, we can now test and estimate the

additive, dominant and imprinting effects at a given

SNP using the procedure described earlier in the

text. As can be seen, even if the parental information

of some families is missing, we can still conduct

imprinting test.

Worked example
The model was used to analyze a real data derived

from a case–control study with family structure.

The study population includes 58 families from

the Milton S Hershey Familial Inflammatory

Bowel Disease Registry, from which 105 offspring

affected with IBD (cases) and 139 matched offspring

without IBD (controls) were sampled for SNP gen-

otyping. A total of five SNPs (Arg39Gln,

Glu514Gln, Pro979Leu, Gly1066Gly and Pro979

Leu) were typed from the candidate gene GLD5

for IBD [19].

None of the five SNPs displays a significant overall

genetic effect based on a chi-square test for a 2� 4

contingency table as shown in Table 2. This table is

Table 3: Frequencies of different mating types and Mendelian ratios of offspring genotypes when paternal
information is missing

Mating Offspring genotype

Type Observation Frequency AA Aja ajA aa

AA �^ n2 P2 P2þ 1
2P1

1
2P1þP0 0 0

Aa �^ n1 P1 1
2P2 þ

1
4P1

1
4P1 þ

1
2P0

1
2P2 þ

1
4P1

1
4P1 þ

1
2P0

aa �^ n0 P0 0 0 1
2P1þP2 P0þ 1

2P1

Note: n2., n1. andn0. are the cumulative numbers of familieswithmaternal parent AA, Aa andaa, respectively.Genotype frequencies P2, P1and P0 here
are expressed in terms ofmaternal parents.

Table 4: Observations for fours offspring genotype/configuration in cases and controls when paternal information
is missing

AA Aja ajA aa Total

Case n2¼ n2.2þ n1.2 n1¼n2.1þ ð14P1 þ
1
2P0Þn1:1 n10 ¼n0.1þ ð12P2 þ

1
4P1Þn1:1 n0¼ n1.0þ n0.0 R2þ

Control m2¼m2.2þm1.2 m1¼m2.1þ ð14
_P1 þ 1

2
_P0Þm1:1 m10 ¼m0.1þ ð12

_P2 þ 1
4
_P1Þm1:1 m0¼m1.0þm0.0 R1þ

Rþ2 Rþ1 Rþ10 Rþ0

Note: ni.k andmi.k are the numbers of offspring genotype k from familieswithmaternal parental genotype i in cases and controls, respectively. _P2, _P1

and _P0 are genotype frequencies of AA, Aa and aa in controls.

Table 5: Population genetic parameters used to
simulate family sizes according toTable 1

Case Control

Parameter Female Male Female Male

Mating disequil
D1 0.04 0.05
D2 0.04 0.05
D3 0.04 0.05
D4 0.04 -a

Situation 1
Allele frequency (A) 0.3 0.5 0.5 0.3
Allele frequency (a) 0.7 0.5 0.5 0.7
Distortion Df/Dm 0.05 0.10 0.10 0.05
Situation 2
Allele frequency (A) 0.3 0.3 0.5 0.5
Allele frequency (a) 0.7 0.7 0.5 0.5
Distortion Df/Dm 0.05 0.05 0.10 0.10

aThis disequilibrium is not fixed, whose value is taken depending on the
ORvalue.
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reorganized to a 2� 2 contingency table based on

additive (3), dominant (4) and imprinting effects (5).

It was found that no significant additive and domin-

ant effects exist to affect IBD. But tests for imprinting

effects indicate that SNP Arg39Gln triggers a signifi-

cant imprinting effect on IBD (P¼ 0.0476),

and SNP Gly1066Gly displays a marginally signifi-

cant imprinting effect (P¼ 0.0608). The OR values

for these SNPs were estimated as 1.5 and 1.7,

respectively, suggesting their importance in influen-

cing IBD.

Simulation
We performed simulation studies to investigate the

statistical properties of the model. A natural human

population was mimicked, from which a panel of

unrelated families (each including a male parent, a

female parent, and one or more children) is ran-

domly sampled. Given a total of 1000 subjects, the

simulation considers two sampling strategies,

1000� 1 (1000 families with a single child) and

200� 5 (200 families with five children). For

each sampling strategy, we considered two situ-

ations in which the same marker is segregating dif-

ferently in populations of cases and controls but

with or without difference between two sexes.

The parameters that were used to simulate geno-

type frequencies of AA, Aa and aa and the size of

each mating type for cases and controls are given in

Table 5, from which the observations of offspring

genotypes/configurations were obtained per

Mendel’s segregation ratio.

We will focus on the calculation of the power

and false-positive rates of detecting the imprinting

effect from the model. The count data in 2� 2

contingency table (5) were simulated by assuming

different ORs. The OR describes and quantifies the

extent to which the two variables are related.

Values of OR¼ 1, 1.5, 2.0, 2.5 are regarded as

no effect, small effect, moderate effect and large

effect, respectively. The count data were simulated

under each of these values. To simulate the data

under these OR constraints, we relax the disequi-

librium D4 of in the control population. In each

situation, simulation was replicated 1000 times to

estimate the power of imprinting detection by the

new model.

Table 6 gives the results of power calculation

from simulated data from 1000� 1 and 200� 5

sampling strategies. In general, power is not affected

by sex-specific differences in population structure

(allele frequencies and distortion degree) because

the results are similar in two situations. The strategy

of sampling more small families performs better than

that of sampling less larger families, especially when

the genetic effect is modest. The power to detect

the dominance effect is generally larger than that to

detect the additive and imprinting effects because

more data are used in the former than latter.

On the other hand, the model has a small false-

positive rate (<0.06 or 0.05) when each of these

effects does not exist actually. The main message

from the aforementioned simulation is that, for

a given sample size, many families each of small

size are recommended as a better sampling strategy

to detect the additive, dominant and imprinting

effects.

INTERACTIONMODEL
TWO-LOCUS EFFECTS
The model can be extended to analyze two SNPs

simultaneously that may interact with each other to

determine the disease. Consider two SNPs, A (with

Table 6: Power calculation of imprinting detection under different sampling strategies

Strategy Situation 1 Situation 2

a d I a d I

200� 5 OR¼1.0 0.049 0.017 0.045 0.052 0.015 0.052
OR¼1.5 0.280 0.368 0.279 0.300 0.372 0.290
OR¼ 2.0 0.582 0.853 0.569 0.723 0.856 0.557
OR¼ 2.5 0.750 0.981 0.749 0.930 0.981 0.687

1000�1 OR¼1.0 0.038 0.017 0.043 0.057 0.018 0.041
OR¼1.5 0.866 0.980 0.872 0.884 0.981 0.885
OR¼ 2.0 0.996 1 0.996 1 1 1
OR¼ 2.5 1 1 1 1 1 1
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two alleles A, a) and B (with two alleles B, b).
At each SNP, genotypes/configurations are denoted

as 2 for AA or BB, 1 for Aja or Bjb, 10 for ajA or bjB
and 0 for aa or bb. The four haplotypes, AB, Ab, aB
and ab, unite to produce 16 diplotypes with geno-

typic values defined as

AB ABj : m22 ¼ mþ a1þ a2þ iaa

AB Abj : m21 ¼ mþ a1 þ d2þ I2þ iad þ iaI

AB aBj : m12 ¼ mþ d1þ I1 þ a2þ idaþ iIa

AB abj : m11 ¼ mþ d1þ I1 þ d2þ I2þ idd þ idI þ iId þ iII

Ab ABj : m210 ¼ mþ a1þ d2 � I2þ iad � iaI

Ab Abj : m20 ¼ mþ a1 � a2� iaa

Ab aBj : m110 ¼ mþ d1þ I1þ d2 � I2þ idd � idI þ iId � iII

Ab abj : m10 ¼ mþ d1 þ I1 � a2� ida� iIa

aB ABj : m102 ¼ mþ d1� I1þ a2 þ ida� iIa

aB Abj : m101 ¼ mþ d1� I1þ d2 þ I2þ idd þ idI � iId � iII

aB aBj : m02 ¼ m� a1þ a2� iaa

aB abj : m01 ¼ m� a1þ d2 þ I2� iad � iaI

ab ABj : m1010 ¼ mþ d1� I1þ d2� I2þ idd � idI � iId þ iII

ab Abj : m100 ¼ mþ d1� I1� a2 � idaþ iIa

ab aBj : m010 ¼ m� a1þ d2� I2� iad þ iaI

ab abj : m00 ¼ m� a1� a2þ iaa

where m is the overall mean; a1, d1 and I1 are the

additive, dominant and imprinting effects at SNP A;

a2, d2 and I2 are the additive, dominant and imprint-

ing effect at SNP B; iaa, iad, iaI, ida, idd, idI, iIa, iId and

iII are the additive� additive, additive� dominant,

additive� imprinting, dominant� additive,

dominant� dominant, dominant� imprinting, im-

printing� additive, imprinting� dominant and

imprinting� imprinting interaction effects between

the two SNPs. These parameters can be solved from

the aforemntioned group of equations as

m ¼
1

4
ðm22 þ m20 þ m02 þ m00Þ

a1 ¼
1

4
ðm22 þ m20 � m02 � m00Þ

ð7Þ

d1 ¼
1

4
ðm12 � m22 � m20 þ m10 þ m102�

m02 þ m100 � m00Þ

ð8Þ

I1 ¼
1

4
ðm12 þ m10 � m102 � m100Þ ð9Þ

a2 ¼
1

4
ðm22 � m20 þ m02 � m00Þ ð10Þ

d2 ¼
1

4
ðm21 � m22 þ m210 � m20 � m02þ

m01 þ m010 � m00Þ

ð11Þ

I2 ¼
1

4
ðm21 � m210 þ m01 � m010 Þ ð12Þ

iaa ¼
1

4
ðm22 � m20 � m02 þ m00Þ ð13Þ

iad ¼
1

4
ðm21 � m22 þ m210 � m20 þ m02�

m01 � m010 þ m00Þ

ð14Þ

iaI ¼
1

4
ðm21 � m210 � m01þ m010 Þ ð15Þ

ida ¼
1

4
ðm12 � m22 þ m20 � m10 þ m102�

m02 � m100 þ m00Þ

ð16Þ

idd ¼
1

4
ðm22 � m21 � m12 þ m11 � m210 þ m20 þ m110�

m10 � m102
þ m101 þ m02 � m01 þ m1010�

m100 � m010 þ m00Þ

ð17Þ

idI ¼
1

4
ðm11 � m21 þ m210 � m110 þ m101�

m01 � m1010 þ m010 Þ

ð18Þ

iIa ¼
1

4
ðm12 � m10 � m102 þ m100Þ ð19Þ

iId ¼
1

4
ðm11 � m12 þ m110 � m10 þ m102�

m101 � m1010 þ m100Þ

ð20Þ

iII ¼
1

4
ðm11 � m110 � m101 þ m1010 Þ ð21Þ

Later in the text, we describe a procedure for

testing each of these effects in a family-based case–

control design.

Family structure
We assume that natural selection has driven two sexes

to be segregating differently. Let p11¼ p1p2þDF,

p10¼ p1(1� p2)�DF, p01¼ (1� p1)p2�DF and

p00¼ (1� p1)(1� p2)þDF denote the frequencies of

four haplotypes AB, Ab, aB and ab at two SNPs, A
and B, in the female population, where p1 and p2

are the allele frequencies of A and B and DF is the

linkage disequilibrium between the two SNPs [20].

Similarly, we have parameters q11, q10, q01, q00, q1, q2
and DM for the male population.
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The two SNPs under consideration produce nine

genotypes AABB, AABb, AAaa, AaBB, AaBb, Aabb,
aaBB, aaBb and aabb with frequencies denoted as P22,

P21, P20, P12, P11, P10, P02, P01 and P00 for the

female population and Q22, Q21, Q20, Q12, Q11,

Q10, Q02, Q01 and Q00 for the male population.

Under non-random mating, these genotypes will

form 81 genotype-by-genotype combinations,

which frequencies are expressed as the products of

maternal genotype frequencies and paternal geno-

type frequencies plus 64 disequilibria. Using a similar

framework in Table 1 and Equation (1), we can

estimate sex-dependent genotype frequencies and

64 disequilibria.

If each parent for a mating combination is homo-

zygous for both markers, their offspring will have

one genotype. As long as one parent is heterozygous

for one marker, the offspring will have two or

more genotypes. For one marker, the offspring will

have two or more genotypes. However, only when

both markers are heterozygous for at least one

parent, the genotype frequencies of offspring will

be determined by the recombination fraction

between the markers (y). In the Supplementary

Material, the structure and frequencies of maternal

by paternal genotype combinations under random

mating and their offspring genotype frequencies are

given. For a double heterozygote AaBb, its observed

genotype may be derived from two possible diplo-

types, ABjab or AbjaB, with different formation fre-

quencies. For the female population, haplotype

frequencies produced by each of these two diplo-

types are expressed as

Diplotype Prop: AB Ab aB ab

ABjab f 1
2
ð1� yÞ 1

2
y 1

2
y 1

2
ð1� yÞ

AbjaB 1� f 1
2
y 1

2
ð1� yÞ 1

2
ð1� yÞ 1

2
y

Overall 1
2
o1

1
2
o2

1
2
o2

1
2
o1

with f¼ p11p00/(p11p00þ p10p01) and o1¼ (1� y)f
þ y (1�f) and o2¼ yfþ (1� y)(1�f) that sum

to 1. Similarly, for males, we have the recombination

fraction # and proportions ’¼ q11q00/(q11q00þ

q10q01), and $1¼ (1 –#)’þ#(1 – ’) and $2¼

#’þ (1 –#)(1 – ’).

Let ni1i2j1j2 denote the size of a particular mating

type between maternal genotype i1i2 and paternal

genotype j1j2, with i1, j1¼ 2 for AA, 1 for Aa and

0 for aa; i2, j2¼ 2 for BB, 1 for Bb and 0 for bb.
Let ni1i2j1j2k1k2

denote the number of offspring

genotype/configuration k1k2 in a family derived

from maternal genotype i1i2 and paternal genotype

j1j2, with k1¼ 2 for AA, 1 for Aja, 10 for ajA and

0 for aa, k2¼ 2 for BB, 1 for Bjb, 10 for bjB and

0 for bb. All possible mating types, their sizes

and frequencies, and the frequencies of their off-

spring genotypes/configurations, can be tabulated

as follows:

AABB�

AABB
. . .

AABB�

AaBb
. . .

AaBb�

AaBb
. . .

n2222 n2211 n1111

Offspring

Config:

P22Q22

þD1

. . .
P22Q11

þD5

. . .
P11Q11

þD37

. . .

AB ABj 1 . . . 1
2
$1 . . . 1

4
o1$1 . . .

AB Abj 0 . . . 1
2
$2 . . . 1

4
o1$2 . . .

AB aBj 0 . . . 1
2
$2 . . . 1

4
o1$2 . . .

AB abj 0 . . . 1
2
$1 . . . 1

4
o1$1 . . .

Ab ABj 0 . . . 0 . . . 1
4
o2$1 . . .

Ab Abj 0 . . . 0 . . . 1
4
o2$2 . . .

Ab aBj 0 . . . 0 . . . 1
4
o2$2 . . .

Ab abj 0 . . . 0 . . . 1
4
o2$1 . . .

aB ABj 0 . . . 0 . . . 1
4
o2$1 . . .

aB Abj 0 . . . 0 . . . 1
4
o2$2 . . .

aB aBj 0 . . . 0 . . . 1
4
o2$2 . . .

aB abj 0 . . . 0 . . . 1
4
o2$1 . . .

ab ABj 0 . . . 0 . . . 1
4
o1$1 . . .

ab Abj 0 . . . 0 . . . 1
4
o1$2 . . .

ab aBj 0 . . . 0 . . . 1
4
o1$2 . . .

ab abj 0 . . . 0 . . . 1
4
o1$1 . . .

where D1, . . . , D5, . . . , D37, . . . are the coefficients

of disequilibria.

A family design allows the simultaneous estima-

tion of haplotype frequencies and the recombin-

ation fraction. By assuming HWD, Li and Wu

[20] implemented a two-stage hierarchical EM algo-

rithm to estimate haplotype frequencies (p11, p10,

p01, p00) using parental mating type data (ni1i2j1j2 )
at the upper level, and the recombination fraction

(y) using segregation data of offspring genotypes

from each mating type (ni1i2j1j2k1k2
). Liu et al. [21]

relaxed this assumption to allow the estimation

of these parameters. These estimated parameters

can be used to construct a contingency table
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containing 16 diplotypes, with cells for cases ex-

pressed as

AB ABj n22 ¼ n222222 þ . . .þ 1
2
o1n221122 þ . . .þ 1

4
o1$1n111122 þ . . .

AB Abj n21 ¼ 0n222222 þ . . .þ 1
2
o2n221122 þ . . .þ 1

4
o1$2n111122 þ . . .

AB aBj n210 ¼ 0n222222 þ . . .þ 1
2
o2n221122 þ . . .þ 1

4
o1$2n111122 þ . . .

AB abj n20 ¼ 0n222222 þ . . .þ 1
2
o1n221122 þ . . .þ 1

4
o1$1n111122 þ . . .

Ab ABj n12 ¼ 0n222222 þ . . .þ 0n221122 þ . . .þ 1
4
o2$1n111122 þ . . .

Ab Abj n11 ¼ 0n222222 þ . . .þ 0n221122 þ . . .þ 1
4
o2$2n111122 þ . . .

Ab aBj n110 ¼ 0n222222 þ . . .þ 0n221122 þ . . .þ 1
4
o2$2n111122 þ . . .

Ab abj n10 ¼ 0n222222 þ . . .þ 0n221122 þ . . .þ 1
4
o2$1n111122 þ . . .

aB ABj n102 ¼ 0n222222 þ . . .þ 0n221122 þ . . .þ 1
4
o2$1n111122 þ . . .

aB Abj n101 ¼ 0n222222 þ . . .þ 0n221122 þ . . .þ 1
4
o2$2n111122 þ . . .

aB aBj n1010 ¼ 0n222222 þ . . .þ 0n221122 þ . . .þ 1
4
o2$2n111122 þ . . .

aB abj n100 ¼ 0n222222 þ . . .þ 0n221122 þ . . .þ 1
4
o2$1n111122 þ . . .

ab ABj n02 ¼ 0n222222 þ . . .þ 0n221122 þ . . .þ 1
4
o1$1n111122 þ . . .

ab Abj n01 ¼ 0n222222 þ . . .þ 0n221122 þ . . .þ 1
4
o1$2n111122 þ . . .

ab aBj n010 ¼ 0n222222 þ . . .þ 0n221122 þ . . .þ 1
4
o1$2n111122 þ . . .

ab abj n00 ¼ 0n222222 þ . . .þ 0n221122 þ . . .þ 1
4
o1$1n111122 þ . . .

ð22Þ

Similarly, the observations for controls can also be

calculated, expressed as m22, m21, m210, m20, m12, m11,

m110, m10, m102, m101, m1010, m100, m02, m01, m010 and

m00 for these offspring diplotypes, respectively.

Testing and estimating genetic effects
From contingency table (22), we can formulate a

number of tests for the additive, dominant, epistatic

and imprinting effects and their mutual interaction ef-

fects. This can be done according to the procedure as

described in Equations (3)–(5). First, we generate a

2� 2 contingency table for 15 genetic effects based

on the expressions of (7)–(21). Second, the Pearson

test statistic is calculated to test the significance of

each effect and OR calculated to estimate each

effect from these 2� 2 contingency tables. Testing

the additive, dominant and imprinting effects at each

SNP and the additive� additive (iaa), additive� dom-

inant (iad), additive� imprinting (iaI), domin-

ant� additive (ida), dominant� dominant (idd),
dominant� imprinting (idI), imprinting� additive

(iIa), imprinting� dominant (iId) and imprinting� im-

printing interaction effects (iII) between the two SNPs

can be conducted using 2� 2 contingency tables (23)–

(37), respectively, i.e.

a1 AA aa
Case n22 þ n20 n02 þ n00

Control m22 þ m20 m02 þ m00

ð23Þ

d1 AA aa
Case n12 þ n10 þ n102 þ n100 n22 þ n20 þ n02 þ n00

Control m12 þ m10 þ m102 þ m100 m22 þ m20 þ m02 þ m00

ð24Þ

i1 AA aa
Case n12 þ n10 m102 þ n100

Control m12 þ m10 m102 þ m100

ð25Þ

a2 AA aa
Case n22 þ n02 n20 þ n00

Control m22 þ m02 m20 þ m00

ð26Þ

d2 AA aa
Case n21 þ n210 þ n01 þ n010 n22 þ n20 þ n02 þ n00

Control m21 þ m210 þ m01 þ m010 m22 þ m20 þ m02 þ m00

ð27Þ

i2 AA aa
Case n21 þ n01 n210 þ n010

Control m21 þ m01 m210 þ m010

ð28Þ

iaa AA aa
Case n22 þ n00 n20 þ n02

Control m22 þ m00 m20 þ m02

ð29Þ

iad AA aa
Case n21 þ n210 þ n02 þ n00 n22 þ n20 þ n01 þ n010

Control m21 þ m210 þ m02 þ m00 m22 þ m20 þ m01 þ m010

ð30Þ

iaI AA aa
Case n21 þ n010 n210 þ n01

Control m21 þ m010 m210 þ m01

ð31Þ

ida AA aa
Case n12 þ n20 þ n102 þ n00 n22 þ n10 þ n02 þ n100

Control m12 þ m20 þ m102 þ m00 m22 þ m10 þ m02 þ m100

ð32Þ

idd AA aa

Case
n22 þ n11 þ n20 þ n11þ

n101 þ n02 þ n1010 þ n00

n21 þ n12 þ n210 þ n10þ

n102 þ n01 þ n100 þ m01

Control
m22 þ m11 þ m20 þ m110þ

m101 þ m02 þ m1010 þ m00

m21 þ m12 þ m210 þ m10þ

m102 þ m01 þ m100 þ m01

ð33Þ

idI AA aa
Case n11 þ n210 þ n101 þ n010 n21 þ n110 þ n01 þ n1010

Control m11 þ m210 þ m101 þ m010 m21 þ m110 þ m01 þ m1010

ð34Þ

iIa AA aa
Case n12 þ n100 n10 þ n102

Control m12 þ m100 m10 þ m102

ð35Þ

iId AA aa
Case n11 þ n110 þ n102 þ n100 n12 þ n10 þ n101 þ n1010

Control m11 þ m110 þ m102 þ m100 m12 þ m10 þm101 þ m1010

ð36Þ

iII AA aa
Case n11 þ n1010 n110 þ n101

Control m11 þ m1010 m110 þ m101

ð37Þ

The critical thresholds for the tests of the afore-

mentioned effects can be obtained by an approxima-

tion approach derived by Liu et al. [16].
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Computer simulation
We further simulated two SNPs to test the epistasis

and imprinting effects and their interactions. We

assume the two markers, with linkage disequilibrium

0.05 and recombination fraction 0.10, which are

segregating with particular allele frequencies in

cases and controls. Basic data structure was simulated

using the tables given in the Supplementary Material.

Here, we focus on the power calculation of addi-

tive� dominant (iad), imprinting� dominant (iId)
and imprinting� imprinting effects (iII). Under

OR¼ 1.0 and 2.0, we simulated a 2� 2 contingency

table based on (33), (36) and (37), respectively. The

allele frequencies of SNPs A and B are P¼ 0.6

(allele A) and q¼ 0.5 (allele B), respectively, in

cases. The allele frequencies in controls were deter-

mined by adjusting the OR values. In both cases and

controls, no sex-specific differences were assumed.

The model displays low false-positive rates under

all sampling strategies. For a given sample size, more

families each of small size are recommended because

this strategy has better power than fewer large

families (Table 7). It seems that imprinting� dom-

inant and imprinting� imprinting effects can be

easily detected. To well detect the additive� dom-

inant epistatic effect, more sample size (at least

2000� 1) is needed. Overall, the model is powerful

for detecting epistatic effects and imprinting effects as

well as their interaction effects.

DISCUSSION
Given its significance and popularity, genetic

imprinting has received tremendous attention in

genetic and genomic studies [1,6]. Many studies

have focused the molecular mechanisms of this

phenomenon and its interplay with epigenetic

marks [4]. Its genetic control as a complex trait has

also been studied using linkage analysis [7–11,22]

and the transmission disequilibrium test [12]. Two

packages of software have been written for imprint-

ing estimation [13].

As a powerful genetic tool, genome-wide associ-

ation studies (GWAS) have been widely used to study

the genetic architecture of complex diseases [14].

Thus, the integration of imprinting effect into a

GWAS setting should enhance our capacity to study

the genetic control of this phenomenon. In this art-

icle, we have presented a simple w2 model for testing

imprinting effects in a case–control design by incor-

porating classic quantitative genetic principles into

this design. Quantitative genetics and case–control

design were regarded as two different areas until sev-

eral modeling works by Wu and group [15–18]. This

study has for the first time integrated imprinting ef-

fects into a case–control study by genotyping infor-

mation for the parents of each case and control. By

tracing the parental transmission path of alleles [20],

the model is able to separate the effect of the same

allele when it comes from different parents.

An important advantage of this model is that it is

statistically simple because all tests are reflected in a

2� 2 contingency table. For this kind of table, we

can easily test the association between the two vari-

ables, i.e. disease and epigenetic effect in this situ-

ation, and estimate the extent of this association

using ORs. Conventional log-linear regression

models can also be used to test imprinting effects,

but it would be time-consuming or even computa-

tionally intractable when a number of effects are

tested simultaneously [16]. During the model deriv-

ation, we assume that the population is at HWE and

that sampled families are independent of each other.

But in practice, these assumptions may not be true.

For a non-equilibrium population, conceptual

models have been derived to model allelic and geno-

type frequencies and zygotic disequilibria [22,23].

When families are related, their structure can be

modeled through identical-by-descent alleles [24].

The most meritorious feature of this model lies in

its ability to characterize the genetic interactions of

imprinting loci distributed throughout the genome.

Many imprinted loci have been thought to be highly

interacted through the mediation of proteins, RNA

and DNA [25–27]. It is possible that these inter-

actions play an important role in the evolution of

genetic coadaptation to changing environment

[28]. With the availability of whole-genome geno-

typing and sequencing technologies, it has been

Table 7: Power calculation of epistatic and imprinting
effect detection for two associated markers under
different sampling strategies

Strategy iad iId iII

200� 5 OR¼1 0.0016 0.0490 0.0450
OR¼ 2 0.0298 0.6796 0.4140

1000�1 OR¼1 0.0020 0.0560 0.0380
OR¼ 2 0.4340 1 0.9670

2000�1 OR¼1 0.0030 0.0470 0.0440
OR¼ 2 0.8610 1 1

3000�1 OR¼1 0.0040 0.0520 0.0410
OR¼ 2 0.984 1 1
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possible to comprehend genetic control mechanisms

of complex diseases and, ultimately, integrate genetic

information into routine clinical therapies for disease

treatment and prevention. The model presented here

provides a powerful statistical and computational tool

for detecting genes that determine complex diseases

in an imprinting and interactive way. It will help to

elucidate a detailed picture of the genetic architec-

ture for developmental disorders.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

� Genetic imprinting is an important phenomenon thought to
affect complex diseases in humans.

� Genetic imprintingmayoperate through interactionswith other
genetic effects, although this has not been fully explored.

� We describe a statistical model for detecting genetic imprinting
and its interactions with additive, dominant and epistatic effects
based on a simple 2� 2 contingency table.

� By incorporating it intoGWAS, thismodelwill find its immediate
implication for comprehending the genetic architecture of
human diseases.
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