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ABSTRACT

Motivation: Increasing attention has been devoted to estimation of

species-level phylogenetic relationships under the coalescent model.

However, existing methods either use summary statistics (gene trees)

to carry out estimation, ignoring an important source of variability in

the estimates, or involve computationally intensive Bayesian Markov

chain Monte Carlo algorithms that do not scale well to whole-genome

datasets.

Results: We develop a method to infer relationships among quartets

of taxa under the coalescent model using techniques from algebraic

statistics. Uncertainty in the estimated relationships is quantified using

the nonparametric bootstrap. The performance of our method is as-

sessed with simulated data. We then describe how our method could

be used for species tree inference in larger taxon samples, and dem-

onstrate its utility using datasets for Sistrurus rattlesnakes and for

soybeans.

Availability and implementation: The method to infer the phylogen-

etic relationship among quartets is implemented in the software

SVDquartets, available at www.stat.osu.edu/�lkubatko/software/

SVDquartets.

Contact: lkubatko@stat.osu.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

With recent advances in DNA sequencing technology, it is now

common to have available alignments from multiple genes for

inference of an overall species-level phylogeny. While this species
tree is generally the object that we seek to estimate, it is widely

known that each individual gene has its own phylogeny, called a
gene tree, which may not agree with the species tree. Many pos-

sible causes of this gene incongruence are known, including hori-
zontal gene transfer, gene duplication and loss, hybridization and

incomplete lineage sorting (Maddison, 1997). Of these, the best
studied is incomplete lineage sorting, which is commonly mod-

eled by the coalescent process (Kingman, 1982a,b; Liu et al.,
2009a). Much recent effort has been devoted to the development

of methods to estimate species-level phylogenies from multi-locus

data under the coalescent model (Bryant et al., 2012; Heled and

Drummond, 2010; Kubatko et al., 2009; Liu and Pearl, 2007; Liu

et al., 2009b; Than and Nakhleh, 2009).
Here, we consider this basic problem, although our approach

to the problem differs from previous approaches in several im-

portant ways. Previous approaches can be divided into two

groups (Liu et al., 2009a): summary-statistics approaches and

sequence-based approaches. Summary-statistics approaches

first estimate a gene tree independently for each gene, and then

treat the estimated gene trees as data for a second stage of ana-

lysis to estimate the species tree. The most popular approaches in

this category are Maximum Tree (Liu et al., 2009b) [also imple-

mented in the program STEM (Kubatko et al., 2009)], STAR

(Liu et al., 2009c), STEAC (Liu et al., 2009c), MP-EST (Liu

et al., 2010) and Minimize Deep Coalescences [as implemented

in the program PhyloNet (Than and Nakhleh, 2009)]. These

methods are computationally efficient for large datasets, but gen-

erally ignore variability in the estimated gene trees and thus po-

tentially lose accuracy. The second group of methods uses the full

data for estimation of the species tree via a Bayesian framework

for inference. The three most common methods in this group,

BEST (Liu and Pearl, 2007), *BEAST (Heled and Drummond,

2010) and SNAPP (Bryant et al., 2012), all seek to estimate the

posterior distribution for the species tree using Markov chain

Monte Carlo (MCMC), but differ in some details of the imple-

mentation. These methods become time-consuming when the

number of loci is large, and assessment of convergence of the

MCMC can be difficult.
Our proposed method is distinct from both classes of existing

approaches in that it uses the full data directly, but does not utilize

a Bayesian framework. It is thus computationally efficient

while incorporating all sources of variability (both mutational

variance and coalescent variance (cf. Huang et al., 2010) in the

estimation process. The theory underlying our method applies to

unlinked single nucleotide polymorphism (SNP) data, for which

each site is assumed to have its own genealogy drawn from

the coalescent model; however, we use simulation to show that

the method also performs well for multi-locus sequence data.

To describe our proposed method, we first begin with a brief

overview of the coalescent model in the context of species-level

phylogenetics. We use simulation to assess the performance of

the method for both simulated and empirical data. We conclude

with a short discussion of how the proposed method can be

scaled up to larger taxon sets for estimation of species

phylogenies in a coalescent framework, and apply it to two

empirical datasets.*To whom correspondence should be addressed.
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1.1 Site pattern probability distributions under the

coalescent model

The coalescent model can be used to compute the probability

distribution of gene trees given a particular species tree and set of

speciation times (which determine species tree branch lengths).

Both the discrete probability distribution on the space of gene

tree topologies (Degnan and Salter, 2005) and the probability

density on the space of gene trees with branch lengths

(Rannala and Yang, 2003) have been derived recently. Using

these probability distributions, it is possible to compute the prob-

ability distribution on data patterns at the tips of a species tree.

Let XH be the observed state in the data at tip H, and, referring

to the tree in Figure 1, for example, define pijkl as

pijkl=PðX1=i;X2=j;X3=k;X4=lÞ: ð1Þ

for i; j; k; l 2 fA;C;G;Tg. To compute the probability distribu-

tion fpijklji; j; k; l 2 fA;C;G;Tgg, we need the following: (i) a spe-

cies phylogeny, with speciation times specified; and (ii) a model

for sequence evolution along a gene tree, e.g. the General Time-

Reversible (GTR) model (Tavare, 1986) or the Jukes–Cantor

(JC69) model (Jukes and Cantor, 1969). See DeGiorgio and

Degnan (2010) for an example of how to carry out this compu-

tation for a two-state model. The details of the calculation for

arbitrary k-state models can be found in Chifman and Kubatko

(2014). We now describe how this probability distribution can be

used to compute a score on a quartet of taxa that can identify the

true quartet relationship. To begin, we define a split of a phylo-

genetic tree as follows.

DEFINITION. A split of a set of taxa L is a bipartition of L into

two non-overlapping subsets L1 and L2, denoted L1jL2. A split

L1jL2 is valid for tree T if the subtrees containing the taxa in L1

and in L2 do not intersect.

For a quartet of taxa, we consider splits for which jL1j=2

(and thus necessarily jL2j=2), e.g., we consider splitting the

four taxa into two groups of two. For example, consider a

valid split L1jL2, where L1=f1; 2g and L2=f3; 4g (Fig. 1).

Under this partition, we can display the probability distribution

P=fpijklji; j; k; l 2 fA;C;G;Tgg in the form of a flattening along

a split L1jL2, denoted by FlatL1jL2
ðPÞ, as follows:

pAAAA pAAAC pAAAG pAAAT pAACA . . . pAATT

pACAA pACAC pACAG pACAT pACCA . . . pACTT

pAGAA pAGAC pAGAG pAGAT pAGCA . . . pAGTT

pATAA pATAC pATAG pATAT pATCA . . . pATTT

pCAAA pCAAC pCAAG pCAAT pCACA . . . pCATT

� � � � � . .
.

�

pTTAA pTTAC pTTAG pTTAT pTTCA . . . pTTTT

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

:

In the above 16� 16 matrix, the rows correspond to the pos-

sible nucleotides for the two taxa in set L1 and the columns

correspond to the possible nucleotides for the two taxa in set

L2. For more information about flattening of a tensor P for

the general Markov model on a gene tree, see Allman and

Rhodes (2008). Using this representation, we make use of the

following result for species tree inference under the coalescent.

THEOREM 1 [Chifman and Kubatko, 2014]. Let C denote the class

of coalescent models under the four-state GTR model on a four-

taxon binary species tree. For a valid split L1jL2,

rank(FlatL1jL2
ðPÞ) � 10 for all distributions P arising from C.

For a non-valid split L1jL2, generically, rank(FlatL1jL2
ðPÞ)410.

We note that the above theorem implies generic identifiability

of the unrooted species tree topology for four taxa under the

coalescent model (Chifman and Kubatko, 2014). By ‘generic’

we mean that the set of parameters on which the model is non-

identifiable is a subset of a proper subvariety of measure zero. In

addition, we have established generic identifiability of the un-

rooted n-taxon species tree under the coalescent model from

the induced quartets (Chifman and Kubatko, 2014).

2 METHODS

2.1 Inferring splits using singular value decomposition

Our goal is to use the result of Theorem 1 to infer species phylogenies.

Assume that the available data consist of a large sample of unlinked

SNPs, which we can used to construct an estimate of the matrix

FlatL1 jL2
ðPÞ. We call this matrix FlatL1 jL2

ðP̂Þ, and define this matrix by

p̂AAAA p̂AAAC p̂AAAG p̂AAAT p̂AACA . . . p̂AATT

p̂ACAA p̂ACAC p̂ACAG p̂ACAT p̂ACCA . . . p̂ACTT

p̂AGAA p̂AGAC p̂AGAG p̂AGAT p̂AGCA . . . p̂AGTT

p̂ATAA p̂ATAC p̂ATAG p̂ATAT p̂ATCA . . . p̂ATTT

p̂CAAA p̂CAAC p̂CAAG p̂CAAT p̂CACA . . . p̂CATT

� � � � � . .
.

�

p̂TTAA p̂TTAC p̂TTAG p̂TTAT p̂TTCA . . . p̂TTTT

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

;

where p̂ijkl is the frequency with which we observe the event

fX1=i;X2=j;X3=k;X4=lg in the data where L1=f1; 2g and

L2=f3; 4g. A key observation is that this can be rapidly tabulated for

quartets of taxa even for datasets of very large size.

We want to infer which of the three possible splits on quartets is the

true split. One way to assess this would be to consider the FlatL1jL2
ðP̂Þ

matrix for each of the three possible splits, and measure which of the

three is closest to a rank 10 matrix. To do this, we need a method to

measure distances between matrices. Our choice of a distance, described

below, is modeled after the approach of Eriksson (2005), who considered

the problem of tree estimation from a flattening matrix obtained from the

probability distribution of site patterns at the tips of a gene tree. His

overall approach to estimation of the phylogeny differed from ours; how-

ever, in that he used splits of varying sizes (rather than just splits of

Fig. 1. Example four-taxon phylogeny. Split 12j34 is valid, as the subtree

consisting of taxa 1 and 2 does not overlap the subtree consisting of taxa

3 and 4. The two non-valid splits for this tree are 13j24 and 14j23
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quartets of taxa) to develop a clustering algorithm to obtain the phylo-

genetic estimate. We provide the details of our approach below.

Let aij be the ði; jÞ
th entry of an m� n matrix A. The Frobenius norm of

a matrix A is

jjAjjF=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm
i=1

Xn
j=1

a2ij

vuut :

An important property of the Frobenius norm is its characterization

using the singular values of A, that is

jjAjjF=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp
i=1

�2i

vuut ;

where �1 � �2 � . . . � �p � 0 are the singular values of A and

p=minfm; ng.

The well-known low-rank approximation theorem (Eckart–Young

theorem) implies that the distance from a matrix A to the nearest rank

k matrix in the Frobenius norm is

min
rankðBÞ=k

jjA� BjjF=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

i=k+1

�2i

vuut :

See Section 2.4 in Golub and Van Loan (2013) for more information

about singular value decomposition.

We apply this well-known result to our species tree estimation prob-

lem by defining the SVD score for a split L1jL2 to be

SVDðL1jL2Þ : =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X16
i=11

�̂2
i

vuut ; ð2Þ

where �̂i are the singular values of FlatL1 jL2
ðP̂Þ for i 2 f11; . . . ; 16g. Our

proposal for inferring the true species-level relationship within a sample

of four taxa is thus the following. For each of the three possible splits,

construct the matrix FlatL1 jL2
ðP̂Þ and compute SVD ðL1jL2Þ. The split

with the smallest score is taken to be the true split.

To quantify uncertainty in the inferred split, we implement a nonpara-

metric bootstrap procedure as follows. For a dataset consisting of

M aligned sites, we re-sampled the columns of the data matrix with re-

placement M times to generate a new bootstrapped data matrix, and the

SVD scores of the three splits are computed for this bootstrapped data

matrix. This procedure is repeated B times, and the proportion of boot-

strapped datasets that support each of the three possible splits provides a

measure of support for that split.

2.2 Simulation study

We first use simulated data to assess the ability of SVD ðL1jL2Þ to cor-

rectly identify the valid split under a variety of conditions. Before describ-

ing the simulation procedure, we first point out that while much of the

currently available methodology for inferring species trees assumes that

multi-locus data (e.g. aligned DNA sequences from many independent

loci) are available for inference, our method is actually designed for un-

linked sites, for example, for a sample of unlinked SNPs. This is because

in computing the probability distribution of site patterns at the tips of the

species tree, we integrate over the probability distribution of gene trees

under the coalescent model, with the implicit assumption that sequence

data evolve along these gene trees. Thus each site pattern is viewed as an

independent draw from the distribution fðX1=i;X2=j;X3=k;

X4=ljSÞ=
R
GfðX1=i;X2=j;X3=k;X4=ljGÞfðGjSÞdG, where S repre-

sents the species tree (topology and speciation times) and G represents

a gene tree (both topology and divergence times). True multi-locus data,

however, consist of an aligned portion of the DNA that is believed to

share a single underlying gene tree, and thus all sequence data within a

locus are believed to have evolved from a common gene genealogy.

We wish to examine the performance of our method for both unlinked

SNP data and for multi-locus data, and we thus consider simulated data

of two types: unlinked SNP data (e.g. each site has its own underlying

gene tree) and multi-locus data (a sequence of length l is simulated from a

shared underlying gene tree). Our simulation consists of the following

steps:

(1) Generate a sample of g gene trees from the model species tree

((1:x,2:x):x,(3:x,4:x):x), where x is the length of each branch

under the coalescent model using the program COAL (Degnan

and Salter, 2005).

(2) Generate sequence data of length n on each gene tree under a

specified substitution model using the program Seq-Gen

(Rambaut and Grassly, 1997).

(3) Construct the flattening matrix for each of the three possible splits,

and compute SVD ðL1jL2Þ for each.

(4) Repeat the above procedure (Steps 1–3) 1000 times and record

SVD ðL1jL2Þk; k=1; 2; . . . ; 1000, for each split. For each of

the 1000 datasets, generate B bootstrapped datasets and record

SVD ðL1jL2Þk;b; k=1; 2; . . . ; 1000; b=1; 2; . . . ;B for each split.

Given the above simulation algorithm, there are several choices to be

made at each step. In step (1), we must select the lengths of the branches,

x, in the model species tree. We considered branches of length 0.5, 1.0 and

2.0 coalescent units. A branch of length 0.5 coalescent units is very short,

and corresponds to a case in which there will be widespread incomplete

lineage sorting, making species tree inference difficult. A branch of length

2.0 coalescent units is longer and will result in much lower rates of in-

complete lineage sorting, resulting in an easier species tree inference

problem.

In step (2), we need to choose the gene length, n. In simulating un-

linked SNP data, we used g=5000 and n=1 (corresponding to 5000

unlinked SNPs) and for the multi-locus setting, we considered g=10 and

n=500 (corresponding to 10 genes, each of length 500 sites). Further,

step (2) requires choice of substitution model to be used to simulate se-

quence data on the sampled gene trees. We considered two possibilities:

the Jukes–Cantor model (JC69) (Jukes and Cantor, 1969) and the GTR

model with a proportion of invariant sites and with gamma-distributed

mutation rates across sites (GTR+I+�) (Tavare, 1986). In particular,

we use the Seq-Gen options -mGTR -r 1.0 0.2 10.0 0.75 3.2 1.6 -f 0.15

0.35 0.15 0.35 -i 0.2 -a 5.0 -g 3 to simulate under GTR+I+�. Because

the theoretical results in Section 2.1 were derived under the GTR model

and associated sub-models (such as JC69), we expect our method to

handle the JC69 case well. However, we have not derived results under

models in which there are invariant sites or rate variation among sites, so

the simulations under the GTR+I+� setting will test robustness of the

method to these evolutionary processes. In Step (4), we set B=100.

We carry out one additional simulation to examine the ability of the

method to identify the true split for varying overall dataset sizes. We

consider unlinked SNP data with 1000, 5000 or 10000 sites

(g=1000; 5000 or 10000 and n=1 in all cases). We used the JC69

model and considered branch lengths of x=0:5; 1:0; and 2.0. We re-

corded the time it took to carry out each of these simulations to assess

how computation time scales with the size of the dataset.

2.3 Application to rattlesnake data

We have also explored the use of our quartet inference method in con-

structing larger species-level phylogenies, and we show here the results of

applying the method to a dataset consisting of 19 genes sampled in 26

rattlesnakes from four distinct species: Sistrurus catenatus (with subspe-

cies S. c. catenatus, S. c. edwardsii, and S. c. tergeminus); Sistrurus
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miliarius (with subspecies S. m. miliarius, S. m. barbouri, and S. m. streck-

eri); and two outgroup species, Agkistrodon contortrix and Agkistrodon

piscivorus. This dataset has been previously analyzed by Kubatko et al.

(2011), and details concerning the loci used and the assembly of the

aligned data matrix can be found there. Here, we note that the sequences

were computationally phased, so that each individual is represented by

two distinct sequences in the dataset, for a total of 52 sequences and 8466

aligned nucleotide positions in the complete data matrix.

To conduct the analysis, we randomly sampled 20000 quartets from

the 52 sequences, and used the SVD score to infer the true quartet rela-

tionship for each sampled quartet. The quartet assembly program

Quartet MaxCut (Snir and Rao, 2012) was used to construct phylogenies

from the inferred quartets in two ways. First, a lineage tree was con-

structed by direct application of Quartet MaxCut. Second, a species-

level phylogeny was constructed by replacing the labels of the lineages

for the sampled quartets with the subspecies to which they belonged prior

to application of Quartet MaxCut. Finally, a bootstrap analysis was

carried out by generating 100 bootstrapped datasets from the original

matrix and applying this entire procedure to each bootstrapped dataset.

The complete analysis, including data simulation, bootstrapping and

quartet assembly, took �23h in serial on a desktop Linux machine

(2�Quad Core Xeon E5520/2.26GHz/32GB).

2.4 Application to soybean data and comparison to

SNAPP

To demonstrate the utility of our method further, we used a previously

published dataset consisting of 17 wild soybean types (Glycine soja) and

14 cultivated soybean types (Glycine max) with 6 289 747 SNP loci. The

original analysis was performed by Lam et al. (2010), and the data were

later reanalyzed by Lee et al. (2014). We also carried out computations in

SNAPP (Bryant et al., 2012), which is suitable for the soybean dataset as

it consists of SNP (rather than multi-locus) data, to compare the run

times. SNAPP infers the species tree using the coalescent model and is

designed for biallelic data consisting of unlinked SNPs (Bryant et al.,

2012). Even though our extended SVDquartets method to infer species

trees can handle the entire dataset, including missing data, to make a

proper and fair comparison with SNAPP, we have removed all missing

data and ambiguous sites, resulting in 1 027 026 SNP loci. We also sub-

sampled 10 of the 31 species (four cultivars and six wild types) to run the

analysis in SNAPP in a feasible time frame. The formatted datasets used

for the analyses with SNAPP and SVDquartets are given in Supplemental

Files 2 and 3, respectively. We conducted the analysis using SVDquartets

in an analogous way to that for the rattlesnakes, with 20000 quartets

sampled and 100 bootstrap replicates.

3 IMPLEMENTATION

We have written a program in the C language, SVDquartets,

which will compute SVD ðL1jL2Þ for the three possible splits in

a sample of four taxa. The program takes as its input an align-

ment of four taxa in PHYLIP format, and produces a file that

contains a list of the three splits and their associated scores. The

program is available from http://www.stat.osu.edu/�lkubatko/

software/SVDquartets/.

4 RESULTS AND DISCUSSION

4.1 Simulation study

Figures 2 and 3 show boxplots of the SVD scores for each of the

three possible splits among four taxa under various simulation

conditions. It is immediately clear that in all cases the SVD score

can easily differentiate between the valid and non-valid splits,

with the boxplot corresponding to the valid split displaying

scores that are uniformly lower than the scores for the non-

valid splits. The separation of scores for valid versus non-valid

splits becomes more pronounced as the branch lengths in the

species tree increase, as expected, and is, in general, greater for

the unlinked SNP data than for the multi-locus data, although

the separation is very clear even for the multi-locus data.

Similarly, the JC69 model with no invariant sites and no rate

variation across sites provides the best separation of scores be-

tween valid and non-valid splits. The worst performance

observed was for the simulation conditions in which the data

were simulated under GTR+I+� in the multi-locus setting,

Fig. 2. Simulation results for the JC69 model. The top row gives the

results for 5000 unlinked SNP sites and the bottom row gives the results

for 10 genes with 500 sites each. The columns correspond to differing

branch lengths in the model species tree. The first boxplot in each sub-

figure shows the distribution of SVD scores for the true split, while the

next two boxplots show the distribution for the two false splits

Fig. 3. Simulation results for the GTR+I+� model. The top row gives

results for 5000 unlinked SNP sites and the bottom row gives the results

for 10 genes with 500 sites each. The columns correspond to differing

branch lengths in the model species tree. The first boxplot in each sub-

figure shows the distribution of SVD scores for the true split, while the

next two boxplots show the distribution for the two false splits
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which is not unexpected as this violates the theoretical conditions

in two ways (the invariant sites and variable rates across sites and

the multi-locus rather than unlinked SNP data). However, even

in this case, the separation in scores is clear, and with sufficiently

long species tree branch lengths, there is essentially no overlap in

scores in valid versus non-valid splits.
Figures 4 and 5 show boxplots of the bootstrap support values

associated with each of the three splits under all simulation con-

ditions. In the case of the JC69 model (Fig. 4), the true split is

nearly always associated with 100% bootstrap support for both

unlinked SNP data and for multi-locus data. For data simulated

under the GTR+I+� model, however, bootstrap support

values for the true split are sometimes lower, with the worst

results occurring when the branch lengths are short. Overall,

however, the bootstrap appears to give a reliable measure of

support for the true split, particularly when the model assump-

tions are satisfied.
Figure 6 examines the performance of the method for unlinked

SNP data with varying numbers of sites. In particular, unlinked

SNP datasets were generated with 1000, 5000 or 10000 total sites

under model species trees with branch lengths of 0.5, 1.0 or 2.0

coalescent units. These results demonstrate that the method per-

forms well even for smaller sample sizes. However, it is clear that

as the sample size becomes larger, the separation between the

scores for the valid and non-valid splits increases. This is to be

expected, because the matrix FlatL1 jL2
ðP̂Þ will better approximate

FlatL1jL2
ðPÞ for larger sample sizes.

Table 1 gives timing results for the simulations carried out in

Figure 6. Because the main work undertaken by the method

involves counting the number of site patterns to build the

FlatL1jL2
ðP̂Þ matrix, the time should be approximately linear in

the number of unique site patterns in the data, which is related to

both the total number of sites in the data matrix and the overall

scale of time represented by the phylogeny. The results in Table 1

demonstrate that the time is less than linear in the total number

of site patterns, as expected, and that the computations can be

carried out very rapidly (e.g. the computation of three SVD

scores for data matrices of 10 000 sites takes50.1 s).

Fig. 6. Simulation results for data consisting of 1000, 5000 or 10000

unlinked SNP sites for trees with branch lengths of 0.5 coalescent units

(solid lines), 1.0 coalescent units (dashed lines) or 2.0 coalescent units

(dotted lines). The median SVD score (taken over 1000 replicates) for

the valid split 12j34 are marked with circles, while the scores for the two

non-valid splits are marked with triangles and diamonds.

Fig. 4. Bootstrap results for the JC69 model simulations. Each boxplot

shows the distribution of the bootstrap support values for each of the

three possible splits for the simulated data shown in Figure 2

Fig. 5. Bootstrap results for the GTR+I+� simulations. Each boxplot

shows the distribution of the bootstrap support values for each of the

three possible splits for the simulated data shown in Figure 3

Table 1. Time information for the simulation study with results shown in

Figure 6

Branch

lengths

Number

of sites

Real

time

User

time

System

time

0.5 1000 0.0495 0.0092 0.0075

0.5 10000 0.0566 0.0155 0.0077

1.0 1000 0.0502 0.0105 0.0074

1.0 10000 0.0564 0.0163 0.0076

2.0 1000 0.0500 0.0119 0.0061

2.0 10000 0.0553 0.0173 0.0064

Note. All results represent the average time in seconds (over 1000 replicates) to carry

out the computation of three SVD scores for the simulated datasets, and were

obtained using the UNIX time command.
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4.2 Potential use for species tree inference

These results make it clear that the SVD score is a highly accur-

ate means of inferring the correct, unrooted phylogenetic tree

among a set of four taxa. We note that the SVD score is ex-

tremely easy to compute. It requires only counting the site pat-

terns and constructing the matrix FlatL1jL2
ðP̂Þ. Computing

singular values of a 16� 16 matrix is a standard calculation

that any mathematical or statistical software package can

easily implement. Our software, SVDquartets, carries out both

steps using a PHYLIP-formatted input file.
Given the efficiency with which computations can be carried

out in the four-taxon setting, this method is a good candidate for

estimation of species trees for larger taxon sets. We propose that

the method could be used in the following way. For a dataset

with T taxa, form all samples of four taxa, or sample sets of four

taxa if T is large. For each sample of four taxa, infer the valid

split using the SVD score. Using the collection of inferred valid

splits, construct a species tree estimate using a quartet assembly

method. Substantial previous work and software exist for the

problem of quartet assembly (see, e.g. Snir and Rao, 2012;

Strimmer and von Haeseler, 1996; Strimmer et al., 1997). We

give the results of using this method for inferring a tree consisting

of several North American rattlesnake species and for inferring a

tree from SNP data for several soybean species below.

This method has tremendous potential to improve the set of

tools available for species tree inference. Unlike summary statis-

tics methods, which are known to be quick but fail to model

variability in individual gene tree estimates, this method uses

the sequence data directly, thus incorporating all sources of vari-

ability. The other existing methods based on sequence data

(BEST, *BEAST and SNAPP) all rely on Bayesian MCMC

methods, and thus require long computing times and the difficult

problem of assessing convergence. Our method can be carried

out rapidly, and is easily parallelizable, as each quartet can be

analyzed on a separate processor. Our method can handle both

unlinked SNP and multi-locus data, again providing an advan-

tage over existing sequence-based methods, which can handle

either SNP (SNAPP) or multi-locus (BEST and *BEAST)

data. Bootstrapping can be easily implemented to provide a

means of quantifying support for the estimated phylogeny.
However, there are several issues with this method that will

need to be examined in future work. First, the number of quar-

tets to be sampled needs to be specified in cases where the

number of taxa is too large to examine all possible quartets.

This number should necessarily increase with increasingly large

taxon samples, but we have not yet rigorously examined how to

select this. In addition, it is worth pointing out that the method

only estimates the topology. In some studies, other parameters

associated with the evolutionary process, such as branch lengths

and effective population sizes, will also be of interest. One pos-

sibility is that the tree topology could first be estimated with this

method, and then fixed in a subsequent MCMC analysis with

either *BEAST or SNAPP, thus greatly reducing the complexity

of that analysis. Finally, we have not yet conducted a thorough

simulation study of the inferential accuracy of this method for

full species tree inference, which will be the topic of future work.

4.3 Application to rattlesnake data

The results of the analysis of the rattlesnake dataset are shown in

Figure 7, with bootstrap support values450% indicated on the

appropriate nodes. In the case of the lineage tree (Fig. 7a), the

method identifies the two major species S. catenatus and S. mili-

arius with high bootstrap support, and additionally groups the

subspecies S. c. catenatus as monophyletic. In the species tree in

Figure 7b, we again see that the method correctly identifies the

two species with high bootstrap support, and is able to differen-

tiate subspecies S. c. catenatus from a clade containing the other

two subspecies within this group. Within the species S. miliarius,

there is not strong support for the subspecies relationships.

Fig. 7. Results of the analysis of the rattlesnake data. In (a), the tree relating all 52 lineages is shown. Colors indicate subspecies membership: Scc=S. c.

catenatus (green); Sce=S. c. edwardsii (red); Sct=S. c. tergeminus (blue); Smm=S. m. miliarius (dark green); Sms=S. m. streckeri (orange);

Smb=S. m. barbouri (dark blue); Apc=A. piscivorus (black) and Akc=A. contortrix (black). In (b), the tree relating subspecies is shown, with abbre-

viations as above, except that the two outgroup species have been combined and denoted ‘Ag’. In both subfigures, numbers above the nodes refer to

bootstrap support values, and the trees depicted are majority-rule consensus trees over 100 bootstrap samples
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These results are consistent with the earlier analyses of

Kubatko et al. (2011), in which strong support for the delimita-

tion of S. c. catenatus as a distinct species was found using sev-

eral methods of coalescent-based species tree inference. Those

analyses also found a general lack of resolution among the

three subspecies within the S. miliarius clade, which again is con-

sistent with the results observed here. While the results of the

analysis using our new method are consistent with those of pre-

vious methods, there were important differences in the time

required by the two methods. For example, the *BEAST analysis

in Kubatko et al. (2011) took �10 days to run, and even after

this extensive run time, there was evidence that the effective

population size parameter estimates had not converged. In con-

trast, our method took51h to get the initial species tree esti-

mate, and51 day to analyze 100 bootstrap replicates in serial on

a desktop Linux machine; if the 100 bootstrap analyses were run

in parallel, the total computing time could be cut to51h.

4.4 Application to soybean data

The results of the analysis of the soybean data using both

SNAPP and SVDquartets are shown in Figure 8. The SNAPP

analysis was run for 2.239 million iterations, corresponding to 28

days on a desktop Linux machine (2� Quad Core Xeon E5520/

2.26 GHz/32 GB). There were important indications of a lack of

convergence of the method, with nearly all effective sample size

(ESS) values5200 and trace plots indicating issues in conver-

gence. The full details of the analysis and assessment of conver-

gence are described in the Supplemental Information. The

SVDquartets method with 100 bootstrap samples and 20 000

quartets sampled per replicate required �600 h (which corres-

ponds to 25 days) of time to complete using the same desktop

Linux machine, though it was run in parallel using six processors,

and thus took only 4.5 days to complete. We note that this can

easily be parallelized further, with the only limits due to avail-

ability of processors.

Even though we have subsampled and filtered the original

dataset, our results are in agreement with the findings of the

original report (Lam et al., 2010). In their analyses, they found

that cultivated soybeans formed a tight subclade. Furthermore,

they concluded using the Bayesian clustering program

STRUCTURE and principal component analysis that C01 and

C12 show a clear separation from the cultivated cluster. Also, the

phylogenetic tree in Lam et al. (2010) has cultivars as part of the

clade that includes wild-type soybeans W08, W10 and W15,

while W07, W12 and W14 are part of another cluster. One can

see that the results in Figure 8 for both trees are in general con-

sistent with the previous findings. Of course, there are important

differences between the trees as well.

5 CONCLUSION

We have presented a method to reliably infer the valid split in a

set of four taxa. We have demonstrated that the method per-

forms very well over a range of simulation conditions. The

method can be easily extended for use in inferring species phy-

logenies in larger taxon samples, as demonstrated by our appli-

cations to the rattlesnake data and to the soybean data. The

method thus makes a valuable contribution to the collection of

methods for inferring species-level phylogenetic trees under the

coalescent model for either multi-locus or unlinked SNP data.
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