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ABSTRACT

Motivation: Sharing genomic data is crucial to support scientific in-

vestigation such as genome-wide association studies. However,

recent investigations suggest the privacy of the individual participants

in these studies can be compromised, leading to serious concerns and

consequences, such as overly restricted access to data.

Results: We introduce a novel cryptographic strategy to securely per-

form meta-analysis for genetic association studies in large consortia.

Our methodology is useful for supporting joint studies among dispar-

ate data sites, where privacy or confidentiality is of concern. We val-

idate our method using three multisite association studies. Our

research shows that genetic associations can be analyzed efficiently

and accurately across substudy sites, without leaking information on

individual participants and site-level association summaries.

Availability and implementation: Our software for secure meta-

analysis of genetic association studies, SecureMA, is publicly available

at http://github.com/XieConnect/SecureMA. Our customized secure

computation framework is also publicly available at http://github.

com/XieConnect/CircuitService

Contact: b.malin@vanderbilt.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Decreasing costs in sequencing technologies, in combination with

large repositories of clinical information, has enabled the discov-

ery of novel associations between genetic variants and disease.

These achievements are facilitated by increased collection and

reuse of genomic data (Green and Guyer, 2011), as well as

broad efforts to obtain larger sample sizes (by sharing and comb-

ing data) for increased statistical power (Panagiotou et al., 2013).

Meta-analysis is a common solution for aggregating substudy

results across large consortia to achieve this goal. In fact,

meta-analysis is responsible for �37% of the 15 845 genome-

trait associations listed in the NHGRI genome-wide association

studies (GWAS) Catalog (Welter et al., 2014). At the same time,

the sensitive nature of genomic data has led to numerous discus-

sions around the governance of genomic records (Fullerton et al.,

2010; Kaye et al., 2009). Currently, policy and advisory groups

recommend removing identifying information (e.g. personal

names) to uphold the privacy of study participants (Lowrance

and Collins, 2007; Presidential Commission for the Study of

Bioethical Issues, 2012).
Yet, the efficacy of such protections is increasingly being ques-

tioned (Rodriguez et al., 2013). Various studies demonstrate that

the identity of participants, as well as sensitive information (such

as disease status) can still be inferred from the shared genomic

data (Gymrek et al., 2013; Homer et al., 2008; Humbert et al.,

2013; Im et al., 2012; Jacobs et al., 2009; Lin et al., 2004;

Sankararaman et al., 2009). This can occur by leveraging an

individual’s genome sequence or the study summary statistics

about associations, such as genotype frequencies and allelic re-

gression coefficients that would be used in meta-analysis. Most

recently, it was shown that an individual’s identity could be as-

certained through Y-chromosome short tandem repeats

(Y-STRs) using public genealogy databases on the internet

(Gymrek et al., 2013). While certain privacy attacks may seem

non-trivial in the knowledge necessary to be executed, they have

already raised serious concerns from scientists, policy makers

and the general public. They have also led to reduced sharing

of genome sequences and site-level summary statistics. For in-

stance, based on (Homer et al., 2008), the NIH and Wellcome

Trust stopped sharing aggregate genomic data directly to the

public (Zerhouni and Nabel, 2008). These demonstrations have

also influenced proposed regulations [e.g., (European

Commission, 2012, 2014)], some of which would designate all

biospecimens and their derived data as identifiable (U.S.

Department H.H.S., 2011).
To address the privacy concerns on individual genomic infor-

mation as well as site-level summary statistics, we engineered a

practical protocol to securely perform meta-analysis for geno-

type–phenotype association studies across substudy sites in

large consortia (Fig. 1). Our protocol leverages cryptographically

secure technology to provide provable security guarantees.

Unlike alternative proposals (Kamm et al., 2013), in our proto-

col, substudy sites retain full control of their respective individual

participants’ data and local site analyses. This allows each site to

make appropriate adjustments to effect estimates to account for*To whom correspondence should be addressed.
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study-specific differences in design, which is pervasive in multisite

studies but not supported in (Kamm et al., 2013). Our protocol

also allows sites to contribute to meta-analysis without exposing

site-level summary statistics. Such comprehensive protections

make our protocol impervious to popular privacy attacks over

genomic data at both the individual and site level.

In this article, we demonstrate the design and implementation

of our secure meta-analysis protocol (called SecureMA), and

provide empirical evaluations with three separate multisite gen-

etic association studies.

2 SYSTEM

2.1 Secure meta-analysis protocol

The SecureMA protocol consists of two main steps: (1) Setup

and (2) Secure Computation. The Setup initializes the system by

(i) generating and distributing the encryption/decryption keys,

(ii) encrypting association statistics locally at each study site

and (iii) submitting the data encryptions to the data managers

(e.g. coordination centers in practice). The Secure Computation

step securely performs meta-analysis over the encrypted submis-

sions of site-level association statistics (Fig. 1).

2.2 Setup step of the protocol

To setup the process, a one-time step for generating and disse-

minating the encryption/decryption keys is coordinated by a
trusted authority who is not involved in any data management

or computations (Supplementary Fig. S1; Following standard
practice in security for cryptographic systems, this authority gen-

erates keys and has no further interaction with any of the par-
ticipants involved in SecureMA). For protection purposes, the

decryption key is then split into multiple shares and distributed
across the participants of the protocol, as described below. By

doing so, to successfully decrypt data, collaboration is required
between the majority of key holders. As detailed in

Supplementary Section S5.1, the splitting of the key enforces
an ‘honest-majority’ to mitigate collusion for illicit decryption.

Optionally, to make the protocol more practical, several inter-
mediate parties, which we call data managers, can be set up to

host the (encrypted aggregate) data on behalf of the local sites.
Following this scheme, the local sites submit encryptions of their

study summary statistics (e.g. effect size and the inverse of its
variance) to their entrusted data managers and can then go off-

line. In doing so, one manager can coordinate for several local
sites, such that only a limited number of online participants are

required for the protocol to proceed. And, as mentioned, enfor-
cing an honest majority ensures no manager alone can decrypt

the data. Further details on this a management model can be
found in Supplementary Section S5.1.

2.3 Secure computation step of the protocol

When a scientist issues a study inquiry to the system, encryptions
of site-level association statistics are requested from the data

managers and then provided to a third party responsible for
coordination and computation—the Mediator—who securely

sums the encrypted submissions (Fig. 1a).
Next, the mediator coordinates with one randomly selected

data manager to perform a secure division to derive the weighted
average, the last operation of meta-analysis (Fig. 1b; details in

Section 3.1).
At this point, the meta-analysis result is still in an encrypted

state. The mediator is then responsible for initiating a final round

of collaborative decryption by distributing the encrypted result
to a majority of the trusted data managers for partial decryption

(Fig. 1c). By collecting a sufficient number of the partially de-
crypted shares from the data managers, the scientist combines

them to reveal the final decryption from which the final result of
his/her study query would be derived. Thus, until the scientist

requests the final decryption, no individual or site-level aggregate
information is ever disclosed because all information remains

encrypted throughout the protocol.
A complete activity diagram of the SecureMA protocol is

provided in Supplementary Figure S2.

3 METHODS

3.1 Meta-analysis

Meta-analysis (Hedges and Olkin, 1985) is a statistical technique widely

used in genetic association studies for synthesizing study results from

across consortia to obtain larger sample sizes and gain statistical

power. In this work, we focus on the fixed-effects model to perform

Fig. 1. The SecureMA protocol (secure computation step). (a) The pro-

cess begins when a scientist submits a meta-analysis study inquiry. Each

data manager in the study submits encrypted local statistics (e.g. effect

size and the inverse of its variance) to the Mediator for secure summation.

(b) The Mediator then coordinates with one random data manager to

securely divide the numerator by the denominator of the meta-analysis

function. (c) The results of the meta-analysis are partially decrypted by

the data managers, which are composed into the final full decryption of

the meta-analysis P-value at the scientist’s computer
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meta-analysis (Willer et al., 2010), which yields a weighted average of the

effect size (e.g. beta coefficient) using the inverse of its variance as the

weight:

Z=�=se=

X
i
�iwiX
i
wi

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1X
i
wi

s
=
X
i

�iwi

� ffiffiffiffiffiffiffiffiffiffiffiffiX
i

wi

r
; ð1Þ

where � is the aggregated effect size, se is the aggregated standard error,

�i is the effect size of an association for the i-th substudy (i.e. site con-

tributing data to the meta-analysis), weight wi=1=se2i and sei corresponds

to the standard error of the effect for the ith substudy.

3.2 Secure computation of meta-analysis

To enable direct computation in a cryptographic setting, we square

Equation (1) (i.e. Z2; Supplementary Section S5.4). The final square

root and conversion from Z-score to P-value is performed by software

running on the computer of the scientist who issued the meta-analysis

request.

For reference, the core (secure) computations for the proposed

SecureMA protocol are summarized in Table 1. For each meta-analysis

study, the mediator requests and receives encryptions of site-level associ-

ation summaries [denoted as Eð�iwiÞ, EðwiÞ] from the data managers.

Then, the mediator leverages the secure summation subprotocol (denoted

as ADD, see Supplementary Section S5.4) to compute the sums in the

numerator and denominator of Equation (1) without decryption (result-

ing in encryptions: Eð
X
i

�iwiÞ and Eð
X
i

wiÞ).

The final step of meta-analysis involves a division operation (for deriv-

ing the weighted average of effect size), where in our case, both the nu-

merator and the denominator are encrypted. There is no efficient method

for directly computing the division of two encryptions. Thus, we convert

it into a subtraction problem, which is easier to implement in cryptog-

raphy, by applying a logarithmic transformation on the squared

Equation (1) (e.g. Z2):

ln Z2=2ln
X
i

�iwi � ln
X
i

wi ð2Þ

The logarithmic transformation, ln x (where x is encrypted), is approxi-

mated using secure computation techniques and a Taylor series

(Supplementary Section S5.5). The result from this step is still in an en-

crypted form.

Next, secure subprotocols for multiplication-by-constant and subtrac-

tion (e.g. defined as MULC and SUB subprotocols in Supplementary

Section S5.4) are used to complete the rest of the operations in

Equation (2), yielding encryption Eðln Z2Þ. The final Z2 can be obtained

by decrypting and computing the exponential operation at the study in-

quiry issuer’s site.

4 IMPLEMENTATION AND RESULTS

We implemented the SecureMA protocol in working software

and released it open source. To demonstrate its feasibility and
practicality, we reproduced three multisite genetic association

meta-analyses. For the purposes of evaluation, we focus on the

efficacy of protecting participant privacy, the computational ac-
curacy, the running time efficiency and the sensitivity to certain

protocol parameterizations.

4.1 Study data

The Electronic Medical Records and Genomics (eMERGE) hypo-

thyroidism study. The first collection of datasets is from a GWAS

on hypothyroidism provided by the eMERGE consortia (Denny
et al., 2011). It consists of 6370 study participants across five

study sites, and for evaluation, we analyzed 100 single nucleotide

polymorphisms (SNPs)—these include the 16 statistically signifi-
cant SNPs (P510�6) reported in their original study and an

additional 84 random SNPs for running time efficiency analysis

(Supplementary Section S3).
The Population Architecture using Genomics and Epidemiology

(PAGE) obesity study. The second collection of datasets is from a
genetic association study on obesity and body mass index pro-

vided by the PAGE consortia (Fesinmeyer et al., 2013). It con-

sists of 53238 participants across six study sites, and for
evaluation, we analyzed 40 SNPs—these include the 25 statistic-

ally significant SNPs (P50.05) as identified by their original

study, and an additional 15 SNPs (Supplementary Section S3).
The Epidemiologic Architecture for Genes Linked to

Environment (EAGLE) diabetes study. The third collection of

datasets is from a genetic association study on Type II
Diabetes provided by the EAGLE group (Haiman et al., 2012).

It contains 14998 participants across two substudies, and we

analyzed 216 SNPs. The published study did not report P-
values for all SNPs, and thus, for comparison, we only focus

on a controlled benchmark using the standard non-secure

meta-analysis as the baseline (reported in Supplementary
Section S4) and running time analysis.

4.2 Protection of sensitive information

Throughout the SecureMA protocol, the privacy of the genomic

records of the individual participants is ensured. This is because

the records are maintained solely at their respective local sites

and are never disclosed. This resolves privacy concerns over in-
dividual genome sequences [e.g. no risk of unique identifiability

based on the uniqueness of SNPs as posed by (Lin et al., 2004)].
Moreover, site-level summaries (e.g. association study statis-

tics of each local site) are protected via strong encryption

throughout the process. And the final meta-analysis results (lim-
ited to aggregate P-values only) are only made known to the

inquiry issuer. Such protections make it impossible to perform

inference attacks based on group statistics or allele frequencies or
regression coefficients; which are features relied on in various

attacks; e.g. (Homer et al., 2008; Im et al., 2012; Jacobs et al.,

2009; Sankararaman et al., 2009).

Table 1. The core variables and computations for SecureMA

Notations �i—effect size estimate for substudy i

wi—weight term for substudy i

EðÞ—encrypted data or secure computation

Inputs Eð�iwiÞ—encrypted statistic for substudy i

EðwiÞ—encrypted statistic for substudy i

Intermediate

computations
Summations: Eð

X
i

�iwiÞ, Eð
X
i

wiÞ

Logarithms: Eðln
X
i

�iwiÞ;Eðln
X
i

wiÞ

Eðln Z2Þ=Eð2ln
X
i

�iwi � ln
X
i

wiÞ

Decrypt Eðln Z2Þ to obtain ln Z2

Overall Z-Score Z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ðln Z2Þ

p
Overall P-value P=2�ð�jZjÞ
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4.3 Accuracy of association results

We compared the accuracy of our secure computations with

those reported by the original studies associated with these data-

sets (Denny et al., 2011; Fesinmeyer et al., 2013; EAGLE is

excluded from comparison owing to lack of published P-values

as baseline). These results are summarized as QQ-plots of the

SNP association P-values on a negative logarithmic scale

(Fig. 2). The plots for the eMERGE and PAGE genotype–

phenotype summary statistics correspond to the 16 and 25

SNPs, respectively, that were reported as significant in the pub-

lications. To compare the secure and non-secure estimates of the

P-values, we applied a linear regression with the y-intercept

forced to zero. The Pearson correlation coefficient was found

to be �0.998 and �1.000 for eMERGE and PAGE, respectively,

implying that the secure meta-analysis yielded results directly in

line with those in the original publications. The regression slopes

for the PAGE and eMERGE datasets were 1.001 and 0.952 re-

spectively, and in both cases the rank order of the significance of

the SNPs was retained. These results illustrate that the secure and

non-secure meta-analysis approaches produce highly consistent

results.
We noticed that certain original studies used different analysis

methods (e.g. pooled analysis instead of meta-analysis) and add-

itional data processing, which may introduce replication discrep-

ancy. We thus performed additional controlled experiments with

the standard non-secure meta-analysis as the baseline [i.e. we

used METAL software (Willer et al., 2010) to compute signifi-

cance]. The results indicate our secure results are accurate, yield-

ing both a slope and correlation coefficient of �1.000 for all

datasets evaluated (Fig. 2c and Supplementary Fig. S3).

Overall, these results demonstrate our secure protocol sup-

ports genetic association studies with high accuracy. Further de-

tails on how to achieve even greater accuracy can be found in the

sensitivity analysis (Section 4.5).

4.4 Running time efficiency

To evaluate the running time of the protocol, we performed a

series of experiments on a desktop computer (2.4GHz dual-core,

4GB memory) running Java 1.7. We simulated the different par-

ticipants of the protocol using separate system processes. All

experiments were performed without parallelization to mitigate

interference in the measurement of running time.

On average, the secure meta-analysis for most SNPs

completed in 1.20–1.34 s (SD � 0:024 s) and no SNP required

more than 1.38 s (Table 2). In comparison with the eMERGE

and PAGE datasets, the EAGLE study consumed slightly more

time because of the fact that EAGLE consists of much larger

numeric values, which leads to longer processing time.
Sample size. It is important to recognize that the running time

of our protocol is weakly dependent on the number of study

participants in the study (i.e. sample sizes) because the secure

computations occur only on site-level summaries (Individual par-

ticipant records are used by sites only for their local analyses.

These are computed without encryption and, thus, the running

time is negligible when compared with secure computations).

This implies that our protocol can be efficient even in studies

with large sample sizes, which is common for GWAS in large

consortia.
Number of sites. We also point out that the majority of the

computation time is dedicated to the secure division of the meta-

analysis (499.9%), as opposed to other computations such as

secure summation (Table 2). This indicates the protocol is scal-

able to a large number of data-contributing sites. Specifically, the

division operation involves only the mediator and one other par-

ticipant, and thus its running time is not dependent on the

number of sites. While the running time of other computations

(e.g. secure summation) may increase linearly with the number of

sites, its overall running time (and increase) is negligible.
To demonstrate the scalability of our technology for large

consortia, we randomly selected sites from the eMERGE dataset

Fig. 2. Protocol accuracy. The correlation plots correspond to (a) the P-values (secure protocol versus original publication) based on the 16 SNPs from

eMERGE; (b) the P-values (secure protocol versus original publication) based on the 25 SNP-ethnicity pairs from PAGE (all SNPs annotated corres-

pond to one ethnicity subpopulation, except for rs6548238’, which corresponds to another); and (c) the P-values (secure protocol versus standard

non-secure meta-analysis) based on a controlled comparison of 100 SNPs from eMERGE)

Table 2. Per-SNP running time for SecureMA and the proportion of the

time dedicated to the division process (mean and standard deviation in

seconds)

Dataset Total Division substep Proportion

of division

eMERGE 1.2028 (0.0169) 1.2017 (0.0169) 0.9991 (0.0002)

PAGE 1.2148 (0.0239) 1.2136 (0.0240) 0.9990 (0.0005)

EAGLE 1.3427 (0.0164) 1.3423 (0.0165) 0.9997 (0.0003)

3337

SecureMA

Association 
Results
) (
due 
p
p
-
p
,
,
utilized 
,
(
,
)
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu561/-/DC1
Efficiency
 to 
econds
with a standard deviation
econds
econds
to
,
due to
,
,
only 
2
to
very 
more than 
,
only 
,


to simulate environments consisting of up to 100 data-contribut-
ing sites (e.g. data managers participating in the protocol). For
each setting, we computed a meta-analysis for 100 SNPs (Fig. 3).

We illustrate that even when the protocol is composed of 100
sites, the time to complete the computation is around 1.22 s,
which is approximately the same as the initial case studies.

4.5 Sensitivity analysis

The SecureMA protocol incorporates several tunable parameters

to allow users to tune the computational accuracy and running
time efficiency as necessary. These are introduced because neither
decimal values nor division over encryptions are directly sup-

ported in cryptographic protocols. Here, we demonstrate their
impact both theoretically and empirically (Supplementary

Section S5 provides further details on these tunable parameters).

4.5.1 Parameters influencing protocol sensitivity There are three

primary parameters that influence the accuracy and running time
of the SecureMA protocol. These parameters were introduced
owing to a series of transformations and approximations to the

square of Equation (1).
The first parameter corresponds to a scale-up factor 10s, where

the scale s is defined a priori by protocol participants. This is

multiplied against every value submitted by the local sites. In
doing so, every value is converted from a decimal to an integer.
The next two parameters are associated with the approxima-

tion of secure division, which relies on the secure logarithmic
transformation [Equation (2)]. Briefly, ln x can be approximated

as follows:

ln x �
y ln 2� 2Nk � lcmð2; . . . ; kÞ

2Nk � lcmð2; . . . ; kÞ

+

Xk
i=1

ð�1Þi�12Nðk�iÞ �
lcmð2; . . . ; kÞ

i
� ð�true+�randÞ

i

2Nk � lcmð2; . . . ; kÞ
;

ð3Þ

where integer y is a rough estimate of the exponent such that
2y � x, and additional terms such as 2Nk and lcmð2; . . . ; kÞ are
for scaling purposes. The first term on the right side of Equation
(3) obtains a rough estimate of ln x, while the second term refines
the previous approximation using a Taylor series.

Based on the above function, the second tunable parameter
corresponds to the maximum exponent (i.e. N, or the upper

bound of exponent estimate y) required to roughly estimate

ln x. And, the third tunable parameter corresponds to the

number of expansions (i.e. k) to perform in a Taylor series

when refining the accuracy of approximating ln x.

For evaluation purposes, we randomly selected five significant

and five non-significant SNPs from the eMERGE dataset to

execute a series of secure meta-analyses.

4.5.2 Evaluation of the scale-up sactor As mentioned, the
scale-up factor 10s is used to convert decimal values into integers.

Larger factors result in the truncation of a fewer number of

trailing digits and, thus, a smaller amount of information loss

during computation.
Figure 4 depicts how the computational error and the overall

running time, respectively, of the secure meta-analysis are influ-

enced as the factor is varied from 104 to 1016. For context,

SecureMA uses a default value of 108.
In Figure 4a, it can be seen that, in general, the computational

error of the P-value decreases (approaching 0) as the scale-up

factor increases. Overall, the absolute and relative errors are

always bounded within the range ½�3:0� 10�5; 8:2� 10�6�

and ½�0:03; 0:01%�, respectively. However, we note there are

several outlying points in the graph, such as at 106 and 109.

We note that these occur because, at times, the error of the

two logarithms in Equation (2) diverge in opposite directions,

which results in a magnification of the total error.
Nonetheless, in Figure 4b it can be seen that the variance of

the overall running time is relatively small as the scale-up factor

increases. This is an expected result because the change of the

scale-up factor has limited influence on the secure division opera-

tion, which is the most time-consuming process in the protocol.

4.5.3 Evaluation of the maximum exponent of the logarithm
approximation The secure logarithmic transformation (i.e. ln

x where x is encrypted) involves two phases to the approxima-

tion. The first phase aims to find an optimal integer exponent to

roughly estimate the number x. The maximum exponent we

analyze in this section corresponds to the upper bound for the

exponent estimate. The second step corresponds to the applica-

tion of a Taylor series, which we discuss in further depth below.

Figure 5 shows how the computational error and the overall

running time, respectively of the secure meta-analysis (per SNP)

are affected as the exponent varies from 64 to 96. For context,

SecureMA uses a default value of 80.
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Fig. 3. Average running time of SecureMA, per SNP, as a function of the

number of sites providing data (all times reported in seconds)
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It was expected that a larger exponent would yield better

approximation accuracy, with a trade-off in a longer running

time. It is confirmed that the overall running time changes

almost linearly with the increase of the maximum exponent

(Fig. 5b).However, it can be seen that the computational accuracy

is almost identical across all test cases (Fig. 5a). This is because, in

this particular scenario, the other two protocol parameters are the

dominating factors regarding computational accuracy.

4.5.4 Evaluation of the number of steps in the taylor series A
Taylor series is applied in the second phase of the secure loga-

rithm subprotocol to boost the approximation accuracy.

Figure 6 shows how the computational error and the overall

running time, respectively, of the secure meta-analysis are

affected as the number of steps in the series varies from 6 to

12. For context, SecureMA uses a default value of 10.
Figure 6a illustrates that the more steps in the Taylor series,

the better the computational accuracy is on average. Figure 6b

further demonstrates that there is a slight linear increase in the

running time as the number of steps in the Taylor series grows.

This result stems from the fact that the number of terms required

to compute in secure computation is increasing, which causes a

longer running time.

5 DISCUSSION

5.1 Analysis on GWAS scale

As discussed earlier, one of the benefits of the SecureMA proto-

col is that its running time has only a weak dependence on the

sample size. As a result, it can be efficient for studies run over

large consortia. This is a notable improvement over alternative

cryptographic proposals [e.g., (Kamm et al., 2013; Kantarcioglu
et al., 2008)] whose running time is positively correlated, in a

linear and sometimes exponential manner, with the number of
study participants and sites.
At the same time, the SecureMA protocol can be made more

efficient to support analysis on a genome-wide scale. First, the
SecureMA protocol can easily be run in parallel on large com-

puter clusters or cloud computing servers because each SNP can
be analyzed independently. Thus, the total computation time for

a large-scale GWAS would be inversely proportional to the com-
puting resources allocated. As a rough estimate, a GWAS on

2 000 000 SNPs would require around 10 h on 16 eight-core
computers without further optimization. Second, from a scienti-

fic perspective, it might be permissible to disclose the aggregate
effect size of meta-analysis [i.e., the numerator in Equation (1)].

In such a scenario, the time-consuming secure division operation
could be avoided entirely, reducing the overall running time per

SNP to milliseconds. Third, recent advances in the optimization
of secure computations [e.g., (Asharov et al., 2013; Henecka et al,

2013)] may be ready to transition into practice in the near future.
This could allow for certain SecureMA subprotocols, such as

secure division, to be run on parallel computing frameworks
and make significant gains in efficiency.

5.2 Limitations

There are several limitations to the SecureMA protocol as cur-
rently designed. First, SecureMA assumes that study data have

already been carefully cleaned data and subject to rigorous qual-
ity control (QC) [e.g. deposited data in dbGaP (Mailman et al.,

2007)]. To support more dirty data in the wild, it will be neces-
sary to embed QC processes for meta-analysis in the protocol

(Winkler et al., 2014). Certain procedures may be vulnerable to
attacks on privacy, but those which are based on standard alge-

braic computations should be translatable into secure computa-
tions. At the same time, it should be noted that many procedures

can be directly applied in the clear because they do not violate
privacy [e.g., file-level QC and SE-N plots in (Winkler et al.,

2014)]. As QC is a relatively independent and large pipeline,
we leave it for future work. Second, the current SecureMA imple-

mentation relies on a trusted authority to generate cryptographic
keys, which sometimes may not be desirable (alternative solu-

tions are in Supplementary Section S1). Third, in situations
when individual-level genomic records need to be processed, it

will be necessary to pair secure data management technologies
with effective societal controls (e.g. use agreements and man-

dated limits on investigator behavior) that deter misuse and
limit the extent to which genomic information can be abused

and cause harm to people [e.g. expansion of laws to prevent
utilization of genomic data in life insurance eligibility and sup-

port for long term care (Altman et al., 2013)].

5.3 Alternative methods to maintain genomic privacy

To provide context for the contributions of the SecureMA pro-

tocol, we take a moment to review other recent developments in
the field. There are generally two categories of data protection

mechanisms that have been proposed to maintain participant
privacy while supporting scientific investigations on genomic

data. From a societal and regulatory perspective, it has been
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suggested that research participants consent to the risk of being

reidentified (Lunshof et al., 2008; which may bias participant

recruitment), while users of such data contractually agree not

to attempt to reidentify the participants (Taylor, 2008). We

believe such mechanisms can lower risk and, while data use

agreements assign liability, they do not provide any technological

deterrent and can only be enforced when violations could be

detected.

On the other hand, various technological techniques have been

proposed to promise genomic privacy. These include encrypting

genomic sequences and supporting simple queries (Kantarcioglu

et al., 2008), obfuscating raw (short) genome sequences and

allowing for retrieval (Ayday et al., 2014), splitting regression

analyses into local-site computations and center-level aggrega-

tion (Wolfson et al., 2010) and hosting participant-level genomic

data using a cryptographic technique and facilitating genetic

association studies (Kamm et al., 2013). The two approaches

most similar to ours are hampered by practical limitations.

First, Wolfson et al. (2010) may leak sensitive information

because local sites inappropriately disclose intermediate sum-

mary statistics during computation (Emam et al., 2013); The

other recent proposal (Kamm et al., 2013) fails to account for

site-specific covariates and other data preprocessing within sites,

which is a common practice for multisite genetic association

studies. Their solution may also suffer from computational scal-

ability and network trafficking issues in studies with large sample

sizes because all individual genomic data must pass through, and

be analyzed by, every server.

5.4 Conclusion

This work illustrates that the privacy of individual participants,

and site-level summary statistics, in genetic association meta-ana-

lysis can be guaranteed without sacrificing the ability to perform

analysis that use shared data. Our proposal, SecureMA, is useful

for running joint studies over disparate data sites in large

consortia, where privacy or confidentiality is a concern. If appro-

priately implemented, our approach can prevent privacy intru-

sions posed by the attacks published to date. While there are

opportunities to make this protocol more efficient and to incor-

porate quality control measures, we believe it is possible to

enable much broader analytic access to genomic data for the

purposes of effect estimation and statistical association via

meta-analysis.
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