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Abstract
Over the past few decades, genome-wide association studies analyzed by efficient statistical procedures have suc-
cessfully identified single-nucleotide polymorphisms (SNPs) that are associated with complex traits or human dis-
eases. However, due to the overwhelming number of SNPs, most approaches have focused on additive genetic
model without genome-wide SNP^SNP interactions. In this study, we propose an efficient statistical procedure in a
genetic model-free framework for detecting SNPs exhibiting main genetic effects as well as epistatic interactions.
Specifically, the association between phenotype and genotype is characterized by an unknown function to be
estimated using nonparametric techniques, and a two-stage non-parametric independence screening procedure is
proposed to sequentially identify potentially important main genetic effects and interactions. Finally, the subset of
genetic predictors implied by two-stage non-parametric independence screening is analyzed by penalized regres-
sions such as LASSO, and a final model is identified. In this framework, specific genetic model is not assumed and
interactions are not only amongmarginally important SNPs.Therefore, SNPs that are involved in genetic regulatory
networks but missed by previous studies are expected to be recognized. In simulation studies, we show that the
procedure is computationally efficient and has an outstanding finite sample performance in selecting potential
SNPs as well as SNP^SNP interactions. A real data analysis further indicates the importance of epistatic interactions
in explaining body mass index.
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INTRODUCTION
Analyzing genome-wide association studies (GWAS)

is statistically challenging due to the overwhelming

number of genetic markers, or single-nucleotide

polymorphisms (SNPs), and a limited number of

subjects in a study. The choice of genetic models

that assume some specific association structures be-

tween the phenotype and all genotypes further com-

plicates the analysis. Conventionally, single SNP

analysis that tests the marginal effects of individual

SNPs separately is implemented, and additive genetic

model is widely used. This strategy has successfully

identified many important genetic variants associated

with human diseases and complex traits [1,2], but it is

criticized for its biased genetic effect estimates,

inflated false-positive rate and the lack of statistical

power [3,4].

Identifying important genetic variants out of mil-

lions of observable genetic markers is a high-dimen-

sional variable selection problem, where important
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associations between phenotypic measurements and

genetic variants are selected. Usually such selection is

guided by the final model predictive performance.

Because LASSO regression [5] is capable of produ-

cing sparse solutions by shrinking most of the regres-

sion coefficients to 0 through an L1 norm penalty

term, LASSO-based variable selections have been

proposed and widely used in analyzing whole-

genome SNP data. For example, Wu and Lange

[6] and Wu et al. [7] developed cyclic coordinate

descent algorithm for analyzing GWAS data sets,

where a fixed number of important SNPs could be

specified. Cho et al. [8], Li et al. [9] and He and Lin

[10] extended LASSO-based approached in different

directions. All these findings suggest that variable se-

lection methods have better statistical performance

and computational feasibility than the single SNP

analysis.

Despite important genes being identified by

GWAS, the proportion of phenotypic variance ex-

plained by these genes is still very limited [4]. On

the other hand, more and more evidence in systems

biology and biomedicine indicates that gene–gene

interactions play important roles in formulating genetic

regulator networks and pathways. However, identify-

ing interactions directly is usually computationally in-

feasible, and thus pairwise interactions are searched

among marginally significant SNPs [7]. In case–control

studies where both genotypes and phenotypes are dis-

crete, machine learning methods have been developed

to search for interactions by taking the advantage of

special data structure (for review, see [11]). However,

in population-based studies with quantitative traits,

methods designed for analyzing case–control studies

cannot be directly applied unless the continuous

phenotypic values are properly discretized.

Testing additive genetic model alone, which is a

common practice in analyzing GWAS data sets, may

also reduce statistical power. Lettre et al. [12] showed

that the maximal power is achieved only if the

assumed genetic model is the actual underlying

mode of inheritance of the causal allele. When the

actual pattern of inheritance is unknown, however,

testing the codominant model alone, or alternatively

testing additive model, dominant model and reces-

sive model together is recommended in population-

based association studies. Although GWAS analysis

tools such as Mendel [13] and SNPStats [14] provide

options for specifying genetic models, the optimal

method for determining genetic models is still

not clear.

To this end, we propose a genetic model-free ap-

proach for detecting SNPs exhibiting main genetic

effects and epistatic interactions in population-based

association studies. Our nonparametric genetic

model assumes that genetic predictors are associated

with the phenotype through some unknown

functions. These functions can be approximated

nonparametrically by basis expansion, and are

shrunk toward 0 in penalized regressions. This

framework extends traditional genetic models, such

as additive model, recessive model and dominant

model, allowing non-linear effects of genetic con-

trols. Without biological justifications for the

choice of genetic models, this approach is robust

against the risk of model misspecification.

In terms of selecting important genetic predictors

including main effects and epistatic interactions, a

hybrid of variable screening and variable selection

is proposed, where variable screening is based on

non-parametric independence screening (NIS) [15]

and LASSO is used for variable selection. By using a

two-stage NIS (TS-NIS) procedure, this framework

identifies a subset of genetic predictors containing

marginally important SNPs as well as SNPs that are

not marginally significant but involved in inter-

actions. We show that the sure independence screen-

ing (SIS) property [15,16] implies an overwhelming

probability of retaining truly important SNPs.

Because the model dimensionality is dramatically

reduced by TS-NIS, variable selection methods are

expected to be more efficient in identifying causal

SNPs and SNP–SNP interactions and formulating a

final model. We, in particular, apply LASSO

regression to further eliminate irrelevant genetic

predictors. Simulation studies suggest LASSO could

greatly reduce the false-positive rate while retaining

most of the causal SNPs and SNP–SNP

interactions. As a result, the whole statistical frame-

work identifies important genetic risk factors and

their interactive patterns out of a huge number of

SNPs with high statistical power and low false-posi-

tive rate.

The rest of this article is organized as follows. In

Section 2, we discuss the proposed non-parametric

genetic model and the TS-NIS followed by variable

selections. In Section 3, we provide simulation stu-

dies and comparisons with other approaches in ana-

lyzing GWAS with quantitative traits. Section 4

illustrates this framework by analyzing a data set

from Framingham study, where main genetic effects

and epistatic interactions associated with body mass
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index (BMI) are identified. We give the concluding

remarks and discussions in Section 5.

METHODS
Genetic model
Consider a GWAS data set consisting of n randomly

selected subjects from a population. Let yi be the

continuous phenotypic measurement for the ith sub-

ject and xi ¼ xi1, . . . ,xip
� �T

be a p-dimensional

vector of genotypes from p SNPs. Given two alleles,

A and a, predictor xij from SNP j of subject i is

defined as �1 for genotype aa, 0 for genotype

Aa and 1 otherwise. The ultrahigh dimensionality

of this problem implies that p could be

exp O nað Þð Þfor some a > 0 [16].

A general non-parametric genetic model with

both main genetic effects and pairwise interactions

assumes

yi ¼ mþ
Xp
j¼1

gjðxijÞ þ
Xp
j¼kþ1

Xp
k¼1

hjkðxijxikÞ þ ei, ð1Þ

where m is the population mean, gjð:Þ is an unknown

function specifying the association between the

phenotype and the jth SNP, hjkð:Þ is an unknown

function specifying the association between the

phenotype and the epistatic interaction between

the jth SNP and the kth SNP and ei is a random

error with mean 0 and variance s2.

This model is an extension of the additive non-

parametric model [17], and nests other genetic

models that are commonly used. For example, an

additive model without epistatic interactions assumes

gj xð Þ ¼ bjx and hjk xð Þ ¼ 0, and a recessive model

assumes a step function for gj xð Þ and hjk xð Þ ¼ 0. In

practice, however, a particular genetic model may

not hold for all SNPs, especially when the number

of SNPs is extremely large, and the interaction

patterns are even more complicated. Therefore,

assuming such a general model is desirable for ultra-

high-dimensional genetic association studies.

Because the phenotypic measurement yi is only

determined by a small subset of genetic predictors,

our goal is to identify important SNPs with non-zero

functional coefficients gjð:Þ and hjkð:Þ, where gjð:Þ is

interpreted as main genetic effect and hjkð:Þ is the

epistatic effect. In ultrahigh-dimensional settings,

testing all pairwise interactions is neither theoretically

valid nor computationally affordable. Moreover,

even if two-way interactions can be tested in this

way, the detection of higher-order interactions

through exhaustive search is still challenging.

Alternatively, prevailing methods usually consider

interactions among significant main effects.

There are two versions of the heredity structures

of interactions: strong heredity principle and weak

heredity principle [18]. Under strong heredity

assumption, interactions occur between two margin-

ally significant predictors, whereas under weak her-

edity assumption, one of these predictors could have

a zero marginal effect. Our approach only assumes

weak heredity in the genetic model.

Basis expansion
We approximate unknown functional coefficients

gjð:Þ and hjkð:Þ in (1) through a series of basis func-

tions. Under mild regularity conditions,

gj xð Þ ¼
X1
l¼0

cj,l’l xð Þ, j ¼ 1, . . . ,p, ð2Þ

where ’lð:Þ is the lth basis function, and cj,l is the

corresponding coefficient. Similar basis expansions

exist for hjkð:Þ :

hjk xð Þ ¼
X1
l¼0

cjk,l’l xð Þ, k¼1, . . . , p, j ¼ kþ 1, . . . , p: ð3Þ

The choices of sets of basis functions include

Legendre orthogonal polynomials, B-splines and

Fourier basis functions, all of which have been

applied in modeling developmental trajectories in

quantitative trait loci mapping [19–21].

According to the basis expansion of gjð:Þ and hjkð:Þ,
genetic model (1) becomes

yi ¼ mþ
Xp
j¼1

X
l

cj,l’lðxijÞ

þ
Xp
j¼k

Xp
k¼1

X
l

cjk,l’lðxijxikÞ þ ei:

ð4Þ

Model (4) is a linear one. If model dimensionality is

small to moderate, cj,l and cjk,l can be estimated by

ordinary linear regression or penalized regressions.

However, with ultrahigh-dimensional parameter

space spanned by both main genetic effects and inter-

actions, these methods cannot be directly applied for

both computational purpose and variable selection

purpose.

In what follows, we propose a two-stage variable

screening approach followed by a step of variable

selection to identify important genetic predictors,

and a family of Legendre orthogonal polynomials is
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used as the basis functions. The general form of a

Legendre polynomial of order l is given by

’lðxÞ ¼
Xl=2b c
k¼0

�1ð Þk
2l� 2kð Þ!

2lk! l� kð Þ! l� 2kð Þ!
xl�2k,

where :b c denotes the integer part of a positive

real number. The first five Legendre polynomials

are defined as ’0 ¼ 1, ’1 ¼ x, ’2 ¼
1
2
ð3x2 � 1Þ,

’3 ¼
1
2

5x3 � 3x
� �

and ’4 ¼
1
8

35x4 � 30x2 þ 3
� �

.

In analyzing real data sets, we could determine the

appropriate polynomial degree by implementing the

whole procedure with different polynomial degrees,

and selecting the polynomial degree that gives the

lowest value of Bayesian Information Criterion. In

simulations, however, this is computationally expen-

sive. Therefore, the polynomial degree is fixed at 3 in

simulation studies. As a robustness check, we also re-

analyze all simulated data sets with polynomial

degree v ¼ 4.

TS-NIS
Let us call two SNPs involved in a two-way inter-

action two roots, and let M0 ¼ f1,2, . . . ,pg be a set

of indices including all SNPs. This is the initial

model before variable screening. To estimate a

subset of important SNPs with non-zero main effects

M1 ¼ f1 � j � p : gjðxÞ 6¼ 0forsomexg, we imple-

ment NIS on M0. NIS technique was developed

by [15], where predictors are ranked by their non-

parametric marginal correlations with the response,

and top-ranked predictors are retained for the

following variable selection. Although important

predictors may have relatively low marginal correl-

ations, as long as they are retained in the reduced

model, they could be correctly identified by variable

selections that jointly analyze all predictors.

In particular, we approximate function

gj xð Þ,j ¼ 1, . . . ,p with v-dimensional basis functions

’¼ ’1, . . . ,’vð Þ
T and estimate cj,l,l ¼ 1, . . . ,v in

marginal non-parametric regressions

yi ¼ mþ
Xv
l¼1

cj,l’lðxijÞ þ ei, for j ¼ 1, . . . , p: ð5Þ

Then the squared L2 norm
Pv

l¼1 ĉ
2
j,l serves as a

marginal utility measure of the jth SNP, and those

SNPs whose marginal utility measures are greater

than a threshold C are selected. In other words,

we estimate M1 ¼ f1 � j � p : gjðxÞ 6¼ 0g bybM1 ¼ 1 � j � p :
Pv

l¼1 ĉ
2
j,l > C

n o
: The sure

screening property of NIS guarantees that bM1 con-

tains all SNPs with non-zero marginal effects with a

probability tending to 1. These selected SNPs, how-

ever, could exhibit additive effect, dominant effect,

recessive effect or codominant effect.

Then according to weak heredity principle, any

SNPs in M0 may interact with marginally important

SNPs in bM1, and the model becomes

yi ¼ mþ
X
j2bM1

X
l

cj,l’lðxijÞ

þ
X
j2M0

X
k2bM1

X
l

cjk,l’lðxijxikÞ þ ei,
ð6Þ

To screen out covariates that are involved in

interactions but missed by the first round NIS due

to their negligible marginal effects, a second-stage

NIS is carried out between the phenotype and

each pairwise interaction term xijxik,j 2M0,

k 2 bM1. Similar approximations and screening pro-

cedures are applied in the second stage, and truly

important interactions M2 ¼ f1 � j � p,1 �
k � p : hjkðxijxikÞ 6¼ 0g are estimated bybM2 ¼ j 2M0,k 2 bM1 :

Pv
l¼1 ĉ

2
jk,l > C0

n o
for some

C
0

> 0.

After TS-NIS, the genetic model becomes

yi ¼ mþ
X
j2bM1

X
l

cj,l’lðxijÞ þ
X
j,k2bM2

X
l

cjk,l’lðxijxikÞ þ ei:

ð7Þ

As suggested by [15] and [16], two thresholds C and

C0 are determined so that the top-ranked n=logðnÞ
� �

genetic predictors in each stage are retained.

The advantage of this two-stage SIS (TS-SIS) pro-

cedure is its efficiency and accuracy in identifying

notable phenotype–genotype associations of any

form. Owing to the weak heredity principle, covari-

ate in bM2 may either have non-zero marginal genetic

effects or only modify the effect of other SNPs by

involving in epistatic interactions.

Sure screening property
Fan, Feng and Song (2011) showed the sure screen-

ing property of a NIS procedure for ultrahigh-di-

mensional additive models. This property states that

the probability of including all important predictors

in the final model goes to 1. To show the sure

screening property for the proposed two-stage ap-

proach, we assume that conditions A–F in Fan,
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Feng and Song (2011) are satisfied for both stages of

screening.

To be specific, conditions A–C in Fan, Feng and

Song (2011) imply that if we approximate non-linear

genetic effects by some non-parametric techniques

and the approximation error is bounded above,

the signal from the basis expansion of any important

SNP is at the same level as its true non-linear effect.

Moreover, the minimum signal of all truly important

predictors is bounded below by some positive

number, indicating that the separation of important

predictors and unimportant predictors is possible

through a variable screening procedure.

Conditions D–F ensure that only the number of

genetic predictors with non-zero effects matter for

the purpose of sure screening. In other words, the

probability of selecting all important SNPs and SNP–

SNP interactions is high, and this probability only

depends on the number of truly important genetic

predictors, not the total number of SNPs.

Given these conditions, Theorem 1 in Fan, Feng

and Song (2011) implies that for some positive real

numbers a1, b1 and k1,

P
�
M1 � bM1

�
� 1� vjM1j�

ð8þ 2uÞe�a1n1�4k1u�3

þ 6ue�b1nu�3

�
,

ð8Þ

where M1j j is the number of truly important main

effects. Similarly, for some positive real numbers a2,

b2 and k2,

P
�
M2 � bM2

�
� 1� vjM2j�

ð8þ 2uÞe�a2n1�4k2u�3

þ 6ue�b2nu�3

�
,

ð9Þ

where M2j j is the number of truly important

epistatic effects. By combining (8) and (9), it is

straightforward to show

P
�
M1 � bM1and M2 � bM2

�
� 1� v

X2

s¼1

jMsj�
ð8þ 2uÞe�asn

1�4ksu�3

þ 6ue�bsnu
�3

�
:

ð10Þ

Therefore,

P M1 � bM1 and M2 � bM2

� 	
! 1: ð11Þ

In other words, the proposed two-stage non-

parametric screening procedure has the sure screen-

ing property. In detecting SNPs with non-zero main

effects and epistasis, the probability of including truly

important SNPs in the reduced model goes to 1.

Variable selection by LASSO regression
Once the model dimensionality is dramatically

reduced, variable selection methods for non-

parametric additive models could be used to fur-

ther eliminate irrelevant covariates in bM1 and inter-

actions bM2 [22–25]. To facilitate genetic

interpretability, we fit a genetic model including

both additive and dominant effects for SNPs

in bM1, additive� additive interactions, addi-

tive� dominant interactions, dominant� additive

interactions and dominant� dominant interactions

for each pair in bM2:

yi ¼ mþ
X
j2bM1

ajxij þ
X
j2bM1

djzij þ
X
j,k2bM2

Iaajk xijxik

þ
X
j,k2bM2

Iadjk xijzik þ
X
j,k2bM2

Idajk zijxik

þ
X
j,k2bM2

Iddjk zijzik þ ei,i ¼ 1, . . . ,n,

ð12Þ

where zij ¼ 1 for genotypes AA or aa and 0 for Aa,
aj and dj are the additive effect and dominant effect

of SNP j, respectively, and Iaajk , Iadjk , Idajk and Iddjk denote

four different modes of epistatic interactions

between SNP j and SNP k. This comprehensive

genetic model has been widely used in the literature

[26–29].

With a reasonable number of genetic predictors,

LASSO regression implemented by coordinate des-

cent algorithms [6–7] is used to further refine the

reduced genetic model and estimate genetic effects,

which minimizes the following penalized least

squares:Xn
i¼1

yi � EYið Þ
2
þl

X
j2bM1

ðjajj þ jdjjÞ þ l

X
j,k2bM2

 



Iaajk 



þ 



Idajk 



þ 



Iadjk 



þ 



Iddjk 




!
:

We select the tuning parameter using 5-fold cross-

validation. Of course, other variable selection meth-

ods proposed in the GWAS literature can also be

applied. As suggested by Fan and Lv (2008), a vari-

able selection step following variable screening could

further remove non-significant predictors with

increased interpretability. Finally, we use linear re-

gressions to unbiasedly estimate the effect of SNPs

and SNP–SNP interactions that are selected by the

LASSO regression.
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SIMULATION STUDY
In this section, we present simulation studies using

the proposed TS-NIS scheme to select important

SNPs and SNP–SNP interactions. In each replica-

tion, we simulate a data set according to a genetic

model with both additive effects and dominant

effects. This genetic model would be the optimal

one in detecting causal SNPs. However, such a gen-

etic model is assumed to be unknown to

investigators.

Specifically, genotypic data are simulated as follows.

For SNP j of subject i, i ¼ 1, � � � , n ¼ 1000,

j ¼ 1, � � � , p, the genotype xij is derived from a mar-

ginal standard normal random variable sij. If SNP j and

SNP k are in the same chromosome, sij and sik have a

correlation of rjj�kj ¼ corr sij,sik
� �

, where r is specified

as 0.2, 0.5 or 0.8 in different scenarios. Then geno-

typic value xij is derived from sij according to

xij ¼
1, sij < c,
0, c � sij � �c,
�1, sij > �c,

8<:
where c is the first quartile of a standard normal

distribution.

In simulating phenotypic values, we include 12

main effects and 8 epistatic interactions whose pos-

itions and effects are given in Table 1. The first two

columns of Table 1 (column ‘Chr’ and column

‘Position’) list the position an SNP resides on.

Column ‘Additive/Dominant’ represents whether

SNP demonstrates additive effect or dominant

effect. Column ‘interact with’ presents the row

index of the SNP that is interacting with the current

one. For the first epistatic interaction, for example,

SNP 1 on chromosome 11 interacts with the first

SNP with non-zero genetic effect, which is SNP 1

on chromosome 1. With this specification, some

SNPs only have main effects (SNPs on chromosomes

9 and 10); some SNPs only involve in epistatic

interactions but do not exhibit main effects (all

SNPs under ‘Epistatic Interactions’ in Table 1).

Moreover, two SNPs in an epistatic interaction

could be highly correlated if they are on the same

chromosome (SNPs on chromosomes 3, 4, 5 and 6).

Owing to the computational cost, we further

simulate 3500 SNPs with 0 genetic effects in each

replication, leading to 6.2 million pairwise inter-

actions. All simulated SNPs are distributed into 23

chromosomes, and the proportion of SNPs on each

chromosome is the same as that in our real data ana-

lysis. Then the phenotypical value of each subject is

generated according to a genetic model consisting of

all main effects and interactions in Table 1, where

genetic effects equal to 1. Three noise levels are con-

sidered in simulating the phenotype s2 ¼ 6,8,10.

For each simulated data set, we implement TS-

NIS and then apply LASSO to the reduced model.

Our goal is to select a small subset of SNPs and

SNP–SNP interactions that includes all important

ones. In Table 2, we report the average statistical

power and false-positive rate over 30 simulations

for each simulation scenario, where standard errors

are in parentheses.

As can be seen from Table 2, the statistical power

TS-NIS is high for all different (r,s2) combinations.

In other words, TS-NIS is an efficient dimension

reduction technique, which produces a reduced

model that identifies most of the truly significant

SNPs of >6 million genetic predictors. The reduced

model contains 2n=logðnÞ ¼ 288 main genetic effects

and interactions, a reasonable number of predictors

for the following LASSO regression. Also, the vari-

ances of statistical power and false-positive rate are

very small, suggesting the consistency of this proced-

ure. Furthermore, linkage disequilibrium r has a very

limited impact, and increased s2 is associated with

decreased statistical power.

Table 1: Main effect SNPs and SNP^SNP interactions
in simulated data

Chromosome Position Additive/
Dominant

Interact
with

Main effects
1 1 Additive ^
2 1 Additive ^
3 1 Additive ^
4 1 Additive ^
5 1 Dominant ^
6 1 Dominant ^
7 1 Dominant ^
8 1 Dominant ^
9 1 Dominant ^
10 1 Additive ^
9 5 Dominant ^
10 5 Additive ^

Epistatic interactions
11 1 Additive 1
12 1 Additive 2
3 2 Additive 3
4 3 Additive 4
5 2 Dominant 5
6 3 Dominant 6
17 1 Dominant 7
18 1 Dominant 8

1062 Li et al.

3. 
-
C
",0,0,2
",0,0,2
C
",0,0,2
",0,0,2
",0,0,2
",0,0,2
",0,0,2
",0,0,2
S
``
''
Due
,
zero 
&sim;
a total of 
 approximately
one
:
-
false 
very 
out 
more than 
false 


After TS-NIS, LASSO regression is applied to the

reduced model to identify genetic predictors with

non-zero effects. Although, by construction, the

number of truly significant SNPs selected by

LASSO is less than or equal to that selected by TS-

NIS, the decrease of statistical power is limited. In

contrast, the decrease of false-positive rate is obvious,

suggesting the effectiveness of LASSO regression in

further eliminating irrelevant genetic predictors.

Moreover, as linkage disequilibrium level increases,

both statistical power and false-positive rate of

the whole procedure (TS-NIS-LASSO) slightly

decreases.

We also compare our TS-NIS procedure with

four other methods. Screen and Clean (SC; [30]) is

a computationally efficient approach to detect im-

portant SNPs and interactions in GWAS with quan-

titative phenotype. This approach applies LASSO

regression in search of candidate main effects and

interactions. Then a cleaning process is implemented

to identify significant genetic predictors. Moreover,

we compare our approach with a similar procedure

where NIS in each stage is replaced with SIS (16),

which uses marginal linear correlation to select

SNPs. We call this approach TS-SIS. This allows a

direct comparison between parametric and non-

parametric approaches.

Furthermore, we compare our approach with

Forward LASSO [31]. Being a multistage approach

to select important high-order interactions,

forward LASSO selects main effect SNPs in the

first stage, selects SNP-SNP interactions in the

second stage, selects SNP–SNP–SNP interactions

in the third stage and so on. The last method

our approach is compared with is the well-

known multi-dimensionality reduction (MDR;

[32]) approach. The comparison of our approach

with these four methods will provide a compre-

hensive evaluation.

Table 3 summarizes the result of TS-SIS and SC.

We see that TS-SIS has a power �95%, which is

lower than that of TS-NIS in Table 2. Because

TS-SIS implements two-stage variable screening

based on a linear model, non-linear interaction

patterns tend to be missed. Then once LASSO re-

gression is applied to the reduced model implied by

TS-SIS, the power further decreases to �90%. This

is a notable decrease compared with the decrease

when LASSO applied to the reduced model from

TS-NIS. Because genetic predictors in the reduced

model could be highly correlated, LASSO regression

tends to randomly select genetic predictors and miss

important ones in the final model. As a result, the

performance of TS-SIS-LASSO is not stable over

replications, as can be seen from their higher standard

errors. On the other hand, unimportant SNPs re-

tained by TS-NIS (Table 2) may not have strong

linear correlations with important SNPs, leading to

better variable selection performance. In implement-

ing SC method, we set both the number of main

effects and the number of epistatic interactions to

n=logðnÞ. The power of SC is �80%.

Table 4 summarizes the result of Forward LASSO

and MDR. The power of Forward LASSO is in the

range of 33.3 and 63.8%, and the variances of statis-

tical power are large in general. On the other hand,

MDR method has statistical power from 61 to 66%,

and slightly lower variances. Note that in Forward

LASSO, an additive genetic model is assumed in all

simulations. Higher statistical power could be ex-

pected if true inheritance patterns are assumed, for

example, in a genetic model including dominant ef-

fects and interactions among additive effects and

dominant effects. Among all alternative approaches,

decreased s2 leads to increased statistical power.

However, their false-positive rates are more than

twice as much as that of TS-NIS-LASSO.

Therefore, in analyzing ultrahigh-dimensional gen-

etic data from GWAS, TS-NIS-LASSO is recom-

mended in identifying important main effects as

well as epistatic interactions.

Table 2: Power and FPR of simulated data using
TS-NIS and TS-NIS-LASSO (v ¼ 3)

(r,s2) Power (%) False-positive rate (�10�4)

TS-NIS TS-NIS-
LASSO

TS-NIS TS-NIS-
LASSO

(0.8, 6) 99.2 97.7 2.45 0.72
(2.3) (3.4) ð9:09� 10�3Þ (0.09)

(0.8, 8) 97.5 94.7 2.45 0.72
(3.4) (4.7) ð1:34� 10�2Þ (0.09)

(0.8, 10) 98.2 96.3 2.45 0.76
(3.3) (4.1) ð1:32� 10�2Þ (0.10)

(0.5, 6) 98.8 98.5 2.45 0.87
(2.2) (2.3) ð8:48� 10�3Þ (0.15)

(0.5, 8) 99.0 98.2 2.45 0.88
(2.0) (2.8) ð8:02� 10�3Þ (0.10)

(0.5, 10) 98.2 97.2 2.45 0.91
(3.1) (4.1) ð1:21� 10�2Þ (0.13)

(0.2, 6) 99.0 98.8 2.45 0.88
(2.4) (2.5) ð9:54� 10�3Þ (0.11)

(0.2, 8) 98.5 97.7 2.45 0.90
(2.7) (3.1) ð1:05� 10�2Þ (0.14)

(0.2, 10) 98.5 97.8 2.45 0.88
(2.7) (3.1) ð1:05� 10�2Þ (0.11)
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So far, we have used Legendre polynomials of

degree v ¼ 3. We recommend specifying v large

enough so that satisfactory approximations are pro-

vided for all non-linear effects. To demonstrate that

the procedure works well as long as v is not under-

specified, we re-analyze all simulated data with v ¼ 4

and report results in Table 5. It can be seen that all

statistical power and false-positive rates are on the

same level, suggesting that larger v does not impact

the performance of the TS-NIS procedure in an

obvious way.

REALDATA ANALYSIS
We apply the proposed procedure to a real data set

from Framingham Heart Study [33]. In this study,

977 subjects including 418 males and 559 females are

randomly selected from Framingham, Massachusetts,

and are genotyped, and their BMI, sex and age are

measured. After excluding SNPs with minor allele

frequency <10%, a total of 349 985 SNPs is used for

detecting significant main effects and epistatic effects

that are associated with BMI. We implement the

proposed procedure with sex and age being two

non-genetic covariates.

After TS-NIS followed by LASSO regression, 41

main effect SNPs and 36 SNP–SNP interactions are

identified. To enhance the model interpretability,

we refit the final model by including two covariates,

all selected SNPs and pairwise interactions in a gen-

etic model with both additive and dominant effects.

In Table 6, we summarize SNP information with

non-zero main genetic effects. Table 7 provides simi-

lar information for epistatic interactions. In sum, 41

main genetic effects contribute to 14.40% of the

phenotypic variation, whereas epistatic SNP–SNP

interactions contribute to 24.38%. Of the contribu-

tion of main effect SNPs, 3.56% are from additive

effects and 10.84% are from dominant effects. Out of

the contribution of epistatic interactions, 8.74% are

from additive� additive interactions, 2.55% are from

additive� dominant interactions, 6.62% are from

dominant� additive interactions and 6.47% are

from dominant� dominant interactions. This result

implies that gene–gene interactions may play a more

important role in the genetic determinants of BMI.

In our genetic model, we assume weak heredity

condition by allowing one marginally unimportant

SNP in an interaction. If strong heredity condition is

assumed instead, all interactions could only explain

11.06% of the phenotypic variation, less than half of

the epistatic heritability implied by the proposed

model. Therefore, in practice, epistatic models that

only consider marginally important SNPs may

underestimate the contribution of genetic risk

factors.

Table 3: Power and FPR of simulated data using
TS-SIS, TS-SIS-LASSO and SC

(r,s2) Power (%) False-positive rate (�10�4)

TS-SIS TS-SIS-
LASSO

SC TS-NIS TS-SIS-
LASSO

SC

(0.8, 6) 94.7 90.3 82.2 2.46 1.49 2.46
(5.4) (7.2) (3.6) (0.02) (0.12) (0.6)

(0.8, 8) 95.5 89.3 79.7 2.46 1.55 2.46
(4.2) (6.8) (3.5) (0.02) (0.16) (0.05)

(0.8, 10) 92.8 85.3 79.8 2.47 1.59 2.47
(4.5) (7.3) (4.5) (0.02) (0.17) (0.06)

(0.5, 6) 96.2 92.0 79.3 2.46 1.68 2.46
(4.9) (6.4) (2.9) (0.02) (0.12) (0.04)

(0.5, 8) 95.5 87.0 78.8 2.46 1.79 2.46
(5.3) (7.8) (3.9) (0.02) (0.12) (0.05)

(0.5, 10) 95.7 87.8 78.2 2.46 1.83 2.47
(5.2) (7.0) (3.8) (0.02) (0.12) (0.05)

(0.2, 6) 97.5 92.8 79.5 2.45 1.76 2.47
(3.2) (5.7) (2.4) (0.01) (0.12) (0.05)

(0.2, 8) 95.7 88.7 79.3 2.46 1.82 2.45
(4.9) (6.9) (3.1) (0.02) (0.12) (0.06)

(0.2, 10) 95.3 88.2 77.5 2.46 1.85 2.48
(3.5) (7.3) (5.5) (0.01) (0.12) (0.06)

Table 4: Power and FPR of simulated data using
Forward LASSO and MDR

(r,s2) Power (%) False-positive rate (�10�4)

Forward
LASSO

MDR Forward
LASSO

MDR

(0.8, 6) 38.8 61.3 2.82 2.12
(6.3) (2.2) (7.32�10�3) (0.24)

(0.8, 8) 45.2 61.3 2.82 2.25
(6.8) (2.2) (8.76�10�3) (0.31)

(0.8, 10) 33.3 61.0 2.82 2.24
(8.4) (1.8) (9.64�10�3) (0.23)

(0.5, 6) 63.8 62.0 2.82 2.30
(5.7) (3.0) (8.92�10�3) (0.20)

(0.5, 8) 44.2 63.5 2.82 2.31
(6.8) (2.9) (9.59�10�3) (0.24)

(0.5, 10) 37.8 60.7 2.82 2.37
(6.5) (1.8) (8.64�10�3) (0.29)

(0.2, 6) 62.8 65.0 2.80 2.29
(7.2) (4.9) (1.28�10�2) (0.25)

(0.2, 8) 59.8 64.0 2.82 2.30
(7.5) (3.9) (1.02�10�2) (0.28)

(0.2, 10) 47.8 66.0 2.82 2.31
(6.1) (3.5) (9.16�10�3) (0.22)
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In terms of effects from non-genetic factors, re-

gression coefficient from age and gender are–0.0107

and 0.0598, respectively, and both are statistically

significant. This implies that the risk of obesity

increases with age, and females tend to be associated

with higher risks of obesity. The identification of

BMI susceptibility genes suggests novel metabolic

pathways and provides new potential drug targets

from the perspective of pharmacogenomics.

DISCUSSION
Although statistical tools that analyze all SNPs sim-

ultaneously prove valuable to a deeper understanding

of the genetic components of human diseases and

traits, restrictive assumptions of genetic models may

not capture the complex genetic architecture under-

lying regulatory pathways. Without a rule to deter-

mine the optimal genetic models, different genetic

models have to be considered jointly [12]. On the

other hand, models without epistatic interactions are

usually associated with large fractions of the ‘missing

heritability’ [4,10]. In the presence of ultrahigh-

dimensional genetic data, addressing these two prob-

lems is challenging.

Because a single genetic model can hardly hold

for all genetic predictors jointly, in this article we

propose an ultrahigh-dimensional non-parametric

genetic model. This genetic model could

Table 5: Power and FPR of simulated data using
TS-NIS and TS-NIS-LASSO (v ¼ 4)

(r, s2) Power (%) False-positive rate (�10�4)

TS-NIS TS-NIS-
LASSO

TS-NIS TS-NIS-
LASSO

(0.8, 6) 98.2 96.5 2.45 0.75
(2.45) (3.3) ð9:65� 10�3Þ (0.12)

(0.8, 8) 97.8 96.3 2.45 0.77
(2.52) (3.7) ð9:93� 10�3Þ (0.10)

(0.8, 10) 97.3 95.0 2.45 0.80
(2.86) (4.4) ð1:12� 10�2Þ (0.10)

(0.5, 6) 98.7 98.3 2.45 0.87
(2.91) (3.3) ð1:15� 10�2Þ (0.14)

(0.5, 8) 98.5 98.2 2.45 0.90
(3.26) (3.8) ð1:28� 10�2Þ (0.13)

(0.5, 10) 98.3 97.5 2.45 0.89
(3.30) (4.1) ð1:30� 10�2Þ (0.12)

(0.2, 6) 98.8 98.7 2.45 0.85
(2.53) (2.6) ð9:93� 10�3Þ (0.12)

(0.2, 8) 98.8 98.2 2.45 0.86
(2.53) (2.8) ð9:93� 10�3Þ (0.10)

(0.2, 10) 98.7 97.3 2.45 0.88
(2.61) (3.1) ð1:03� 10�2Þ (0.12)

Table 6: Main effects detected in the real data study

Additive effects Dominant effects

Chr Name MAF Effect Heritability (%) Chr Name MAF Effect Heritability (%)

1 rs2236817 0.13 �0.5371 0.0859 1 rs10801706 0.33 �0.6247 0.4885
1 rs17406104 0.13 0.6896 0.1370 1 rs10801713 0.35 �0.3869 0.1921
1 rs723015 0.10 0.4702 0.0421 3 rs698210 0.25 �0.5634 0.3171
1 rs2821309 0.48 �0.4892 0.3406 3 rs9862388 0.29 0.5425 0.3323
3 rs698210 0.38 �0.4104 0.2132 3 rs7637740 0.30 0.6891 0.5578
5 rs275442 0.38 0.4835 0.2994 4 rs12511093 0.27 0.5480 0.3227
5 rs4920897 0.38 0.4952 0.3088 5 rs158999 0.25 �0.7333 0.5443
6 rs4945604 0.36 �0.3785 0.1729 6 rs1535556 0.34 �0.4021 0.2055
7 rs2533449 0.33 �0.3992 0.1767 6 rs4945604 0.29 1.1102 1.4055
8 rs10951131 0.14 0.4304 0.0600 7 rs17282885 0.32 �0.5914 0.4319
8 rs10950919 0.37 0.4091 0.2098 7 rs2533449 0.30 0.7714 0.7024
8 rs2053313 0.23 �0.4530 0.1448 8 rs10950919 0.27 �0.8982 0.8584
8 rs16887751 0.28 0.3709 0.1266 8 rs13235166 0.27 0.5736 0.3541
9 rs803917 0.28 0.7125 0.4744 9 rs10756080 0.39 0.4195 0.2378
12 rs1607868 0.34 �0.6390 0.4665 10 rs303207 0.26 �0.4769 0.2408
12 rs1520779 0.24 0.5204 0.2039 12 rs10876943 0.29 �0.4743 0.2547
13 rs17632604 0.22 0.3750 0.0970 13 rs2858978 0.39 �0.5925 0.4756

13 rs17632604 0.34 �0.9074 1.0430
14 rs8007682 0.27 0.3966 0.1682
18 rs1866854 0.30 0.6447 0.4865
18 rs16940905 0.15 �0.8443 0.4036
18 rs1605973 0.26 �0.5323 0.2906
19 rs11670504 0.28 �0.4871 0.2661
20 rs1206815 0.29 0.4798 0.2604
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characterize different modes of genotype–phenotype

associations for different genetic variants, and

thus offers unprecedented flexibility in analyzing

genome-wide genetic data. Moreover, we propose

a TS-NIS procedure to identify a reduced model for

variable selections. With sure independence prop-

erty, this procedure eliminates the majority of irrele-

vant genetic variants, and recent developments in

variable selection-guided GWAS analysis could be

incorporated.

We use the newly developed procedure to

identify genetic variants that are associated with

BMI. Surprisingly, the proportion of BMI

variations explained by epistatic interactions is

greater than that explained by the main genetic

effects, and many epistatic interactions exhibit not-

able heritabilities. These findings indicate novel

BMI-associated metabolic pathways, and provide

evidence for better understanding the underlying

genetic mechanisms of obesity. For example,

dopamine in the brain is a neurotransmitter that

surges a ‘feel-good’ hormone after eating. Wang

et al. [11] found that the brain dopamine levels are

significantly lower in the obese individuals, sug-

gesting genetic regulatory networks underlying

BMI.

Table 7: Epistatic interactions in the real data study

Root 1 Root 2 Effect Heritability (%)

Chr Name MAF Chr Name MAF

Additive� additive interactions
20 rs852027 0.10 17 rs10468553 0.14 �0.2430 0.2795
1 rs11584071 0.10 17 rs2586118 0.20 �0.3109 0.3393
1 rs11584071 0.10 17 rs11079178 0.37 �0.2472 0.3207
1 rs6668038 0.23 8 rs2527036 0.21 �0.3213 0.4645
18 rs16940905 0.38 8 rs10954339 0.14 �0.7363 2.9192
18 rs16940905 0.38 8 rs3095006 0.14 �0.2936 0.4624
1 rs2096148 0.32 14 rs1177586 0.19 �0.3438 0.6213
1 rs619311 0.12 14 rs17097936 0.11 �0.1655 0.0660
18 rs2741182 0.22 14 rs17671047 0.15 �0.9016 3.2180
1 rs11584071 0.10 14 rs4363775 0.14 0.1381 0.0485

Additive� dominant interactions
1 rs11584071 0.10 1 rs1777258 0.18 0.4492 0.5280
20 rs6084164 0.16 7 rs12703874 0.27 0.1623 0.0836
1 rs2096148 0.32 10 rs2994665 0.26 �0.1777 0.1006
1 rs11584071 0.10 20 rs6011600 0.11 0.1532 0.0477
4 rs2725771 0.28 20 rs11697106 0.14 �0.4303 0.5873
8 rs10950583 0.30 12 rs758163 0.22 0.5362 0.9261
1 rs11584071 0.10 2 rs12714205 0.14 0.3533 0.2731

Dominant� additive Interactions
1 rs2096148 0.32 11 rs10792757 0.17 �0.3411 0.3747
4 rs2725771 0.28 5 rs7443778 0.41 �0.6713 1.3961
4 rs2522474 0.29 5 rs4702271 0.20 �0.2084 0.1398
1 rs10801706 0.23 5 rs249721 0.17 �0.6133 1.1710
18 rs16940905 0.38 6 rs1343488 0.18 0.2908 0.2702
13 rs2858978 0.13 6 rs332562 0.14 �0.3926 0.3822
1 rs2096148 0.32 6 rs9344765 0.21 �0.1611 0.0835
19 rs11670504 0.33 6 rs1325476 0.28 �0.5477 0.9472
5 rs269696 0.24 3 rs9877175 0.36 0.5899 1.1060
1 rs11584071 0.10 3 rs13095765 0.15 �0.1466 0.0501
6 rs1535556 0.23 3 rs11711363 0.25 0.1595 0.0813
1 rs2096148 0.32 3 rs640039 0.15 �0.4386 0.6191

Dominant�dominant interactions
12 rs10876943 0.36 2 rs10496319 0.36 0.7408 3.1063
1 rs11584071 0.10 2 rs1922289 0.29 0.2399 0.2849
20 rs852027 0.26 18 rs7237668 0.15 �0.3181 0.5093
18 rs16940905 0.38 18 rs17657594 0.13 0.1545 0.1315
1 rs2096148 0.32 21 rs718099 0.22 0.2204 0.2642
1 rs10801706 0.23 22 rs714026 0.33 �0.5387 1.5866
1 rs11584071 0.10 13 rs2390886 0.23 �0.3620 0.5905
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This work explores a flexible genetic model with

two-way interactions. In the future, this framework

could be extended to higher-order interactions and

GWAS with case–control cohorts. For example, we

could add more stages to the current framework of

TS-NIS. In particular, after selecting important epi-

static SNP–SNP interactions, an SNP–SNP–SNP

interaction triplet can be formed by combining one

important SNP–SNP interaction (selected in the

second stage) with any SNP from the genome.

Then the same variable screening procedure can be

extended to select important SNP–SNP–SNP inter-

actions. This procedure is also implied by the weak

heredity condition, and enjoys sure screening

property.

In our software package, the reduced model sug-

gested by TS-NIS is analyzed by LASSO regression.

However, extensions of LASSO have been proposed

to enhance the statistical power and reduce the false-

positive rate of GWAS analysis [8–10,34,35]. These

approaches could also be used in analyzing the

reduced model suggested by TS-NIS, allowing

more customized genetic analyses. In addition, the

identified disease susceptibility variants and inter-

actions could be better understood through gene-

set enrichment analysis tools [14,36], which will

provide valuable insight into functional related

genes and the complex genetic architecture of regu-

latory pathways.

Key Points

	 In analyzing ultrahigh-dimensional data sets from GWAS, a
model-free framework is proposed to identify SNPs exhibiting
main genetic effects and epistatic interactions. This framework
nests various genetic models.

	 ATS-NIS procedure is formulated to identify a subset of SNPs
for the following variable selection, where SNPs that are mar-
ginally uncorrelated with the phenotype but are involved in
SNP^SNP interactions could be identified.

	 After TS-NIS, the LASSO regression with coordinate descent
steps is applied to select truly important SNPs and estimate
their genetic effects. Because two-stage variable screening
greatly reduces the model dimensionality, truly important SNPs
can be efficiently identified by LASSO.

	 The proposedmethod is validated by using both extensive com-
puter simulations and a real data set from Framingham Heart
study, where epistatic interactions are found to bemore import-
ant than individual main genetic effects in explaining BMI
variations.
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