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Abstract
Modern sequencing and genome assembly technologies have provided a wealth of data, which will soon require an
analysis by comparison for discovery. Sequence alignment, a fundamental task in bioinformatics research, may be
used but with some caveats. Seminal techniques and methods from dynamic programming are proving ineffective
for this work owing to their inherent computational expense when processing large amounts of sequence data.
These methods are prone to giving misleading information because of genetic recombination, genetic shuffling and
other inherent biological events.New approaches from information theory, frequency analysis and data compression
are available and provide powerful alternatives to dynamic programming. These new methods are often preferred,
as their algorithms are simpler and are not affected by synteny-related problems.
In this review, we provide a detailed discussion of computational tools, which stem from alignment-free methods
based on statistical analysis from word frequencies.We provide several clear examples to demonstrate applications
and the interpretations over several different areas of alignment-free analysis such as base^base correlations, fea-
ture frequency profiles, compositional vectors, an improved string composition and the D2 statistic metric.
Additionally, we provide detailed discussion and an example of analysis by Lempel^Ziv techniques from data
compression.
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INTRODUCTION
Gene structure, function and phylogenetic relations

are discovered by the basic comparison of known

to unknown genetic material across organisms.

Sequence comparison is pivotal to the success of

basic phylogenetic and metagenomics research. For

instance, large portions of common genetic material

between organisms provide much evidence to sug-

gest that they are somehow related. Furthermore,

similar sequence data fuels conjecture that the asso-

ciated functions are also similar.

Comparative research came from computer sci-

ence that provided tools and algorithms to find

specific substrings in larger sequences [1] for discov-

ery. For instance, the Knuth–Morris–Pratt algorithm

[2] and the Boyer–Moore [3] algorithm were used

initially in the 1970’s [4] to locate regions of

common DNA by exact matching of larger se-

quences. Later, a modified version of the Boyer–

Moore [5] was applied in the 1980’s. As these algo-

rithms assumed that the input strings contained exact

matches, tiny mismatches found in DNA interrupted

performance. This led to algorithms for approximate

pattern matching [6] and others [7, 8].

Owing to the growth of inexpensive

computing and improvements in sequence assembly
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technologies, there is now more sequence data avail-

able to bioinformatics research than ever before.

Comparative genomics has been an obstacle to dis-

covery [9, 10] and still manages to be a major factor

in more current applications. Some of these applica-

tions include sequence assembly [11], evolutionary

history comparison involving complications from

synteny [12], horizontal gene transfer (HGT) discov-

ery [13, 14], analysis by gene-shuffling [15] and

many other applications where proper sequence

comparison must be used [16].

Dynamic programming [17] has often been

applied to comparing sequences in the aforemen-

tioned applications. As global and local alignment

algorithms [18, 19] work base-by-base, they stand

to be confused by the inherent mismatches, gaps,

alternating blocks of sequence material and inver-

sions that are easily found in genetic material.

These methods may erroneously conclude that the

functionally related sequences are largely unrelated,

as they do not demonstrate any statistically significant

alignment. Sequence length is also important to ad-

dress when running an alignment from dynamic

programming. For example, local and global, imple-

mented in softwares such as ClustalW [20], have

complexities of O(mn), and therefore it is clear that

their resource requirements quickly escalate for larger

sequences of lengths, m and n. It is often infeasible to

perform comparisons of complete genomes by this

approach owing to the large amount of time this

would involve. For this reason, technologies requir-

ing databases for speed such as BLAST [21],

BLASTZ [22] and BLAT [23] have gained popular-

ity. Other methods to help overcome some of the

limitations of dynamic programming have come

from diverse fields such as cloud computing [24],

distributed computing [25] and parallel computing

for multiple sequence comparison [26].

Frequency-based algorithms, which are driven by

the statistics of word usage or similar, are becoming

popular in research for discovery. This is because

these approaches are not typically confused by the

complexities caused by mismatches, gaps and se-

quence inversions that are often found between se-

quences for comparison [27]. For example, these

methods function by evaluating the informational

content between sequences, and therefore alternat-

ing blocks of DNA between two sequences will not

be problematic. This form of alignment does not

depend on where the features are found in the se-

quence, only that the sequence contains the features.

Methods using frequency analysis also do not suffer

from high algorithmic complexities as they are gen-

erally linear. They are, therefore, able to process

larger sequences with fewer resources than dynamic

programming algorithms and do not rely on having

database support, as would BLAST, BLASTZ and

BLAT. There is clearly a call for an alternative ap-

proach for sequence comparison done by methods

that are not of dynamic programming, and therefore

alignment-free methods are becoming attractive to

bioinformatics research where the data are substantial

and naturally dynamic.

In this article, we discuss some of the prominent

methods stemming from vector or frequency-based

analysis such as base–base correlations (BBC), feature

frequency profiles (FFPs), compositional vectors

(CVs), improved string composition and the D2 stat-

istic metric. These methods have been chosen for

discussion because of their simplistic nature and

ease of application to research. We provide clear ex-

amples for the implementation of these methods and

discuss their interpretation. We also provide discus-

sion and an example of a method inspired by the

Lempel-Ziv (LZ) compression techniques. This

review aims to show how these alignment-free

methods are integral to the quantification and dis-

covery of sequence function and structure.

BACKGROUND
Methods for differentiating sequence data by using

statistical concepts (factor frequencies and approaches

from data compression) have attracted much interest.

In their often-cited 2003 publication, Vinga et al.
[28] reviewed some related methods, metrics and

algorithmic implementations. Mantaci etal. [29] con-

tinued by illustrating other methods recently intro-

duced for the alignment-free comparison, which

were also based on a statistical approach. The authors

organize the comparison algorithms in the following

basic groups: (i) count factor frequencies, (ii) data

compression and (ii) edit distances or on block edit

distance—a special case involving moving entire

blocks of a sequence.

Recent developments and the release of new

technologies from the scientific community have

caused the aforementioned references to become

out-dated. Here, we discuss some of the more

recent statistical methods, which involve frequency

data for comparison. The approaches that we cover

were chosen based on their simplicity of application
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and can be divided into the following categories:

factor frequencies [30], composition vectors [31], improved
CVs [32], data compression [33–35] and common sub-
strings [6, 36].

FACTOR FREQUENCIES
Producing seminary ideas in 1948, C.E. Shannon’s

InformationTheory is the branch of mathematics, which

is concerned with quantifying information and signal

processing [37]. As DNA contains observable struc-

tures and patterns [38–40], tools from information

theory (e.g. mutual entropy et al.) are appropriate

for frequency analysis. Many of these methods

break each sequence for comparison into numeric

parts such as frequencies from the occurrence of

types of words or k-mers (substrings of length k)
occurring in the sequences. If two sequences are

similar, then the derived k-mer frequencies would

have similar distributions to reflect this likeness. If

the sequences are different, then so are the frequency

distributions.

To perform a k-mer study, the size of the motif is

an important factor to consider. When collecting

word frequencies from motifs, the size of the motif

does make a difference to the results. According to

Wu et al. [41], where the length of motif or window

size is extensively discussed, there is a general rule of

play when collecting word frequencies. When the

sequences are obviously different (e.g. they are not

related), then size of k-mers or window-size should

be short. However, when the sequences are similar

(known to be related), then the k-mers or window

sizes can be longer. The reader is invited to consult

the aforementioned reference for the details behind

their general rule.

BBC by analysis of mutual information
Mutual information is a tool from information

theory, which measures the amount of common in-

formation (or interaction) between two entities. Liu

et al. [30] described the development of BBC, an

algorithmic approach for determining sequence simi-

larity by mutual information to infer phylogenetic

relationships from complete genomes. In their

work, an interval is established containing r-bases,

making up strings of DNA to be used for multiple

sequence comparison. In this interval, a vector is

created from all possible joint probabilities of DNA

pairs, as the total possible pairs ¼ 4�4 ¼ 42 ¼ 16. In

their article, they showed that the interval containing

these joint probabilities in the sequence can often be

expanded to get a better measurement of the differ-

ence between sequences.

For ða1, a2, a3, a4Þ � ðA,C,G,TÞ, the probability

of finding base ai is denoted pi for 1 � i � 4. For

TijðrÞ, the average relevance of the two-base com-

bination (the feature) with different gaps from 1 to r
(a range of r), the authors define a BBC by the

following:

TijðrÞ ¼
X
d¼1

rpijðd Þ � log2

pijðdÞ
pipj

� �
ð1Þ

for i, j 2 f1, 2, 3, 4g where pijðdÞ signifies the joint

probabilities (e.g. the 42 ¼ 16 possible length-2

DNA words, which we refer to as features) of bases

i and j at a distance of d. A BBC feature constitutes a

16D feature vector, VS1
for a sequence S1 having a

length of n1.

The statistical independence of two bases for a

sequence of length- l is defined by pijðlÞ ¼ pipj and

its deviation is defined, Dij ¼ pijðdÞ � pipj. Let

S1 ¼ ACGTGCTATG and S2 ¼ ACGCGCTA. We

find the joint probabilities to populate the vector,

ðAA,AC,AG,AT,CA,CC,CG,CT,GA,GC,GG,GT,
TA,TC,TG,TT), with the following equation for

frequency, f ðWkÞ, from [42]:

f ðWkÞ ¼
cðWkÞ

n� kþ 1
, ð2Þ

where cðWkÞ signifies the number of occurrences of

a length- k word in a sequence of length- n1. The

finalized vectors are the following.

VS1
¼ ð0:0, 0:2, 0:0, 0:1, 0:0, 0:0, 0:1, 0:1,

0:0, 0:1, 0:0, 0:0, 0:1, 0:0, 0:3, 0:0Þ

VS2
¼ ð0:0, 0:3, 0:0, 0:0, 0:0, 0:0, 0:5, 0:5,

0:0, 0:5, 0:0, 0:0, 0:5, 0:0, 0:0, 0:0Þ

For two sequences S1 and S2 having the same

length n1, the authors define the distance HS1S2
in

the following equation.

HS1S2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX16

i¼1

ðVS1i � VS2iÞ
2

vuut ð3Þ

By this calculation, we find that HS1S2
¼ 0:8890

for the example aforementioned. Higher values for

this metric indicate a greater spread in the frequency

distribution and increasing dissimilarity; however,

lower values indicate levels of increasing similarity

(e.g. 0 if and only if the distributions being compared
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are equivalent). The authors note that HS1S2
satisfies

the definition of a sequence distance because (i)

HS1S2
> 0 for different sequence lengths; n1 6¼ n2;

(ii) HS1S2
¼ 0; (iii) HS1S2

¼ HS2S1
(symmetric); and

(iv) HS1S2
� HS1

þHS2
(triangle inequality).

Liu et al. used phylogenetic trees, using branch

weights gained from their BBC mutual information

calculations. From the sequence data of 48 different

Hepatitis E viruses, they constructed a phylogenetic

tree, which was consistent with previous studies by

diverse approaches [30].

FFPs
In [43], a feature frequency approach (UVWORD)

was presented, which compares the DNA words

from two sequences. Known as oligonucleotide profiling,
the sliding-window method compared the encoun-

tered word frequencies of one sequence (the target)
with another (the source). The sequence similarity was

determined by how many words were common to

both sequences. Word-based statistical models were

also presented in [42], which investigated the occur-

rence, type and frequency of overlapping and

embedded DNA words for sequence comparison.

Sims et al. [44] were interested in comparing

whole genomes, even in situations where there are

no common genes with high homology. To do this,

they developed a variation of text compression,

where the distance between word frequency profiles

of two texts would be taken as a measure of dissim-

ilarity. They substituted relative k-mer frequencies

(FFP) for word frequencies.

A sliding window of size k is run through the

sequence from position 1 to n� kþ 1 and counts

the number of all t ¼ 4k possible k-mers (the total

number of features, for example) where four is the

number of DNA bases. Although the k-mers extend

themselves throughout the entire genome, the

window is only allowed to span over the regions,

which are completely free of sequencing gaps. The

vector C ¼< c1, . . . , ct > holds the t number of raw

frequency counts for all possible words of length- k
and is conventionally found by the following

equation:

F ¼ C=
X
i

ci: ð4Þ

The length of the genome must be considered

carefully at this vector-forming stage. If the genomes

are of approximately equal length, and a <4-fold

difference exists between sequences (four is the

number of bases), then the method is conveniently

used. However, if the sequences for comparison have

extremely different lengths, then it is necessary to

implement the block-FFP method, which is similar

to the method described by [41]. This pre-processing

step works to ensure that diverse genome lengths do

not yield misleading results.

This step breaks up each sequence into smaller,

manageable fragments of length- n1 (called FFP-

blocks). In the case where the length of the shorter

sequence is evenly divisible by the length of the

longer sequence, the intervals (e.g. blocks) are

made so that they have the same length as the shorter

sequence. If a sequence (length n2) is not evenly

divisible by the shorter sequence (length n1), then

the total number of possible blocks for comparative

analysis that can be made is n2 modulus n1.

A comparison by frequencies and theJensen^Shannon
Divergence test
Comparing genomes is actually comparing the sets of

frequencies, which have been taken over an interval

of sequence data. To make this comparison, we will

follow Sims et al. [44] approach to use the Jensen–

Shannon Divergence (JSD) test. The JSD test is a

close relation to the Kullback–Leibler Divergence

test, an information theoretic non-symmetric diver-

gence measure of two probability distributions, that

is extensively discussed in [45].

Once the vectors have been properly created, we

are ready to apply the calculations that determine

their distance apart. For two arbitrary vectors, VS1

and VS2
, prepared from sequences S1 and S2 for t,

the number of features collected, the JSD is given

below:

JSðVS1
,VS2
Þ ¼

1

2
KLðVS1

,VMÞ þ
1

2
KLðVS2

,VMÞ, ð5Þ

where,

VMi ¼
VS1i þ VS2i

2
ð6Þ

for i ¼ f1, . . . , tg and KL is the Kullback–Leibler

Divergence, below.

KLðVS1
,VMÞ ¼

Xt
i¼1

VS1i log2

VS1i

VMi

, ð7Þ

where t is the number of features.

We now return to our earlier example of the

two sequences S1 ¼ ACGTGCTATG and S2 ¼

ACGCGCTA, which we compared by this JSD
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analysis. In this example, we populate vectors for

these sequences using all length-2 words (2mers) in

the sequences. The possible 2mers are ordered in the

following order:

AA,AC,AG,AT,CA,CC,CG,CT,GA,GC,GG,GT,

TA,TC,TG,TT:

The FFP vectors VS1
and VS2

are created and

populated by all available 2mers from sequences S1

and S2.

VS1
¼< 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 2, 0 > �

1

9

VS2
¼< 0, 1, 0, 0, 0, 0, 2, 1, 0, 2, 0, 0, 1, 0, 0, 0 > �

1

7

At each position i of both vectors, we apply

VMi ¼
VS1 iþVS2 i

2
to get an average vector VM. The

calculated values for all three vectors are shown in

Table 1.

To help the reader to keep track of the vectors and

their frequencies at each position, we offer Table 1.

We apply vectors VS1
and VM (and then vectors VS2

and VM) to Equation (7), which we illustrate below.

KLðVS1
,VMÞ ¼

Xt

i¼1

VS1i log2

VS1i

VMi

¼
1

9
� log2

1
9
8
63

� �
þ

1

9
� log2

1
9
1
18

� �

¼
1

9
� log2

1
9
8
63

� �
þ

1

9
� log2

1
9
1
18

� �

þ
1

9
� log2

1
9
25
126

� �
þ

1

9
� log2

1
9
1
18

� �

þ
1

9
� log2

1
9
8
63

� �
þ

2

9
� log2

2
9
1
9

� �
¼ 0:1943

Following this theme for sequence S2 (vector

VS2
), we find that KLðVS2

,VMÞ ¼ 0:3734.

JSðVS1
,VS2
Þ ¼

1

2
KLðVS1

,VMÞ þ
1

2
KLðVS2

,VMÞ

¼
1

2
� 0:1943ð Þ þ

1

2
� 0:3734ð Þ

¼ 0:2839

Provided the base 2 logarithm is used, the JSD is

bounded below by 0 and 1 [45]. Higher values indi-

cate increasing dissimilarity, but lower values indicate

increasing similarity (e.g. 0 if and only if the distribu-

tions are identical). As JSðVS1
,VS2
Þ ¼ 0:2839 is close

to zero, we conclude that the sequences S1 and S2

are similar by this test.

Sims et al. [44] reconstructed phylogenies from

concatenated mammalian ‘intronic genomes’ by

this method and found that their method closely

reflected the accepted evolutionary history and

agreed to results from a codon-sequence-based align-

ment technique [46].

Suffix trees by k-mer frequencies
The abundance of sequence noise (e.g. insertions,

mismatches and similar) often necessitates fre-

quency-based analysis. Similar to the work of [44]

earlier in the text, another method of applying fre-

quency data have been extensively explored by

Soares et al. [47] to measure Euclidean distance

between sequence data. When collecting frequency

data, typically a window is opened at the beginning

of the sequence, and the frequencies are found for all

encountered words. The authors depart from this

method by presenting a new approach that deter-

mines a single optimal word length (k-mers) from

which to generate a frequency distribution for appli-

cation to suffix trees.

To collect these optimal k-mer frequencies, Soares

et al. [47] began by determining all words in the

DNA alphabet (e.g. {A,C,G,T}) of length- k. An

optimal resolution range of k-mers for the given

Table 1: Positions 1 through 16 of the table of vectors for VS1 from S1 ¼ ACGTGCTATG and VS2 from
S2 ¼ ACGCGCTA, aligned with position

2mers
position i

AA1 AC2 AG3 AT4 CA5 CC6 CG7 CT8 GA9 GC10 GG11 GT12 TA13 TC14 TG15 TT16

VS1 0 1
9 0 1

9 0 0 1
9

1
9 0 1

9 0 1
9

1
9 0 2

9 0

VS2 0 1
7 0 0 0 0 2

7
1
7 0 2

7 0 0 1
7 0 0 0

VM 0 8
63 0 1

18 0 0 25
126

8
63 0 25

126 0 1
18

8
63 0 1

9 0

The elements of combined vectorM by index are also shown.Frequencies of each 2mer aremadeby normalizing the occurrences of each 2mer in S1
and S2, respectively, by the total number of 2mer occurrences in each sequence.
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set of genomes was described in [44] and later applied

to the work of Soares et al. [47] for instance,

kH max ¼ log4ðn1Þ for a sequence of length- n1. To

find a value applicable to all sequences under analysis,

we choose n1 as the length of the greater sequence

and K as the smaller integer greater than log4ðmÞ. For

m sequences of different lengths, the peak value of

word length (K) that is applicable to all sequences of

the study is described by the following two

equations:

n1 ¼ maxflengthðSiÞ, 1 � i � mg;

K ¼ log4ðn1Þ
� �

In the logarithmic equation, L is given the smallest

integer not less than the calculated value.

The exhaustive lists of DNA L-words for n
sequences were created by combinatorial means.

For words of length- L, the size of the list can be

described mathematically: t ¼ 4L. The frequencies of

these words are similarly found as in [44]. Once

amassed, they are added to an n� t matrix to

create a global profile of all L-word frequencies of

all input sequences. Next is the development of the

genetic distance for the suffix trees. This pairwise

standard Euclidean distance between pairs of

sequences is calculated by the following:

SEDðS1,S2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
w2t

ðfS1w � fS2wÞ
2

r
ð8Þ

for w, representing the k-mer and t representing the

exhaustive list of words, respectively, and fSiw repre-

sents the relative frequency of w in the sequence Si.
These values may be applied to suffix trees for con-

venient sequence analysis across large sets of

sequences.

Composition vectors based on k-mer
frequencies
There are two main string composition vectors that

we will discuss; the CV and the complete composi-

tion vector (CCV). Discussed in [48–50], a k-mer

frequency CV for a genomic sequence is a distribu-

tion of frequencies of length- k motifs, which are

used for comparison across sequences. The CV

method contains motif frequencies of the same

length, whereas the CCVs contain motif frequencies

of unequal length.

The basic steps of creating CVs are the following:

(i) find the frequencies of the motifs in a sequence,

(ii) create a vector by organizing the frequencies in

some order, (iii) compute the distance between every

two composition vectors to form a distance matrix,

and optionally (iv) construct the phylogenic tree

based on the differences. This last step is not essential

but may be helpful when evaluating the degree of

closeness between a set of sequences.

Creation of CompositionVectors (CVs, CCVs)
The creation of a CCV is similar to that of a CV

except that the input frequencies are made from

strings of differing lengths. Despite its extra compu-

tational expense, the CCV method was found to

provide finer evolutionary information than the

CV method [32].

Following the discussion from [31, 32], we define

S1 to be a sequence consisting of n1 nucleotides and

let f ða1 . . . akÞ to be the observed frequency of the

length- k motif in S1. We define ai for 1 � i � k to

be a nucleotide such that ai 2 {A, C, G, T} for

1 � k < n1. Next, for some constant K, the largest

string length we consider, we define

VS1
¼ ðf1, f2, . . . , f4K Þ as the combined vector.

Finally, we define VS ¼ ðS1,S2, . . . ,SKÞ as the

combined vector. The vectors, VS1
and VS, reflect

both random mutation and selection. Lu et al. noted

that there is an underestimation of selective evolu-

tion for both these vectors when the data are nor-

malized according to Equation (9), which is also

discussed in [51] and [52]. For the observed fre-

quency of a1; a2; � � � ; ak, the normalizing equation

is described by the following:

aða1 . . . akÞ ¼
f ða1 . . . akÞ � feða1 . . . akÞ

feða1 . . . akÞ
ð9Þ

where fe represents the expected frequency and is

defined by:

feða1 . . . akÞ ¼
f ða1 . . . ak�1Þf ða2 . . . akÞ

f ða2 . . . ak�1Þ

�
ðn1 � kþ 1Þðn1 � kþ 3Þ

ðn1 � kþ 2Þ2
:

for k � 3 and feða1 . . . akÞ. Lu et al. [32] note that this

normalization method underestimates the actual rea-

lity of the data. Next, we describe their modified

method, which overcomes this problem.

Creation of improved CCVs
To overcome this setback, Lu et al. [32] propose an

improvement to CVs and CCVs. The improved
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CCV (ICCV) is made assuming that the sequence

bases all occur with equal probability, according

to the expected frequency of a k-mer string.

The variance of frequency of a given sequence S1

of length- n1 is also based on this assumption. We

first define the expected motif frequencies and their

variance in the vectors. For any given k-mer, a posi-

tion in the sequence is given as:

xi ¼
1, if the k�mer begins at position i
0, otherwise

�

for integer i such that 1 � i � ðn1 � kþ 1Þ. This

upper bound is the maximum observed frequency

for a string a1 � � � ak in S1. Therefore, it can be

shown that

f ða1 � � � akÞ ¼
Xn1�kþ1

i¼1

xi: ð10Þ

The expectation and variance of f ða1 � � � akÞ are

described in the following equations.

E½f ða1 � � � akÞ	 ¼
Xn1�kþ1

i¼1

E½xi	 ¼
n1 � kþ 1

4k
ð11Þ

and the variance;

Var½f ða1 � � � akÞ	 ¼
n1 � kþ 1

4k
ð1�

1

4k
Þ

�
2

42k
ðk� 1Þðn1 �

3

2
kþ 1Þ

þ
2

4k

Xk�1

i¼1

ðn1 � kþ 1� tÞ
Jr
4t
,

where Jr, is defined by the following.

Jr ¼
1, if ða1 � � � ak�rÞ ¼ ðarþ1 � � � akÞ
0, otherwise

�

for integer r such that 1 � r � k� 1. See [53] for a

full derivation. One of the problems with the origi-

nal CV and CCV concerns the denominator, which

requires a square root operation without which Lu

et al. warn of a problem of over-estimation. To miti-

gate the over-estimation problem, the authors apply

the data’s expectation and variance to the normal-

izing equation given later in the text and complete

the construction of the ICCV. The normalization of

each observed frequency of a k-mer string, knorm is

given by the following equation:

knorm ¼
f ða1 � � � akÞ � E½ða1 � � � akÞ	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½f ða1 � � � akÞ	
p ð12Þ

for k � 1.

Distance measurement
We next discuss how the distance between vectors is

measured. For two sequences, S1 and S2, let their

vectors be defined, VS1
¼ ða1, a2, � � � , akÞ of

length- k and VS2
¼ ðb1,b2, � � � ,bkÞ, also of

length- k. We define the normalized distance

between the vectors by the following:

DðVS1
,VS2
Þ ¼

1� CðVS1
,VS2
Þ

2
, ð13Þ

where CðVS1
,VS2
Þ is the cosine distance of the angle

between VS1
and VS2

and is described by the

following.

CðVS1
,VS2
Þ ¼

Pk
i¼1

ai � biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
i¼1

a2
i �
Pk
i¼1

b2
i

s ð14Þ

Lu et al. show that the ICCV method fixes the

observed overestimation problems with the previous

method and generates more accurate and robust

results. They also show that its results are consistent

with methods based on alignment by dynamic pro-

gramming in phylogeny.

A revised string composition method
Chan et al. [31] revisit the composition vector

method and apply an analysis of entropy from infor-

mation theory and operations research. Their

method begins by finding the frequencies of each

base of a k-string sequence. For example, from

ACTGCTATGC, the base frequencies are the follow-

ing: f ðAÞ ¼ 1
5
; f ðCÞ ¼ 3

10
; f ðGÞ ¼ 1

5
; f ðTÞ ¼ 3

10
:

The second step is to estimate the expected fre-

quency q(u) for each k-string. For this step, the

authors suggested determining the relationship

between qð�Þ and f ð�Þ by maximizing the following

system of equations from Hua et al. [54]. Here, the

entropy in qð�Þ is maximized given the frequency f(v)
for all ðk� 1Þ-strings v.

qðvAÞ þ qðvCÞ þ qðvGÞ þ qðvTÞ ¼ f ðvÞ,
qðAvÞ þ qðCvÞ þ qðGvÞ þ qðTvÞ ¼ f ðvÞ

�
ð15Þ

Chan et al. depart from the work of Hua et al.
by making no assumptions between qð�Þ and

f ð�Þ. Instead, they maximized the following

equations, which estimate the expected frequencies

q(u).
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qðLwRÞ ¼
f ðLwÞf ðwRÞ

f ðwÞ
ð16Þ

for k � 3, which was introduced by, Qi et al. [49]

and,

qðLwRÞ ¼
f ðLÞf ðwRÞ þ f ðLwÞðRÞ

2
ð17Þ

for k � 2, from Yu et al. [55]. For any k-string u, L
and R represent the left and right nucleotides of the

word and w represents the middle ðk� 2Þ-string

located between them. In the second equation, all

these elements are assumed to occur independently.

From these equations, the authors created a new

system of equations (later in the text) to solve

where the right-hand side concerns sequence fre-

quencies and the left-hand side concerns the

estimations:

qðvAÞ þ qðvCÞ þ qðvGÞ þ qðvTÞ

¼
f ðLwÞ
f ðwÞ f ðwAÞ þ f ðwCÞ þ f ðwGÞ þ f ðwTÞ

� 	
qðAvÞ þ qðCvÞ þ qðGvÞ þ qðTvÞ

¼
f ðxRÞ
f ðxÞ f ðAxÞ þ f ðCxÞ þ f ðGxÞ þ f ðTxÞ

� 	
:

8>>>>><
>>>>>:

ð18Þ

When this system is maximized, Chan et al. [31]

note that the system generates a set of all possible

estimation formulas qð�Þ from which one can be

selected to maximize the entropy. In general, from

any existing estimation formula qð�Þ given in terms of

f ð�Þ, the authors note that the set of constraints such

as the following can be derived:

qðvAÞ þ qðvCÞ þ qðvGÞ þ qðvTÞ ¼ lðvÞ,
qðAvÞ þ qðCvÞ þ qðGvÞ þ qðTvÞ ¼ rðvÞ

�
ð19Þ

where the left- and right-side frequency values, l(v)
and r(v) are derived from frequency information

(f(v)) for each length-ðm� 1Þ motif v. To obtain

the unique q(u) for all u, the following optimization

problem is solved:

maximize : �
X4k
i¼1

qi log qi

subject to :
qi satisfies the system of equations

qi � 0 for all i

�

where �qi log qi is Shannon’s entropy calculation.

The authors apply this information to phylogenetic

tree analysis in a similar fashion as we saw in Lu et al.
[32].

MaximumEntropy Principle. After solving the

problem aforementioned, a system of noise estima-

tion formulas is provided. Note: a motif appears as

the following: ða1 � � � aman � � � akÞ and can be split

into to sub words.

qMEPða1 � � � aman � � � akÞ ¼
lða1 � � � amÞrðan � � � akÞ

s
, ð20Þ

where, qMEP is the maximized entropy principle

score for the sequence data and,

s ¼
X

L2fA,C,G,Tg

lða1 � � � amÞ ¼
X

R2fA,C,G,Tg

rðan � � � akÞ:

ð21Þ

We note that qMEP ¼ 0 if s ¼ 0 and that lð�Þ and rð�Þ
are parametric functions. Different lð�Þ and rð�Þ will

give different estimation formulas and will have vary-

ing levels of success. The authors applied this test to

create phylogenetic trees from simulated data sets.

Their results showed differentiation of ‘closely

related’ sequences.

D2 statistic
The statistic D2, is the number of approximate word

matches of length k between sequences

S1 ¼ ða1, . . . , akÞ and S2 ¼ ðb1, . . . , bkÞ, with ai
and bj belonging to an alphabet A (in this case,

the DNA bases), which is distributed according to

a letter distribution parameterized by Z [56]. This

statistic is applied to two populations of differing

means, but identical dispersion matrices [57], to

determine distance. Recently, the statistic has

evolved to provide more exact approximations by

asymptotic regimes for uniform and non-uniform

distributions [58, 59]. Mathematically, the D2 statistic

is defined by the following. From [60], given

sequences S1 ¼ ða1, . . . , an1
Þ of length- n1 and

S2 ¼ ðb1, . . . , bn2
Þ of length- n2 and

W ¼ fw1, . . . ,wkg 2 A
k, then D2 is defined by

the following:

D2 ¼
X
W2Ak

Cs1 ðWÞCs2ðWÞ ð22Þ

where CsiðWÞ is the number of occurrences of W in

sequence Si.
The D2Z statistic [61] was developed to compare

gene regulatory sequences and offered an improve-

ment in performance to D2, but could still fail due to

noise complications [62, 60]. To combat this pro-

blem of noise, Reinert et al. [60] propose a new

statistic DS
2 , which is a self-standardized D2.

DS
2 ¼

X
W2Ak

~Cs1 ðWÞ ~Cs2 ðWÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Cs1ðWÞ

2
þ ~Cs2 ðWÞ

2
q ð23Þ
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For pW ¼
Qt
i¼1

pwi , the probability of occurrence of

wi for 1 � i � k and ~ni ¼ ni � kþ 1 for i sequences,
the centralized count variables, ~Cs1ðWÞ and ~Cs2ðWÞ,
are therefore denoted by the following.

~Cs1 ðWÞ ¼ Cs1 ðWÞ � ~n1pW and ~Cs2ðWÞ

¼ Cs2 ðWÞ � ~n2pW

Reinert et al. also proposed a second statistic, D�2,

which we shall presently define. To introduce this

statistic, we replace p(a), the unobserved feature

probabilities, by ~pðaÞ (the observed) for the relative

count of letter a in the concatenation of the two

sequences that are based on the assumption that the

two sequences are independent. We note that these

sequences are both independent and contain identi-

cally distributed (i.i.d.) bases. The estimated prob-

ability of occurrence of W ¼ fw1, . . . ,wkg is

obtained by ~pW ¼
Qk

i¼1 ~pwi . We now define D�2
by the following.

D�2 ¼
X
W2Ak

~Cs1ðWÞ ~Cs2ðWÞffiffiffiffiffiffiffiffiffi
~n1 ~n2

p
~pW

ð24Þ

The authors found that the D�2 statistic out-

performed both the D2 and DS
2 statistics in terms of

accurate detection of relatedness between two

sequences. The statistical power of both D�2 and

DS
2 increases with sequence length and tends to 1

as the sequence length tends to infinity under a

common motif model. When applied to organizing

sequence reads of next-generation sequence assem-

bly tasks, and to phylogeny tasks, the DS
2 statistic

provided a powerful alignment-free comparison

tool [63]. However, when studying phenomena in

the patten transfer model such as HGT, the power of

these statistics declines and converges to a limit that is

generally <1 as the sequence length tends to infinity.

The primary reason for this limitation is that the

means of the word counts in these statistics even-

tually become increasingly similar to each other.

This resemblance works to desensitize the detection

of patterns between the sequences.

To improve the detection of relationships across

sequences using alignment-free methods in the pat-

tern transfer model, Liu et al. [64] developed new

statistics (T�, TS and T�sum, described later in the

text), which they claim have a better statistical

power. The authors present them with simulations

to demonstrate their power and to show that they

are more appropriate for applications where long

sequence-lengths are a concern.

Based on approximating the mean by a sample

mean, the approach of the new statistic is to partition

a long sequence of length- n1 into consecutive non-

overlapping (discrete) subintervals of length- r,
dsub ¼

n1

r


 �
. Then, the D�2 and DS

2 values are calcu-

lated over each ith subinterval for word counts w and

are denoted DðiÞ�2 and DðiÞS2 , respectively. For, two

sequences of length n1 where, S1 ¼ fa1, . . . , akg and

S2 ¼ fb1, . . . , bkg, these statistics are defined by the

following equations.

T� ¼
Xdsub
i¼1

D�2ðiÞ ð25Þ

and

TS ¼
Xdsub
i¼1

DS
2 ðiÞ ð26Þ

The final statistic from [64] is drawn over two

sequences S1 and S2 of lengths n1 and n2, respec-

tively, to conclude the degree of relatedness.

T�sum ¼
Xn1�kþ1

i¼1

S�1i þ
Xn2�kþ1

i¼1

S�2i ð27Þ

for,

S�1i ¼ max
f1�j�n1�kþ1g

M�½i, j, k	 ð28Þ

and

S�2i ¼ max
f1�i�n1�kþ1g

M�½i, j, k	 ð29Þ

where,

M�½i, j, k	 ¼ D�2ðS1½i, iþ k� 1	,S2½j, jþ k� 1	Þ ð30Þ

Although D�2 and DS
2 are generally more powerful

statistics than T�sum and Ts
sum for the common motif

model, this is not the case for studies concerning the

pattern transfer model. For this reason, the statistics

presented by Liu et al. are desirable in pattern

transfer model applications when the sequence data

are long.

DATACOMPRESSIONAND
DICTIONARIES
Alignment-free methods, involving data compres-

sion and dictionaries, are based on the idea that the

more similar two sequences are to each other, then

the better one sequence can be created from the

parts of another. Inspired by LZ compression
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technologies [65], we offer an example of sequence

comparison, from Otu et al. [34].

For the sequences S1, S2 and SQ, we define

HEðS1Þ, HEðS2Þ and HEðSQÞ to be the exhaustive

sets of all words found using an approach from

LZ-compression. We then analyze the sets of

sequence histories to determine how much of one

sequence can be built out of the sequence histories

of another. We define cHð�Þ to be the number of

components in a history of a sequence S and

cminðfcHðSÞg over all histories of S.

For S1 and S2, we have

cminðS1SQÞ � cminðS1Þ þ cminðSQÞ, by the sub-additiv-

ity of the LZ-complexity. To compute the closest

similarity of S1 and SQ, dðS1,SQÞ, and S2 to SQ,

dðS2,SQÞ, we take the smallest value of

maxfcminðS1SQÞ � cminðS1Þ, cminðSQS1Þ � cminðSQÞ}

and maxfcminðS2SQÞ � cminðS2Þ, cminðSQS2Þ

�cminðSQÞ}, respectively.

Compare the sequence similarity of S1 to SQ
and S2 to SQ. We first find the sequence histories

to compare distances. We introduce an example to

demonstrate how this is performed.

S1 = ATGGC
S2 = ACGGT
SQ = ATGGC

• S1 = ATGGC

– HE(S1) = A,T, G,GC
– cmin(S1) = 4

• S2 = ACGGT

– HE(S2) = A,C,G,GT
– cmin(S2) = 4

• SQ = ATGGC

– HE(SQ) = A,T,G,GC
– cmin(SQ) = 4

• S1SQ = ATGGCATGGC

– A,T,G,GC,ATGGC
– cmin(XSQ) = cmin(SQS1) = 5

• S2SQ = ACGGTATGGC

– A, ,C G,GT,AT,GGC
– cmin(S2SQ) = cmin(SQS2) = 6

• d(S1, SQ) = max {cmin(S1SQ) − cmin(S1), cmin(QS1) − cmin(SQ)} =1
• d(S2, SQ) = max {cmin(S2SQ) − cmin(S2), cmin(SQS2) − cmin(SQ)} =2

By the author’s method, we conclude that S1

and SQ are more similar, as 1 ¼ dðS1,SQÞ

< dðS2,SQÞ ¼ 2. The authors used this method to

populate phylogenetic trees from simulated

sequences to show clusterings of ‘related’ sequences.

Text compression algorithms
Data compression is nearly out of the scope of this

article; however, they are worth mentioning because

they also provide an alignment-free approach to

comparing sequence data. These general purpose

compression algorithms may be based on the Ziv

and Lempel [65] methods (as seen earlier in the

text). Recent advances have been developed in

[66, 67] and [68]. Cao et al. [33] proposed a

memory-based algorithm called expert model to com-

press DNA by applying statistical information, gained

from previous encounters of a particular symbol.

Average common substring
Ulitsky et al. [35] built on information theoretic

tools, such as Kullback–Leibler relative entropy, to

find a distance between entire genomes, even if their

lengths vary. The average common substring mea-

sure that they proposed is based on computing the

average lengths of maximum common substrings.

They used these average lengths between the

sequences to construct phylogenetic trees from an

efficient algorithm.

Let S1 and S2 be sequences, of lengths n1 and n2

where, S1 ¼ ða1, . . . , an1
Þ and S2 ¼ ðb1, . . . , bn2

Þ.

For any position i, let r(i) be the length of

longest substring in S1 that exactly matches a substring

in S2 starting at some position j. These lengths r(i) are

averaged to get a measure, LðS1,S2Þ ¼
Pn

i¼1 rðiÞ=n1.

As LðS1,S2Þ represents a common sequence found in

both sequences, then the longer it is, the more simi-

lar the sequences are to each other. This value is only

a similarity measure and must still be converted to a

distance value. The inverse is taken to get the dis-

tance, and then a ‘correction term’ is subtracted to

ensure that the distance dðS1,S1Þ ¼ 0 (will always be

zero). This allows for, dðS1,S2Þ ¼
log n2

LðS1,S2Þ
�

log n1

LðS1,S1Þ

where LðS1,S1Þ ¼
n1

2
to provide the correctional

term, 2 �
logðn1Þ

n1
, which converges to 0 as n1 !1.

As the measure, dðS1,S2Þ is not symmetric, the

authors compute the final average common substring

measurement between the two strings, dsðS1,S2Þ by

the following.

dsðS1,S2Þ ¼ dsðS2,S1Þ ¼
dðS1,S2Þ þ dðS2,S1Þ

2
ð31Þ

We now show how to apply this method to

determine the distance between two sequences.

Let S1 ¼ ACGTGCTATG and S2 ¼ ACGCGCTA, of

lengths n1 ¼ 10 and n2 ¼ 8, the method finds all

common substrings as shown in Table 2.

Alignment-free genetic sequence comparisons 899

ince
``
''
4.1 
Compression 
Algorithms
paper
,
above
(XM) 
4.2
C
S
 (ACS)
,
-
ACS
Since 
``
''
Since 
ACS


LðS1,S2Þ ¼
ð1þ 2þ 3Þþ ð1Þþ ð1þ 2þ 3þ 4Þþ ð1Þþ ð1Þ

10

¼
19

10
¼ 1:9

and

LðS1,S1Þ ¼
1þ 2þ 3þ 4þ 5þ 6þ 7þ 8þ 9þ 10

10

¼
55

10
¼ 5:5

Then the distance between the two sequences is

dðS1,S2Þ ¼
log 8

1:9
�

log 10

5:5
¼ 0:293

Similarly, we can calculate DðB,AÞ as follows:

LðS2,S1Þ ¼
ð1þ 2þ 3Þþ ð1Þþ ð1þ 2þ 3þ 4Þþ ð1Þþ ð1Þ

8

¼
19

8
¼ 2:375,

LðS2,S2Þ ¼
1þ 2þ 3þ 4þ 5þ 6þ 7þ 8

8

¼
36

8
¼ 4:5

and,

dðS2,S1Þ ¼
log 10

2:375
�

log 8

4:5
¼ 0:220:

For our example aforementioned, where

dsðS1,S2Þ is not symmetric, the symmetric distance

is dsðS1,S2Þ ¼ dsðS2,S1Þ ¼
dðS1,S2ÞþdðS2,S1Þ

2
¼

0:293þ0:220
2

¼ 0:257. This value can be used as a

weight for a sequence in a phylogenetic tree to

show relations between sequences of a set.

APPLICATIONSOF
ALIGNMENT-FREEMETHODS
Biological data and sequence assembly
In genetic sequence assembly work, alignment tech-

nologies are important for determining the adjacency

of reads (or contigs which are partially combined

reads) to reconstruct the original sequence. During

a typical de novo assembly task, a sequencing machine

may split the genome into many millions (trillions) of

reads that must be reassembled like from a jigsaw

puzzle. This reconstruction task is computationally

intensive, as each piece must be compared with

every other piece in the pool to determine

adjacency. This task is frustrated when there are for-

eign reads of other sequences to be assembled in the

same data pool. The extra sequence data serve to

massively broaden the search space when determin-

ing the adjacency of a read, as there are many more

comparison operations to perform. To reduce the

workload of the assembly project, it is therefore

desirable to place all related reads into a unique

groups (bins) and apply the main assembly algorithms

to each organism separately.

A novel approach, requiring no database support,

was introduced by [69, 70] to order the organisms in

the pool into separate bins. The authors’ method

creates CVs from restriction sites [71] to determine

inter-sequence relatedness and place the sequences

from the mixed pool into separate groups. This

type of proposed alignment is for a global analysis,

as it is able to process and compare sequences in a

pool of arbitrarily size. They applied their work to

the sequence assembly reads and contigs of

Bifidobacterium longum, Mycobacterium bovis, Clostridium
tetani, Staphylococcus aureus, Burkholderia pseudomallei
and Campylobacter jejuni. Based on the similarity of

proportional values contained in the CVs, the

authors were able to differentiate the sequence mate-

rial by organism.

The method uses spectrumsets that are lists of motifs

made up of permutations of restriction enzymes,

which are specific and unique sites in DNA where

enzymes are able to cleave. To create a spectrum set

from the bacterial restriction site, GAATTC, we

observe that the motif contains, two A0s, two T0s,
one C and one G. A spectrum set contains all

motifs, which have exactly the same number of

each base. For example, for the bacterial restriction

site, GAATTC, there are 156 motifs in the spectrum

set that have the same base composition. A vector of

length-156 is constructed from the proportions of

each of these motifs, which are contained in the

sequence data. For example, to populate the vector

VS1
of the motif proportions of wi for

i ¼ f1, . . . , 156g for sequence S1 of length- n1, the

following equation is used,

Table 2: The similar and different chunks, taken in
order from each sequence

Sequence Same Different Same Different

S1 ACG T GCTA TG
S2 ACG C GCTA
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VS1
¼

cðwiÞ � jwij

n1

, ð32Þ

where cð�Þ represents the number of occurrences of

the motif in the sequence. This equation serves to

normalize the proportions so that the values can be

compared across diverse data sets. The authors noted

that similar sequence data gave rise to similar vectors

that they used to organize the sequence data.

Chromosomal data and phylogeny
In addition, in [70], it was shown that the method

could also be applied to create phylogenetic trees,

which were extremely similar to trees created by

NCBI’s taxonomy tree making software. In this

work, they used chromosomal sequences of arbitrar-

ily chosen organisms (Caenorhabditis elegans, Canis lupus
familiaris, Drosophila melanogaster, Mus musculus,
Mycoplasma hyorhinis, Oryctolagus cuniculus and Rattus
norvegicus) and built a tree that replicated that of

NCBI’s taxonomy analysis software (available at

http://www.ncbi.nlm.nih.gov/guide/taxonomy/).

HGT
HGT is the phenomenon where genetic material is

shared between unrelated organisms. Evolutionary

[72] and Phylogenetic studies [73] have observed

common material between unrelated bacterial or-

ganisms, which suggests a parallel evolutionary his-

tory. The discovery of similar regions of DNA

between two enormous genomes is not a trivial

task, and therefore alignment-free methods have

proven to be helpful in this field. In [36], the authors

present Alignment-Free Local Homology (alfy), a method

to determine HGT by an alignment-free approach.

As determining evolutionary distances from word

frequency data is a non-trivial task, the authors

report that their method is conveniently able to

make this determination.

We cite and discuss the method and example pre-

sented in [36] where the query sequence, denoted as

SQ of Table 3, is compared with the subject se-

quence, S1. For each position in the query SQ, the

alfy algorithm determines the shortest substring that

starts in query, which is absent from the subject

sequence.

In Tables 4 and 5, this comparison task is shown

by a string of numbers (match scores), which show

the length of the substring starting in (SQ) that are

absent in (S1). If the consecutive intervals created by

these matching scores are wide (e.g. long strings of

uninterrupted consecutive integers), then the

sequences are closely related (similar); however, if

the intervals are generally short, then the sequences

are not closely related (dissimilar).

We cite an example from another study concern-

ing HGT by the same authors [13]. This method is

applied to locating regions of common genetic ma-

terial in Escherichia coli and recombinant HIV-1

strains. This method is similar because it locates

local regions in subject sequences that are closely

related to the query sequence. In Table 6, sequences

S1 to S3 are the subjects and SQ is the query. We

find which parts of SQ most closely resemble the

subject sequences. The sections of sequence material

are written in an interval notation: SQ½1, 2	 ¼ TA
matches S3½1, 2	, SQ½3, 4	 ¼ GC matches S2½1, 2	.
By this system, we claim that SQ½1, 2	 is most closely

related to S3, and SQ½3, 4	 is most closely related

to S2.

During the sequence comparison task of query-to-

subject, in [13], the authors denote the length of the

Table 3: The sequences to compare by the alfy
method

To compare sequences, we find the shortest sequence in the query
(SQ), which is absent from a subject.

Table 4: S1 is compared with SQ to determine the
shortest substring in SQ, which is absent from S1

Thematching numbers indicate the shortest unique substring starting
at this position that is absent from the subject.

Table 5: Sequences S1 and S2 are compared with SQ

Thematching numbers indicate the shortest unique substring starting
at this position that is absent from the subject.The HGT is described
by a string of S1 and S2 characters to indicatewhere the subsequences
likely originated.
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shortest query sequence prefix by hi, p. The query

suffix, Q½p, jQj	 denotes the sequence starting at pos-

ition p, which is absent in subject sequences. The

length of the longest subsequence starting at Q½p	
taken over all subject sequences is denoted,

Hp ¼ maxf1�i�ng hi, p, where hp is bounded by the

query length: Hp � jQj � pþ 1. For example, in

Table 6, H1, 1 ¼ T ¼ 1;H2, 1 ¼ T ¼ 1;H3, 1 ¼

TAG ¼ 3; and H1 ¼ maxf1, 1, 3g ¼ 3. Conversely,

the longest subject subsequences, which start at

Q½p	 are found in a subject sequence, are denoted

by Sp ¼ fSi 2 Sjhi, p ¼ Hpg. Based on these proper-

ties, the authors note that the longest sequence from

Table 6 is S3 (the most similar subject to sequence

SQ).

ADVANTAGESAND
DISADVANTAGESOFMETHODS
The method that an algorithm uses to gain its statis-

tical data for an analysis is an important part of the

whole operation. A fault at this stage would travel

throughout the comparison task and upset the con-

clusion. In this section, we describe the generation of

the motif frequency distributions, and we discuss

how this initial statistical work may not always be

appropriate for a particular data set.

The methods of ‘Factor Frequencies’ section are

powerful methods to use in sequence comparison

tasks, as they do not concern the location of the

motifs they analyze. Their algorithms are efficient,

as they are generally of a linear complexity. They

contrast to the general high complexity of the algo-

rithms that are based on dynamic programming. The

results of factor frequency methods are adaptable and

can be conveniently applied to an analysis by mutual

information (‘A comparison by frequencies and the

Jensen–Shannon Divergence test’ section), k-mers

(‘Suffix trees by k-mer frequencies’ section) or by

CVs (‘Composition vectors based on k-mer

frequencies’ and ‘A revised string composition

method sections’).

As the factor frequency methods are generated by

word occurrences in a sequence, it important to

choose words that are not likely to commonly

appear in a sequence. As a general rule in DNA,

the shorter the word, then the more likely it will

appear randomly in a sequence. In ‘BBC by analysis

of mutual information’ and ‘A comparison by fre-

quencies and the Jensen–Shannon Divergence test’

section, vectors were created out of pairs of DNA

bases. Although this may be an simple way to illus-

trate the concept, frequencies made up of these short

pairs have less meaning than frequencies made up by

longer words because any particular DNA pair has a

probability of 1
42 ¼

1
16

to occur randomly. We note

that for sequences that are largely dissimilar, then

shorter words (hence shorter CVs) should be used

to create the feature frequency distributions.

However, longer words, (hence, longer CVs, assum-

ing an exhaustive list of motifs) may be used when

the sequences are known to be similar, such as when

they are related, [41]. The methods of ‘Factor

Frequencies’ section are well suited for this applica-

tion using both long and short motifs. They also

function well when the location of the motif in

the sequence is not important, as in the case of

synteny.

Unlike the approaches of ‘Factor Frequencies’ sec-

tion where the frequency distributions were gener-

ated by user-specified motifs, the methods of ‘Data

Compression and Dictionaries’ section ‘choose’ their

own sizes of words for their sequence comparison

task. In the methods proposed by [34] (LZ compres-

sion based) and [36] (HGT), the word size is not a

parameter set by the researcher. These kinds of algo-

rithms are useful to comparison tasks where it is not

clear about the ‘correct’ kinds of motifs to employ.

In the case of factor frequency methods, when de-

signing a list of motifs from which to generate a

frequency distribution, an exhaustive list is likely

used. As we have previously mentioned, the longer

the motif, the larger the exhaustive list. Finding the

frequencies of these extra motifs may add additional

computational time to the task. Therefore, compres-

sion-based methods may be more suitable to com-

parisons where longer motifs are desirable, such as

when the sequences are similar. This might be be-

cause the words of varying size and composition will

be more similar across related sequences.

Table 6: Wewish to determine the sequence relations
based on common sequence material

The query sequence is SQ and subjects are S1through S3.
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CONCLUSION
Comparison of sequence data represents a large

problem in computational biology research.

Discovery is often frustrated by obstacles such as syn-

teny or other forms of genetic recombination, pre-

venting methods of dynamic programming from

working effectively. We provide a summary of the

methods that we have discussed in Table 7, listed by

sections, references and authors. When confronted

with a large number of comparison tasks, which

are unsuitable for traditional forms of alignment

from dynamic programming, these alignment-free

methods may be the only feasible approach for com-

pleting the tasks to permit discovery. This is because

the alignment-free methods do not function based

on the location of genes or regions in each sequence.

When the location of these regions is not important

for the analysis, alignment-free methods like the ones

included in the present review may accomplish the

goal of comparing genetic sequences.

As there is more sequence data available today

than ever before, there are many more projects

that depend on sequence comparison. For discovery

to be made, this work will have to be done by other

technologies such as those based on dynamic pro-

gramming, which have obvious limitations.

Alignment-free methods generally require less com-

putational resources and use algorithms that are typ-

ically of linear complexity. These incorporated

elements are appropriate for advancing comparative

bioinformatics research.

It is our hope that this review provides useful in-

formation for researchers who are studying

alignment-free methods and are using them in the

analysis of genomic sequences and metagenomes. As

the mathematical aspects of the aforementioned tools

are themselves an obstacle, it is also our hope that this

review helps to introduce the reader to some of the

more complicated calculations that are associated with

these alignment-free tools for discovery. Furthermore,

we envisage that this review will serve as a useful

reference in identifying open problems and driving

future research in sequence comparison.

Key Points


 Dynamic programming methods are inappropriate for the
voluminous.


 Statistical methods from information theory and other areas of
mathematics are now used to conveniently differentiate se-
quence data based on extractedmotif distributions.


 We review popular methods of comparing word distributions
between sequences to infer distance.


 Application of these sequence comparison methods extend to
the following: sequence assembly, phylogeny, HGT and many
other areas where sequence separation is necessary.
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Table 7: Summary of the discussed methods in this article

Section Method Author Alignment Citation

BBC by analysis of mutual information BBC Lui et al. Global [30]
FFP Oligonucleotide profiling Arnau et al. Local [43]
FFP Feature frequency Sims et al. Local [44]
Suffix trees by k-mer frequencies k-mers frequencies Soars et al. Global [47]
Composition vectors based on k-mer frequencies Composition vectors Lu et al. Global [32]
A revised string composition method Composition vectors Chan et al. Global [31]
D2 statistic D�2Statistic Reinert et al. Global [60]
D2 statistic Improved D2 statistic Lui et al. Global [64]
Data compression and dictionaries Sequence distance Otu et al. Global [34]
Text compression algorithms DNA compression Cao et al. Global [33]
Average common substring Average common substring Ulitsky et al. Global [35]
HGT ALign. Free local homology Domazet-Lo� o et al. Local [13, 36]
Biological data and sequence assembly Sequence assembly Bonham-Carter et al. Global [69]
Chromosomal data and phylogeny Phylogeny Bonham-Carter et al. Global [70]

The column‘Alignment’contains the best suggested use of themethod.
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