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ABSTRACT

Motivation: Functional relationship networks, which summarize the

probability of co-functionality between any two genes in the

genome, could complement the reductionist focus of modern biology

for understanding diverse biological processes in an organism. One

major limitation of the current networks is that they are static, while

one might expect functional relationships to consistently reprogram

during the differentiation of a cell lineage. To address this potential

limitation, we developed a novel algorithm that leverages both differ-

entiation stage-specific expression data and large-scale heteroge-

neous functional genomic data to model such dynamic changes. We

then applied this algorithm to the time-course RNA-Seq data we col-

lected for ex vivo human erythroid cell differentiation.

Results: Through computational cross-validation and literature

validation, we show that the resulting networks correctly predict the

(de)-activated functional connections between genes during erythro-

poiesis. We identified known critical genes, such as HBD and GATA1,

and functional connections during erythropoiesis using these dynamic

networks, while the traditional static network was not able to provide

such information. Furthermore, by comparing the static and the dy-

namic networks, we identified novel genes (such as OSBP2 and

PDZK1IP1) that are potential drivers of erythroid cell differentiation.

This novel method of modeling dynamic networks is applicable to

other differentiation processes where time-course genome-scale ex-

pression data are available, and should assist in generating greater

understanding of the functional dynamics at play across the genome

during development.

Availability and implementation: The network described in this art-

icle is available at http://guanlab.ccmb.med.umich.edu/stageSpecific

Network.

Contact: gyuanfan@umich.edu or engel@umich.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Functional relationship networks offer a potentially critical com-

plement to the reductionist focus of modern biology and to our

ability to understand and interpret diverse biological processes

systematically in an organism. These networks are modeled

through integrating heterogeneous large-scale genomic data

(Chikina et al., 2009; Guan et al., 2008, 2010, 1012;

Huttenhower et al., 2006; Inouye et al., 2012; Lee et al., 2004,

2008, 2011; Park et al., 2013; Pe ~na-Castillo et al., 2008; Pop et al.,

2010; Singh-Blom et al., 2013) and they represent the probability

of co-functionality between any two genes in the genome. Mining

these networks can help us discover gene functions and identify

disease/phenotype-associated genes. We have previously mod-

eled the global functional relationship network for the mouse

(Guan et al., 2008, 2010) and developed the algorithm that can

systematically model tissue-specific networks in mammalian sys-

tems (Guan et al., 2012).
Current network models, including the ones we previously es-

tablished, have one major limitation: a single network is gener-

ated without considering the dynamic changes of functional

connections, which might be expected to change during the dif-

ferentiation of any given cell lineage. It should be anticipated

that functional connections might consistently evolve, which

would allow different cell fates to arise from the same genetic

background. It has been widely accepted and modeled that at the

co-expression, physical interaction and pathway levels, inter-

actions between genes are constantly changing

(Bandyopadhyay et al., 2010; Kim et al., 2012; Park et al.,

2003). Motivated by our recently developed method to infer dy-

namic signaling network responses (Zhu and Guan, 2014) and to

classify cell lineage-specific expression patterns (Bethunaickan

et al., 2014), we extend our algorithm to integrate heterogeneous

datasets for predicting the dynamic co-functionality relationships

across a differentiation process.
To capture such dynamics in functional connections, here, we

introduce the concept of ‘transitional’ functional relationship

networks, which are intended to reveal the activated and deacti-

vated functional relationships between any two stages distin-

guishable during cell lineage differentiation. The assumption

behind this algorithm is that an existing connection in the sta-

tionary network is likely to be activated, if both members of a

pair of genes become upregulated, and vice versa. However,

unlike most of the existing methods that directly map upregu-

lated/downregulated genes to the stationary network (Faith

et al., 2007; Langfelder and Horvath, 2008), we reweigh diverse

genomic datasets for their relevance to the (de)-activated*To whom correspondence should be addressed.
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functional relationships to model such transitional networks for

the particular differentiation process under investigation.
Compared with co-expression network approaches such as

context likelihood of relatedness (CLR; Faith et al., 2007) and

weighted correlation network analysis (WGCNA; Langfelder

and Horvath, 2008), this algorithm has the following benefits:

(i) It requires only two stage-specific samples, while CLR and

WGCNA need a large number of samples. (ii) This algorithm

does not use stage-specific dataset to directly calculate co-expres-

sion level but to adjust the integration, so its performance is

robust to measurement noise in the stage-specific expression

data.
We applied this new algorithm to the human erythroid cell

differentiation process to establish transitional networks. We col-

lected RNA-seq data at 4, 8, 11 and 14 days after initial induc-

tion of erythroid cell differentiation from purified human

CD34+ bone marrow progenitor cells to model the (de)-acti-

vated networks between any two time points. We found that

these networks correctly identify erythroid-specific genes as

well as erythropoiesis-related connections, which are not revealed

in a static network. Most importantly, we identified novel can-

didates driving the erythroid cell differentiation process, such as

OSBP2 and PDZK1IP1. We expect that this methodology can be

applied to model dynamic functional relationship networks for

other differentiation processes as well. This network algorithm is

publicly available at: http://guanlab.ccmb.med.umich.edu/

stageSpecificNetwork.

2 METHODS

Our method of constructing ‘transitional’ networks can be summarized

diagrammatically in three steps (Fig. 1): (i) establish a ‘gold standard’

describing functionally related gene pairs that become (de)activated be-

tween two time points using existing functional annotation databases and

differentiation process-specific expression data; (ii) collect heterogeneous

genomic datasets (�1000 in total) from public databases (Alfarano et al.,

2005; Edgar et al., 2002; Ceol et al., 2010; G€uldener et al., 2006; Kerrien

et al., 2012; Ozier et al., 2003; Stark et al., 2011), including expression

profiles, physical and genetic interactions (see complete data description

in Supplementary Information S1), and (iii) weigh and integrate them

using the transitional stage-specific ‘gold standard’ pairs, and therefore

generate networks that cover all genes. Relevant content is available in

subsequent sections.

2.1 Genomic data acquisition and pre-processing

We collected heterogeneous functional genomic data as the training data

for the Bayesian integration step. All data were converted into pair-wise

similarity scores S(i, j), which corresponds to the level of similarity be-

tween genes i and j within a dataset.

2.1.1 Expression data We acquired 1021 human microarray datasets

from Gene Expression Omnibus (GEO; Edgar et al., 2002; all of the

datasets have no less than three samples) as of March 8, 2013. A list of

datasets used in this project can be found in the Supplementary

Information S1. For each dataset, Pearson product-moment correlation

coefficient, �, is calculated to evaluate the level of co-expression between

every gene pair. The � values were transformed into z-scores using Fisher

Fig. 1. Strategy for constructing transitional networks. First, global gold standard pairs are generated from GO, KEGG and BioCyc databases. Then,

we collected time-course RNA-seq data from erythroid cell differentiation to identify the upregulated and downregulated genes between any two time

points. These gene lists were then used to restrict the global gold standard for the activated/deactivated networks. Around 1000 public genomic datasets

such as expression and protein–protein physical and genetic interactions were differentially weighed using the global gold standard and the stage-specific

gold standards, respectively, and then integrated through Bayesian networks to generate the global, static network and the transitional networks. Finally,

we computationally compared the performance of transitional networks with the traditional static network and validated genes critical to erythroid

differentiation
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transformation and then shifted to �N 0; 1ð Þ. This normalization is used

to minimize the difference among different datasets and platforms. Pairs

that lack information in the dataset under investigation were considered

missing. Furthermore, between datasets, mutual information was calcu-

lated to reduce the contribution of similar datasets (as described in the

next section), which could significantly ameliorate the negative effects of

repetitive datasets that often occur in public databases (Huttenhower

et al., 2006, 2009).

2.1.2 Interaction data A total of 28 713 pairs were retrieved

from BioGRID (Stark et al., 2011), BIND (Alfarano et al., 2005),

DIP (Ozier et al., 2003), IntAct (Kerrien et al., 2012), MINT

(Ceol et al., 2010) and MIPS (G€uldener et al., 2006) as of April 24,

2013. An interacting pair is assigned with a value of 1. Pairs that

do not appear in the interaction datasets are assigned with a value of

0. Protein domain data were not included in the analysis because of

its direct overlap with the gold standard retrieved from Gene

Ontology (GO).

2.2 Gold standard functionally related pairs

2.2.1 Global, static gold standard Following the tradition in this

field (Guan et al., 2008, 2012; Huttenhower et al., 2006), for the global

static network, positive gold standard gene pairs are obtained from sev-

eral biological datasets: GO (Ashburner et al., 2000) terms, BioCyc (Karp

et al., 2005) and Kyoto Encyclopedia of Genes and Genomes (KEGG;

Kanehisa et al., 2004) pathways. A gene pair where both genes are anno-

tated to the same specific biological process (GO), or having a direct

interaction in BioCyc or KEGG, is considered as a positive pair. GO

terms or pathways with 4300 annotated genes are excluded to avoid

broad biological processes or pathways. As the target of the transitional

networks is functional relationships instead of physical interactions, pro-

tein–protein interaction data were used as a feature dataset instead of

gold standard. A total of 674 098 positive gold standard gene pairs were

obtained. Because there is no existing database that defines functional

unrelated genes, the negative gold standard was approximated with ran-

domly selected pairs. Based on a prior that �5% of gene pairs are func-

tionally related, which is a ratio used in many previous studies (Guan

et al., 2008, 2012; Huttenhower et al., 2006), we randomly generate

�1.2� 107 negative gold standard pairs.

2.2.2 Stage-specific RNA-Seq for human erythroid cell
differentiation We included purified human CD34+ hematopoietic

progenitor cells to differentiate ex vivo under conditions that were previ-

ously reported to achieve 1000-fold cell proliferation and nearly syn-

chronous erythroid differentiation (Giarratana et al., 2004; Shi et al.,

2013, 2014a and b). This dataset covers four time points, Day 4, 8, 11

and 14, with two biological replicates each. Detailed RNA-Seq protocol

could be found in Supplementary Files. The data have been deposited in

the NCBI GEO [accession number GSE54602].

2.2.3 Preprocessing RNA-Seq data to identify significantly chan-
ged genes between stages NCBI build 37.2 transcript annotation file

was used as the reference genome, and BOWTIE2 indexes were created

by bowtie2-build. RNA-Seq data were mapped to NCBI build 37.2 tran-

script annotation files, using TopHat v2.0.10 and Cufflinks v2.1.1.

After mapping, replicates at the same time point were combined using

their average Fragments Per Kilobase of transcript per Million mapped

reads (FPKM) values.

We define a significantly changed gene by two criteria: (i) its absolute

FPKM value change is40.1 and (ii) its FPKM fold change is42.0. We

have tested the robustness of this algorithm to the variation of these two

cutoffs (see Supplementary Table S1 for the number of differentially

regulated genes). We have evaluate the robustness of our method by

testing different cutoff, or existing tool (DESeq Anders and Huber

(2010)), when determining the significantly changed genes. A similar per-

formance has been observed (Supplementary Figs S6 and S7).

2.2.4 Gold standard for transitional networks A gold standard pair

for the activated network at a particular transitional stage must satisfy

two criteria: (i) They must be functionally related in the global sense;

(ii) both genes in this pair must be significantly upregulated.

Supplementary Table S2 lists the number of positive pairs generated

for each network using these two criteria. It shows that, as expected,

when erythroid cell differentiation proceeds, the number of significantly

differently expressed genes between adjacent stages drops. Based on this

table, the first stage, Day 4 to 8, during which the cells were committed to

the erythropoiesis fate, contains the strongest signals of differentiation.

Similarly, we generated the gold standard positives for the deactivated

networks between each pair of stages, requiring that the functionally

related pairs must be downregulated together. Owing to the insufficient

number of gold standard pairs for Day 8 to Day 11 activation, Day 11 to

Day 14 activation and deactivation networks, they are excluded from

analysis.

Note that, the positive global gold standard represents only the existing

human knowledge, which is not complete. Thus, the intersection of gold

standard and the upregulated genes is not complete to represent all im-

portant functional relationships in erythropoiesis. Bringing the 1021 gen-

omic datasets, which cover the majority of the genes, allows us to infer a

probability, even for the genes which no function has been assigned to in

the GO/BioCyc/KEGG databases.

2.3 Bayesian integration

The algorithm used to generate the static and transitional networks is

based on Bayesian networks regularized with mutual information. Using

this method, different datasets are weighted differently by how well they

recover the gold standard pairs. Specifically, the posterior probability of a

functional relationship is calculated by integrating all available evidence

(Guan et al., 2008, 2012; Huttenhower et al., 2009)

PðFRi;j=1jE1
i;j;E

2
i;j; � � � ;E

n
i;jÞ

=
1

Z
PðFRi;j=1Þ

Yn
k=1

PðEk
i;jjFRi;j=1Þ

ð1Þ

where FR=1 represents a pair of genes are functionally related globally

or at a specific stage, according to the target network, n is the number of

datasets, Ek
i;j stands for the score for this gene pair in dataset k and Z is a

normalization factor (more details regarding caculation of the posterior

Ek
i;j can be found in Supplementary Files). Prior is arbitrarily assigned

with a value of 0.05 as the convention in the functional relationship net-

work field (Guan et al., 2008, 2012; Huttenhower et al., 2009). Intuitively,

for genes i, j, the probability PðFRi;j=1jE1
i;j;E

2
i;j; � � � ;E

n
i;jÞ

(=PðFRj;i=1jE1
i;j;E

2
i;j; � � � ;E

n
i;j)) denotes how likely, given existing data-

sets and their accuracy and relevance to the stage under investigation,

they participate in the same biological process.

Conditional dependence between input datasets is a major factor af-

fecting the performance of naive Bayesian integration (Guan et al., 2008,

2012; Huttenhower et al., 2009; Pop et al., 2010; Wong et al., 2012) be-

cause Equation 1 is valid if and only if all the evidences are conditionally

independent. Giving that many biological datasets share information,

multiple strategies were used to minimize the effects of information over-

lap. For physical interactions, as many datasets do not have enough

examples to learn a trustable posterior, we combined different data

sources into one and removed the duplicate entries in the combined

dataset. For gene expression data, which are the major sources of the

overlapping information, we calculated �, which represents the ratio of

the sum of mutual information between one dataset and all other datasets

to the entropy of this dataset.
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The probability P0 value is adjusted using mutual information (Guan

et al., 2008, 2012; Huttenhower et al., 2009):

P0ðEk
i;jjFRi;j=1Þ

=
1

1+�k
P Ek

i;jjFRi;j=1
� �

+
�k

1+�k
0:5

� � ð2Þ

when the value of �k is small, i.e. microarray dataset k contains highly

independent information with other datasets, PðEk
i;jjFRi;j=1Þ is the dom-

inating contributor to P0ðEk
i;jjFRi;j=1Þ; if the value of �k is large, i.e.

dataset k contains highly redundant information with others, P0ðEk
i;jjFRi;j

=1Þ is close to 0.5 and contributes almost nothing to the final posterior

probability.

3 RESULTS

3.1 Top upweighted datasets for activated network

between Day 4 and Day 8

We used Bayesian integration regularized with mutual informa-

tion to weigh and integrate the genomic data together to model

these ‘transitional’ networks. Bayesian framework has been used

extensively for integrating heterogeneous genomic datasets that

differ in nature (Chikina et al., 2009; Guan et al., 2008, 2010,

2012; Huttenhower et al., 2009; Pop et al., 2010; Wong et al.,

2012). In the present context, the Bayesian integration can auto-

matically leverage the implicit relationships between datasets and

a developmental stage and consequently generate accurate stage-

specific networks even from feature data that are not specifically

designed for a particular stage of interest. As shown in Table 1,

datasets that are relevant to erythroid cell differentiation were

automatically assigned greater posterior in our transitional net-

work integration, when compared with the static network inte-

gration. The most upweighted dataset for the Day 4 to Day 8

activated network, GDS2431 (Keller et al., 2007), directly

measured adult CD34+ hematopoietic progenitor cell

differentiation. Other top-weighted datasets, GDS3044,

GDS304, GDS1059, GDS1310 and GDS841, were obtained

from cord blood cells, leukemia cells or peripheral blood cells.

They are likely to indirectly reflect the erythroid cell differenti-

ation process. Furthermore, the reliability of each dataset is also

automatically taken into consideration using the Bayesian net-

work classifier trained on the gold standard from GO

(Ashburner et al., 2000), BioCyc (Karp et al., 2005) and

KEGG (Kanehisa et al., 2004) analysis. Therefore, a dataset

that is both highly relevant to the target stage and of high quality

will be given greater weight. Using this method, we generated

networks representing the activated and deactivated functional

relationships between Days 4/8, 8/11, 4/11 and 4/14 during eryth-

roid cell differentiation (networks for activated Day 8 to Day 11

and Day 11 to Day 14 were excluded because of the small

number of differentially regulated genes).

3.2 Cross-validation shows that the transitional networks

are accurate for predicting stage-specific activated

and deactivated functional relationships

We performed cross-validation to computationally evaluate the

ability of the transitional networks to identify activated and

deactivated functional relationships between two differentiation

stages. That is, for each transitional network, only part of the

gold standard is used to establish the model, while the rest part of

gold standard, which can not be seen during the model training,

is used to validate the prediction. Our assumption was that when

we examine the genes that are upregulated and co-functional as

the test set, the model for the activated network should perform

better than the models for static networks. To prevent contam-

ination in cross-validation, the gold standard was split into two

disjoint graphs, with one serving as the training set and the other

as the test set. A static network Guan et al. (2008), which repre-

sents the global functional relationship network generated

Table 1. Top upweighted expression datasets for the activated network between Day 4 and Day 8

GDS2431 Title: Erythroid differentiation in vitro: time course

Analysis of adult differentiating CD34
+ hematopoietic progenitor cells at various time points up to 11 days of growth in serum-free

medium containing erythropoietin, interleukin-3 and stem cell factor. Results provide insight into the molecular basis of

erythropoiesis.

GDS3044/ Title: Imatinib effect on K562 leukemia cell line (III)/(IV)

GDS3045 Summary: Analysis of K562 leukemia cells treated with 1 uM imatinib for 24 h. Results provide insight into molecular mechanisms

underlying BCR/ABL1-mediated leukemogenesis.

GDS1059 Title: Acute myeloid leukemia response to chemotherapy

Summary: Analysis of mononuclear cells from 54 chemotherapy treated patients515 years of age with AML.

Mononuclear cells taken from peripheral blood or bone marrow.

GDS1310 Title: Neonatal mononuclear cell response to lipopolysaccharide

Analysis of neonatal mononuclear cells from cord blood incubated with 5 ug/ml lipopolysaccharide (LPS). Effect of LPS on adult

mononuclear cells from peripheral blood compared. Results provide insight into the molecular basis for increased susceptibility of

neonates to sepsis.

GDS841 Title: Adult acute myeloid leukemia: bone marrow and peripheral blood expression profiles

Summary: Part of a study profiling 54 bone marrow and 65 peripheral blood samples from 116 adults with AML.

Results identify distinct gene expression signatures that correlate with clinical outcomes. Signatures used to construct a clinical

outcome predictor using 133 genes.

Note. This table shows the datasets that are automatically determined to be most related to erythroid differentiation. Co-expressed genes in these datasets will be automatically

assigned a higher posterior (See Supplementary Material for more details).
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without cell lineage specificity information, has been used for
comparison.
We found that improvement is consistently recorded by these

transitional networks compared with the static network (Fig. 2

and Table 2). For example, the Day 4/8 activated network had
an area under the receiver operating characteristic curve (AUC)

of 0.739, whereas the static network had an AUC of 0.650 using
the same test set, which is a 59% improvement in AUC over the

random baseline (0.5). Such improvement is consistent across the

entire precision-recall spectrum (Fig. 2c–d). Similarly, compared
with the static network, the Day 4/8 network had an AUC im-

proved from 0.628 (static) to 0.719 (transitional), thus represent-
ing a 71% improvement in AUC. Such improvement was

observed for all activated and deactivated networks across all
pairs of stages.

On average, the AUC of the static network evaluated
against the activated/deactivated gold standards is 0.666 and

the Area Under Precision Recall Curve (AUPRC) is 0.077,

while the transitional networks achieved an average AUC of
0.721 (�0.034, median value=0.719) and AUPRC of 0.121

(�0.037, median value=0.112; Table 2). Evaluation results of
receiver operating characteristic curves and precision recall

curves are available in Supplementary Figures S1–S4. The con-
sistent improvement by application of the transitional network

algorithms demonstrates the robust performance of this algo-

rithm and implies that these networks can correctly reveal
the dynamic functional connections during erythroid cell

differentiation.
Because progenitor cells are fully committed to the erythroid

fate between days 4/8, during which the majority of the network
rewiring occurs, the following discussion focuses on the networks

generated at this transitional stage.

3.3 Validation of the transitional network using critical

gene pairs and genes during erythropoiesis

These new transitional networks are able to identify functional

relationships that are activated at specific stages. Our experience

on well-studied gene pairs is valuable to assess the quality of the

networks. To identify the erythoid-specific gene from the transi-

tional networks, we first acquired a gene list of genes with spe-

cific and essential roles in erythrocyte physiology [100 genes from

Hembase Goh et al. (2004) and 10 well-known erythroid-related

transcriptional factor, the full gene list is available in

Supplementary Information S3]. Then for every gene in the

genome, the average connection strength between this gene and

110 of the known erythroid-related genes is calculated, for the

global network and Day 4 to Day 8 activation network, respect-

ively. Genes with larger connection strengths in activation net-

work than global network are considered as erythroid-specific

genes. The top 100 significantly changed (erythroid-specific)

genes are listed in Supplementary Information S2. All biological

examples and novel genes are mentioned below are selected from

the list. Genes in Table 3, for example, are well-studied eryth-

roid-specific genes and are expected to function together as

erythroid cells differentiate. Hemoglobin beta (HBB; Fig. 3a

and b) has co-function probabilities of only 0.141 and 0.121

with Hemoglobin alpha 1 and 2 (HBA1 and HBA2) in the

static network. These probabilities increased to 0.618 and

0.974, respectively, in the Day 4 to Day 8 activated network

(Table 3 and Fig. 3b). This astonishing disparity between the

two models implies that the activated relationships like HBA2–

HBB, which are not apparent in the static network, can be read-

ily identified in the transitional networks with high confidence.

Table 3 lists some other functional connections between import-

ant genes that directly participate in erythroid cell differentiation,

in both the static and the Day 4 to Day 8 activated networks.
The local topology of the transitional stage-specific network is

informative for identifying individual genes that are important

for erythropoiesis. Figure 3c and d shows an example when using

this network to query gene HBD. In the global static network,

HBD has only seven neighbors with �0:2 connections and the

Fig. 2. Transitional networks are more accurate than the static network

in capturing the dynamic functional connections between erythroid cell

differentiation stages. This figure shows the cross-validation performance

of the models for activated, deactivated and static networks for Day 4 to

Day 8, evaluated against the upregulated gold standard (a and c) or

downregulated gold standard (b and d). The evaluation results indicate

that the models for the transitional networks performed better than the

static network in predicting their respective activated and deactivated

functional connections

Table 2. AUC and AUPRC for transitional networks and the static

network

Stage AUC

(baseline=0.5)

AUPRC

(baseline=0.05)

Day 4 to Day 8 activation 0.739 0.112

Day 4 to Day 8 deactivation 0.719 0.155

Day 8 to Day 11 deactivation 0.776 0.184

Day 4 to Day 11 activation 0.709 0.104

Day 4 to Day 11 deactivation 0.706 0.118

Day 4 to Day 14 activation 0.734 0.095

Day 4 to Day 14 deactivation 0.666 0.077

Average performance for the

static network

0.666 0.086

Average performance for the

transitional networks

0.721� 0.034 0.121� 0.037

Average improvement over the

static network

33%� 20% 96%� 102%
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probabilities of most of its functional relationships are50.2. This

result indicates that the overall connectivity level of HBD is low

in the static sense (Fig. 3c). In the Day 4 to Day 8 activated

network, 13 genes had connection probabilities of 40.8 with

HBD (Fig. 3d). This strong connectivity implies that HBD is a

stage-specific gene that is intimately associated with erythroid

differentiation. Additionally, this local network of HBD is sig-

nificantly enriched for erythrocyte differentiation-related

processes (GO:0043249, GO:0030218, GO:0034101 and

GO:0048821; Table 4), while no enrichment was found in the

static network for this gene. These observations strongly support

the effectiveness of the stage-specific networks in identifying

genes that are central to erythroid differentiation and the accur-

acy of those networks. To intuitively show how much edges

differ between the transitional networks and the static net-

work, we implemented a web-based interface to visualize

the prediction results at http://guanlab.ccmb.med.umich.edu/

stageSpecificNetwork.
Inspired by the transitional network for HBD, we further

examined several well-known erythroid-specific genes by com-

paring the Day 4 to Day 8 activated network with the static

network. For example, erythroid master regulator GATA1

Fig. 3. Local Networks of HBB, HBD, GATA1, ANK1, IL2RA and FLT3 reveal functional connections that are critical to erythroid differentiation.

Compared with the static network (a, c, e and g), the local activated networks for HBB (b), HBD (d), GATA1 (f) and ANK1 (h) are much more densely

connected and enriched for genes that are critical to the erythroid cell differentiation process. IL2RA and FLT3 are highly connected to many down-

regulated genes in the deactivated network (i–l), implying that their biological functions are shut down during erythroid cell differentiation
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[reviewed in (Cantor and Orkin, 2002; Crispino, 2005; Ferreira

et al., 2005)] plays essential roles in erythroid lineage commit-

ment (Kitajima et al., 2006) and in erythroid terminal maturation

(Pevny et al., 1991). In the present analysis, we observed that the

static network of GATA1 is not enriched for any biological pro-

cess specific to erythropoiesis, while in the transitional network,

GATA1 is closely connected with other well-known erythroid

genes such as GYPB, ANK1 and ALAS2 (Fig. 3e and f).

Thus, the transitional network faithfully reflects the physio-

logical roles of GATA1 in erythroid cells. Among them, one

close neighbor of GATA1 was KLF1, with a connection strength

of 0.76. KLF1’s expression is restricted to erythroid cells, and it

is directly involved in multiple steps during erythroid differenti-

ation (Tallack et al., 2010), including activating �-globin tran-

scription (Dang et al., 2000) as well as maintaining the

membrane stability of erythroid cells and globin homeostasis

(Funnell et al., 2007). Again, the function of KLF1 is successfully

predicted by the transitional network. In the transitional acti-

vated network, KLF1 is connected to genes that are enriched

for myeloid/erythroid differentiation (P=0.02/0.01, respect-

ively), with an average connectivity strength (of the top 25 neigh-

bors) of 0.74, compared with 0.09 in the static network. Another

example is ANK1 (Fig. 3g and h), an erythroid membrane an-

choring protein, which links spectrin tetramers to the transmem-

brane protein band 3 and RhAG to link the membrane and the

erythroid cytoskeleton (Bennett, 1978; Huang et al., 2013;

Nicolas et al., 2003), and comprises the key determinant that

maintains the membrane elasticity of red blood cells. Here, the

functional connection between ANK1 and spectrin (SPTA1) in

the activated network was 0.84, while their connection is much

weaker in the static network (0.002), indicating that this activated

network algorithm correctly predicts erythroid-specific func-

tional relationships.
In addition to evaluating the transitional networks that verify

well-established erythroid genes, we also investigated the genes

whose connectivity strengths changed most in the transitional

networks (both activated and deactivated networks) over the

global, static network. For example, interleukin 2 receptor

alpha (IL2RA, Fig. 3i and j) showed a difference of connectivity

strength (of the top 25 neighbors) of �0.93 between the Day 4 to

Day 8 deactivated network and the static network. The most

closely related neighbors of IL2RA were enriched for T-cell ac-

tivation (P=3:9� 10�12) and immune system process

(P=2:9� 10�14), suggesting that genes involved in non-eryth-

roid lineage differentiation become repressed during erythroid

differentiation. FLT3 (fms-related tyrosine kinase 3) is another

significantly altered gene predicted by the deactivated network

compared with the static network (Fig. 3k and l). Previous stu-

dies reported that this gene is expressed exclusively in the

CD34+ early progenitor cells and that mutations in this gene

were related to acute myelogenous leukemia (AML), B-precursor

cell acute lymphoblastic leukemia (ALL), T-cell ALL and

chronic myelogenous leukemia (CML) in lymphoid blast crisis

(Drexler et al., 1996; Rosnet et al., 1996). From Day 4 to Day 8,

during which time differentiating CD34+ cells become fully

committed to the erythroid lineage, the transcription of FLT3

is silenced (FPKM expression level reduced from 3.6 to 0.3).

Predictably from this transitional deactivated network algorithm,

loss of FLT3 expression was strongly correlated with other

downregulated genes, many of which are involved in leukocyte

activation and lymphocyte activation-related processes.

3.4 Transitional networks predict novel candidate genes

important for erythroid differentiation

Novel genes predicted by this new stage-specific transitional net-

work model that execute previously unknown erythroid-specific

functions, by definition, potentially are more important and

interesting. Genes, whose co-function probabilities with other

genes changed dramatically between static network and transi-

tional network, are extremely likely to be erythroid-specific genes

(see Supplementary Information S2 for top 100 changed genes).

One such candidate is oxysterol binding protein 2 (OSBP2),

which is involved in lipid and glucose metabolism (Hynynen

et al., 2009) and cancer cell proliferation and survival [reviewed

in (Weber-Boyvat et al., 2013)], including CML (Henriques Silva

et al., 2003). In CML, OSBP2 maintains the undifferentiated

state of the CML blast cells (Henriques Silva et al., 2003).

Additionally, OSBP2 is associated with hematopoietic stem cell

long-term proliferation and self-renewal as one of the immediate

Table 3. Probabilities of functional relationships between critical genes

for erythropoiesis in the Day 4 to Day 8 activated network and in the

static network

Gene A Gene B Day 4 to Day 8

activated network

the static

network

HBA1 HBA2 0.315 0.167

HBA1 HBB 0.618 0.141

HBA2 HBB 0.974 0.121

HBA1 HBD 0.089 0.066

HBA2 HBD 0.073 0.056

HBB GYPA 0.137 0.003

HBD GYPA 0.923 0.005

HBB GYPB 0.998 0.074

HBB GYPC 0.632 0.041

HBD GYPB 0.966 0.021

HBD GYPC 0.742 0.038

Table 4. Top enriched GO terms for HBD in the Day 4 to Day 8 acti-

vated networks

Day 4 to Day 8 activated network

GO ID GO term Bonferroni-

corrected P-value

GO:0065008 Regulation of biological quality 1.02e-10

GO:0043249 Erythrocyte maturation 1.27e-6

GO:0030218 Erythrocyte differentiation 3.86e-6

GO:0034101 Erythrocyte homeostasis 6.05e-6

GO:0002262 Myeloid cell homeostasis 1.67e-5

GO:0048821 Erythrocyte development 2.78e-5

GO:0061515 Myeloid cell development 5.67e-5

GO:0030099 Myeloid cell differentiation 8.29e-5
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targets of STAT5 (Fatrai et al., 2011). However, the roles that

OSBP2 might play in normal erythropoiesis are still largely un-

known. From the Day 4 to Day 8 activated network analysis

(Fig. 4b), we predict that OSBP2 might play important roles

during erythropoiesis, resulting from its strong connection with

TAL1, GATA1, GYPB, AHSP and other erythroid-specific

genes.
Another interesting candidate emerging from this analysis is

PDZK1IP1 (PDZK interacting protein 1), which plays essential

roles during megakaryocyte differentiation (Tothova et al., 2007)

as well as primitive/definitive erythroid differentiation (Tijssen

et al., 2011). However, it remains unclear how PDZK1IP1

might differentially regulate stage-specific erythroid differenti-

ation. We discovered that PDZK1IP1 was upregulated by421-

fold from Day 4 to Day 8 and that it is actively involved in this

differentiation process based on this transitional network

(Fig. 4d), suggesting that PDZK1IP1 might have unknown func-

tions during erythroid lineage commitment. Although we failed

to detect a strong network connection between PDZK1IP1 and

TAL1, we note that PDZK1IP1 is located immediately 30 to

TAL1. Additionally, an erythroid enhancer, which regulates

TAL1 expression, is embedded 30 to PDZK1IP1 and conserved

throughout vertebrate evolution (Delabesse et al., 2005). Because

PDZK1IP1 shares transcriptional enhancer elements with TAL1,

a co-regulation between PDZK1IP1 and TAL1 was observed in

the dorsal aorta (AGM region) and in the fetal liver of mice, as

well as during embryonic stem cell differentiation (Tijssen et al.,

2011). In the present study, PDZK1IP1 andTAL1 are

coordinately induced (co-regulated) during erythroid differenti-

ation, but they formed completely distinct functional networks,

suggesting that PDZK1IP1 might play roles that are unrelated to

TAL1 during the Day 4 to Day 8 erythroid differentiation tran-

sition. These results suggest that transitional networks are able

to successfully predict the functional relationships among genes

and would serve as a valuable tool for future analysis of

erythropoiesis.

4 CONCLUSION

Systematics in developmental biology is an exciting emerging

field, which uses large-scale genomic data to understand the com-

plexity of developmental processes. In this study, we developed a

new algorithm that models the dynamic functional relationships

during a differentiation process through large-scale data integra-

tion. Such networks describe the dependency of functional rela-

tionships between two time points. This novel model for

transitional networks, is an advance over our previous global

(Guan et al., 2008), context-specific (Guan et al., 2010) and

tissue-specific networks (Guan et al., 2012), as well as other pre-

viously established functional networks (Chikina et al., 2009; Lee

et al., 2011; Pop et al., 2010), all of which are static in nature.

These transitional networks reveal functional relationships and

genes important to erythroid cell differentiation and function,

which are not shown in the static networks.
Through the application of Bayesian integration, the approach

described here managed to combine diverse genomic datasets,

while datasets related to the target stage were assigned stronger

weights. The key element determining Bayesian classifier, the

gold standard pairs, is refined to a group of gene pairs that are

either upregulated or downregulated together across the various

developmental stages. Hence, data from relevant contexts are

highly weighted and trusted, while irrelevant or inaccurate data

are weighted more slightly and less regarded. The results demon-

strated that the dynamic stage-specific network algorithm could

precisely reveal functional relationships that were masked in ana-

lysis of the static networks. The genes that changed most were

also confirmed to be highly related to the differentiation process.

We expect that this same generic algorithm can be readily applied

to other developmental or differentiation processes, given appro-

priate time-course expression data.

For example, when predicting regulatory networks, classical

co-expression–based analyses (Emilsson et al., 2008; Ghazalpour

et al., 2006; Zhang et al., 2005) take a single time-course dataset

as its only input. These approaches are likely to be sensitive to

noise and require a considerable number of different time points

in a single dataset. Compared with classical approaches, these

transitional networks make use of the highly specific time-course

dataset together with thousands of public datasets. We expect

that combining the transitional network together with classical

co-expression networks should improve the performance of these

networks in identifying regulatory elements.
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Fig. 4. Transitional networks predict novel candidates genes driving

erythropoiesis. This figure shows the local networks of OSBP2 and

PDZK1IP1. The same color legend as Figure 3 applies here. OSBP2

and PDZK1IP1 are novel candidates for the erythropoiesis, suggested

by their local connections to many known genes involved in this process

(a–d)
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