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Apoptosis is a process that affects life span and health. Mice with liver-specific disruption of the growth hormone recep-
tor (GHR) gene (ie, Ghr gene) (liver-specific growth hormone receptor knockout [LiGHRKO] mice), as opposed to 
mice with global deletion of the Ghr gene (GHRKO; Ghr−/−), are characterized by severe hepatic steatosis and lack of 
improved insulin sensitivity. We have previously shown that levels of proapoptotic factors are decreased in long-lived 
and insulin-sensitive GHRKO mice. In the current study, expression of specific apoptosis-related genes was assessed in 
brains, kidneys, and livers of male and female LiGHRKO and wild-type mice using real-time PCR. In the brain, expres-
sion of caspase 3, caspase 9, Smac/DiaBlo, and p53 was decreased in females compared with males. Renal expression 
of caspase 3 and noxa also decreased in female mice. In the liver, no differences were seen between males and females. 
Also, no significant genotype effects were detected in the examined organs. Lack of significant genotype effect in kidneys 
contrasts with previous observations in GHRKO mice. Apparently, global GHR deletion induces beneficial changes in 
apoptotic factors, whereas liver-specific GHR disruption does not. Furthermore, sexual dimorphism may play an impor-
tant role in regulating apoptosis during liver-specific suppression of the somatotrophic signaling.
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APOPtOSIS, or programmed cell death, is one of the 
most crucial physiological processes that affects life 

span; it is, in part, responsible for the development and 
health of multicellular organisms (reviewed in ref. 1). 
there are two main apoptotic signaling pathways: intrin-
sic (mitochondrial) and extrinsic. the intrinsic pathway 
(involving p53, Caspase 9, and bax) is initiated by different 
factors within the cell (eg, free radicals, DNA damage, and 
hypoxia) (2–4). the extrinsic pathway (involving Caspase 
8) is related to interactions mediated by death receptors, 
which are members of the tumor necrosis factor receptor 
gene superfamily (5). Disturbances in the regulation of 
apoptosis can lead to numerous diseases, such as cancer, 
neurodegenerative disorders, and autoimmune diseases (1).

Caspase 3 is a main executioner caspase and is respon-
sible for destroying cells and inducing apoptosis, whereas 

Caspase 9 activates the effector Caspase 3. Smac/DIABLO 
(second mitochondria-derived activator of caspase/direct 
IAP-binding protein with low pI) is a mitochondrial pro-
tein that potentiates apoptosis after being released from 
mitochondria into the cytosol (6,7). Apoptotic protease-
activating factor-1 (Apaf-1) forms a multiprotein complex 
(called the apoptosome) with procaspase 9 and cytochrome 
c (8,9). It leads to activation of Caspase 9 and caspase cas-
cade and, finally, to activation of Caspase 3. p53 protein 
is a well-known tumor suppressor and an important factor 
that activates the intrinsic apoptotic pathway. NOXA is a 
member of the bcl-2 family and is described as a p53 target 
gene, serving as a candidate mediator of p53-induced apop-
tosis (10). Caspase 8 is an initiator caspase, indispensable 
for induction of the extrinsic apoptotic signaling pathway 
(11). Bax (bcl-2–associated X protein) is one of the main 
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proapoptotic, and bcl-2 is one of the antiapoptotic bcl-2 
family proteins (12). It is well known that the benefits of 
apoptosis rely on the removal of abnormal cells. However, 
the entire role of apoptosis in physiology/pathophysiology 
and potentially in life-span regulation remains unclear.

Mice with targeted disruption of the growth hormone 
(GH) receptor (GHR) gene (Ghr gene) globally (GHRKO; 
GHR knockout; Ghr−/−) (13) are dwarf, obese, insulin 
sensitive, and long lived (14). We have shown that these 
mice are characterized by decreased gene expression and/
or protein level of numerous proapoptotic factors, including 
Caspase 3, Caspase 9, Caspase 8, Smac/DIABLO, bax, and 
Apaf-1 in the kidneys (and skeletal muscles as well) ((15–
17) and reviewed in ref. 18). these alterations in levels of 
the proapoptotic factors were not further improved by calo-
rie restriction, another potential life-extending intervention 
(17). Similarly, calorie restriction did not change Caspase 3 
and Caspase 9 activities in the brain cortices of Fischer 344 
rats (19). Moreover, GHRKO mice have increased levels 
of key regulators of mitochondrial biogenesis (18,20,21) 
and decreased thyroid follicle size (22) with mild thyroid 
hypofunction. these features of GHRKOs and other mice 
strains with altered GH action suggest the crucial role of 
GH-induced intracellular signaling in life-span regulation 
(reviewed in ref. 23).

Many of GH’s numerous physiological effects are medi-
ated by insulin-like growth factor-1 (IGF-1), which is gen-
erated primarily in the liver and acts systemically. However, 
IGF-1 is also produced in other tissues acting in an auto-
crine or paracrine manner. thus, to better understand how 
the GH/IGF-1 axis regulates physiological processes in 
selected tissues and/or organs, mice with tissue-specific 
GHR deletions recently have been generated ((24–28), List 
et al., unpublished data). One of these strains is mice with 
selective deletion of GHR in the liver (liver-specific growth 
hormone receptor knockout [LiGHRKO] mice). these mice 
have decreased body size and body fat, severely reduced 
levels of circulating IGF-1, and concurrently higher GH 
plasma levels, due to disruption of somatotrophic signaling 
in the liver ((24), List et al., unpublished data). However, 
of particular interest, LiGHRKO mice show an absence of 
improved insulin sensitivity and severe hepatic steatosis 
((24), List et al., unpublished data) compared with GHRKO 
mice. Fasting blood glucose is elevated in both sexes of 
LiGHRKO animals, whereas fasting insulin is higher in 
males relative to controls. Male LiGHRKOs have normal 
glucose tolerance and mild insulin resistance, and females 
are glucose intolerant and insulin resistant (List et  al., 
unpublished data).

Results by Fan coworkers (24) and List coworkers (unpub-
lished data) show significant alterations in weights of differ-
ent organs (eg, brain, kidneys, and liver) between control 
and LiGHRKO mice, suggesting potential differences in 
apoptosis. Moreover, our previous studies report a decrease 
of proapoptotic factors in kidneys of global GHRKO mice 

compared with control animals (16,17). Additionally, anal-
ysis of expression of these apoptosis-related genes in the 
brains is also related to the reported preservation of cogni-
tive function in aging GHRKO mice (14).

For all these reasons, we have set out to determine the 
effect of liver-specific Ghr gene disruption on expression of 
the apoptosis-related genes (caspase 3, caspase 9, Smac/
DiaBlo, apaf-1, caspase 8, noxa, Bcl-2, Bax, p53) in 
brains, kidneys, and livers of LiGHRKO mice compared 
with wild-type (Wt) animals.

Materials and Methods

animals
Mice carrying the GHR “floxed” allele were generated 

according to the previously described method (28). Liver-
specific GHRKO mice (FFCx) and floxed littermate con-
trols (FFxx) were generated by breeding conditional floxed 
GHRflox/flox mice to B6.Cg-tg(alb-cre)21Mgn/J transgenic 
mice purchased from Jackson Laboratories (Bar Harbor, 
ME) (List et al., unpublished data). Brains, kidneys, and liv-
ers from approximately 22-month-old male and female Wt 
and liver-specific GHRKO (LiGHRKO) mice were kindly 
provided by Dr. M. B. Stout (Mayo Clinic, Rochester, MN). 
the animals comprised four (4) experimental groups: wild-
type males (Wt-male; seven animals), liver-specific GHR 
knockout males (LiGHRKO-male; eight animals), wild-
type females (Wt-female; eight animals), and liver-specific 
GHR knockout females (LiGHRKO-female; eight animals).

to statistically analyze differences between males and 
females (a potential significant gender effect), we pooled 
all males (Wt-male and LiGHRKO-male mice) and all 
females (Wt-female and LiGHRKO-female mice) (see 
the Results section). Similarly, for analyzing differences 
between Wt and LiGHRKO mice (a potential significant 
genotype effect), we pooled all Wt animals (Wt-male and 
Wt-female mice) and all LiGHRKOs (LiGHRKO-male 
and LiGHRKO-female mice) (see the Results section).

Rna extraction and cDna transcription
RNA was extracted from the homogenates of the 

examined tissues using a miRNeasy Mini Kit (Qiagen) 
in accordance with the manufacturer’s instruction. RNA 
quantity and quality were analyzed using a NanoDrop 1000 
Spectrophotometer (thermo Scientific). Reverse transcrip-
tion was performed, and complementary DNA was syn-
thesized using an iScript cDNA Synthesis Kit (Bio-Rad 
Laboratories, Hercules, CA) according to the manufactur-
er’s instruction.

Real-time PcR
Real-time PCR was carried out using the StepOne Real-

time PCR System Instrument (Life technologies) with iQ 
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SYBR Green Supermix (Bio-Rad Laboratories). the three 
steps of the PCR included: denaturation at 94°C for 2 min-
utes, annealing at 62°C for 30 seconds with fluorescence 
reading, and extension at 72°C for 30 seconds. In addition, 
a melting curve was done for each reaction to evaluate the 
potential of nonspecific products. β

2
-Microglobulin (B2M), 

which was previously validated in our laboratory as the 
most appropriate gene for normalizing the data (17,18,29), 
was used as a housekeeping gene. Gene expression was 
assessed by measuring steady state levels of mRNA. 
Relative expression from real-time PCR was calculated 
using the equation 2a−B/2c−D (where a = cycle threshold [c

t
] 

number for the gene of interest in the first control sample; 
B = c

t
 number for the gene of interest in the analyzed sam-

ple; c = c
t
 number for the housekeeping gene in the first 

control sample; D = c
t
 number for housekeeping gene in the 

analyzed sample). the first control was expressed as 1.00 
by this equation, and all other samples were calculated in 
relation to this value. then, the results in the control group 
(Wt-males) were averaged. All other outputs were divided 
by the mean value of the relative expression in the control 
group to yield the fold change of the expression of genes 
of interest compared with the control group. For real-time 
PCR, the primers used are listed in table 1.

Statistical analysis
the data are expressed as mean ± standard error of the 

mean. to evaluate the effects of the genotype and sex, we 
used two-way analysis of variance. For analyzing differ-
ences between group means, we used a Bonferroni post hoc 
test. p value less than .05 was considered significant. All 
statistical calculations were conducted using SPSS version 
17.0 (SPSS, Chicago, IL) with α = .05. All graphs were 
created using Prism 4.02 (GraphPad Software, San Diego, 
CA).

Results
In the brain, gene expression of caspase 3, caspase 9, 

Smac/DiaBlo, and p53 decreased in females compared 
with males (p = .02, p = .04, p = .03, p = .01, respec-
tively) (Figure 1A–C and H). thus, a significant sex effect 

was detected. Moreover, noxa decreased in brains of 
Wt-females compared with Wt-males (p = .02 with signifi-
cant Genotype × Gender interaction: p = .04) (Figure 1E). 
there were no differences in apaf-1, caspase 8, and Bcl-
2 between male and female brains (Figure 1D, F, and G). 
Interestingly, there were no differences in mRNA expres-
sion for any examined apoptosis-related factors between the 
brains of Wt and LiGHRKO mice (caspase 3, caspase 9, 
Smac/DiaBlo, apaf-1, caspase 8, noxa, Bcl-2, and p53: 
p = .55, p = .59, p = .27, p = .36, p = .82, p = .43, p = .30, 
p = .66, respectively) (lack of significant genotype effect), 
although there appeared to be a weak (but not statistically 
significant) tendency for expression levels of the examined 
apoptosis-related genes to increase in female LiGHRKO 
mice compared with Wt-females (Figure 1).

In kidney tissue, a decrease in expression of two apop-
tosis-related genes (caspase 3 and noxa) was observed in 
females compared with male mice, showing a significant 
effect of sex (p = .04 and p = .01, respectively) (Figure 2A 
and E). Moreover, renal caspase 8 mRNA level decreased 
in Wt-females compared with Wt-males (p = .00 with 
significant Genotype × Gender interaction: p = .01) 
(Figure 2F). apaf-1 showed a tendency for reduced expres-
sion in female kidneys (p = .09) (Figure 2D). mRNA levels 
of renal caspase 9, Smac/DiaBlo, Bcl-2, and Bax did not 
show a sex effect (Figure  2B, C, G, and H). Also, geno-
type did not significantly affect kidney mRNA levels of the 
examined apoptosis-related genes (caspase 3, caspase 9, 
Smac/DiaBlo, apaf-1, caspase 8, noxa, Bcl-2, and Bax: p 
= .42, p = .30, p = .61, p = .80, p = .27, p = .41, p = .84, p = 
.87, respectively) (Figure 2).

Intriguingly, liver showed no differences in the expression of 
apoptosis-related genes between males and females (caspase 
3, caspase 9, Smac/DiaBlo, apaf-1, caspase 8, noxa, Bcl-2, 
Bax, and p53: p = .84, p = .11, p = .86, p = .25, p = .15, p = .56, 
p = .87, p = .40, p = .87, respectively) (Figure 3). Importantly 
and similar to the findings in the brains and kidneys, the 
mRNA level of the examined apoptosis-related genes was 
not significantly affected by genotype in livers (caspase 3, 
caspase 9, Smac/DiaBlo, apaf-1, caspase 8, noxa,  
 Bcl-2, Bax, and p53: p = .98, p = .47, p = .38, p = .84, p = .34,  
p = .45, p = .30, p = .16, p = .33, respectively) (Figure 3).

table 1. Primers Used for Gene Expression Analyses

Gene GenBank Accession No. Forward (5′–3′) Reverse (5′–3′)

β
2
-Microglobulin NM_009735 aagtatactcacgccaccca aagaccagtccttgctgaag

caspase 3 NM_009810 tgcagcatgctgaagctgta gagcatggacacaatacacg
caspase 8 AJ007749 accgagatcctgtgaatgga tgctttcccttgttcctcct
caspase 9 NM_015733 agcagagagtagtgaagctg acacagacatcatgagctcc
Smac/DiaBlo NM_023232 aagagctgcaccagaaagca tctgactgtcaatggcagga
apaf-1 AF064071 acaacgctctgctacacga cacacagcactgtccttaca
noxa AB041230 gccaatctgttttagggtga cagaacaggcaacatccgtt
Bax NM_007527 ccaccagctctgaacagatc cagcttcttggtggacgcat
Bcl-2 NM_009741 tgggatgcctttgtggaact gagacagccaggagaaatca
p53 AF151353 tcacagtcggatatcagcct acactcggagggcttcactt
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Figure 1. Brain mRNA expression of caspase 3 (A), caspase 9 (B), Smac/DiaBlo (C), apaf-1 (D), noxa (E), caspase 8 (F), Bcl-2 (G), and p53 (H) in male 
and female of wild-type (Wt) and liver-specific growth hormone receptor knockout (LiGHRKO) mice. the data from real-time PCR were normalized by the house-
keeping gene β2-Microglobulin (B2M) and expressed as the relative expression. Values are means ± SEM. (a and b) Values that do not share the same letter in the 
superscript are statistically significant (p < .05). *p = .02 vs male mice (the significance for sex), **p = .04 vs male mice (the significance for sex), ***p = .03 vs male 
mice (the significance for sex), ****p = .01 vs male mice (the significance for sex).
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Figure 2. Renal mRNA expression of caspase 3 (A), caspase 9 (B), Smac/DiaBlo (C), apaf-1 (D), noxa (E), caspase 8 (F), Bcl-2 (G), and Bax (H) in male 
and female of wild-type (Wt) and liver-specific growth hormone receptor knockout (LiGHRKO) mice. the data from real-time PCR were normalized by the house-
keeping gene β2-Microglobulin (B2M) and expressed as the relative expression. Values are means ± SEM. (a and b) Values that do not share the same letter in the 
superscript are statistically significant (p < .05). * p = .04 vs male mice (the significance for sex), **p = .01 vs male mice (the significance for sex).
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Discussion
Based on the results of previous studies showing the 

decrease in the levels of proapoptotic factors in GHRKO 
mice (15–17), we hypothesized that the same kind of 
genetic intervention, although limited to the liver, may 
result in similar changes in the expression of these apopto-
sis-related genes in different tissues. Unexpectedly, hepatic 
deletion of GHR did not cause any differences in expres-
sion of these genes relative to control mice. In two other 
examined organs in which functional GHR was preserved, 
namely in brains and kidneys, there were also no differences 
between control and LiGHRKO mice. thus, liver-specific 
GHR disruption did not lead to a decrease of proapoptotic 
factors level, a feature previously considering as poten-
tially beneficial in global GHRKO mice (18). One could 
therefore hypothesize that the loss of GH signaling in the 

liver abolishes the potential beneficial profile of apoptosis-
related factors observed in GHRKO mice, and that there is 
something unique about the aspect of global GHR−/− other 
than direct GH signaling that leads to the beneficial gene 
expression profile for GHRKO mice.

Importantly, the levels of certain apoptosis-related factors 
were previously analyzed in other mice characterized by 
marked longevity, namely the Ames dwarfs. Dhahbi cow-
orkers (30) showed a decrease of Caspase 3 and an increase 
of bcl-2 gene expression in peripheral blood leukocytes 
when compared with Wt animals. However, in another 
study, procaspase 3 protein levels unexpectedly increased 
in the kidney and liver of Ames dwarf mice (31). therefore, 
these conflicting results emphasize the importance of fur-
ther studies to elucidate the entire role of apoptosis, also in 
the circumstances of suppressed somatotrophic signaling.
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Figure 3. Hepatic mRNA expression of caspase 3 (A), caspase 9 (B), Smac/DiaBlo (C), apaf-1 (D), noxa (E), caspase 8 (F), Bcl-2 (G), Bax (H), and p53 
(I) in male and female of wild-type (Wt) and liver-specific growth hormone receptor knockout (LiGHRKO) mice. the data from real-time PCR were normalized 
by the housekeeping gene β2-Microglobulin (B2M) and expressed as the relative expression. Values are means ± SEM. (a) Values that share the same letter in the 
superscript are not statistically significant.
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Absence of the beneficial profile of the examined fac-
tors in LiGHRKO mice, compared with GHRKO animals, 
seems to be supported by characteristics of mice with spe-
cific GHR knockout in other tissues. For example, mice with 
GHR deletion in muscles (MuGHRKO) are characterized, 
in contrast to global GHRKO animals, by insulin resistance 
and glucose intolerance (25). Interestingly and unexpect-
edly, MuGHRKO mice, created with use of the muscle cre-
atine kinase promoter/enhancer but not Mef-2c promoter/
enhancer (as in the case of animals mentioned above (25)), 
are characterized by improved glucose metabolism (27). 
Another strain of tissue-specific GHRKO animals, fat-
specific GHRKO (FaGHRKO) mice, show lack of glucose 
homeostasis improvement and absence of significant altera-
tions in fasting blood glucose, serum insulin, and GH lev-
els (28). Also, GHR disruption in pancreatic β-cells may 
impair insulin secretion (26). thus, it seems that selective 
deletion of GHR in one organ or tissue may not duplicate 
the numerous beneficial effects of global GHR deletion. 
In support of this hypothesis, List coworkers (28) recently 
concluded that deletion of GHR in adipose tissue is not suf-
ficient to increase adiponectin level. Increased levels of this 
important adipokine are widely considered beneficial and 
are observed in mice with global GHR knockout (32,33). 
therefore, all of the above-mentioned observations support 
the hypothesis that global but not tissue-specific removal 
of GHR is indispensable for producing the extended life 
span and resistance to the development of cancer and dia-
betes seen in GHRKO mice (23). Similar findings have 
been reported for human Laron syndrome patients in which 
no cancer and a dramatic reduction in diabetes have been 
reported (34). Obviously, resolving this interesting phe-
nomenon will require further experiments.

Although there were no differences in expression of 
apoptosis-related genes between control and LiGHRKO 
mice, there was notable difference between sexes. We 
found that female mice have decreased levels of proapop-
totic gene mRNAs compared with male animals, suggest-
ing a potential role of sexual dimorphism in the control of 
the apoptosis process. Actually, numerous previous studies 
seem to support this interesting hypothesis and confirm the 
decreased intensity of apoptosis (expressed as different 
apoptotic markers) in females compared with males in mice 
and other animals. Siegel coworkers (35) have shown that 
the baseline mRNA level of the X-linked inhibitor of apop-
tosis (XIAP; the primary endogenous inhibitor of caspases) 
is higher in female compared with male mice in the brain 
tissue. In another study, Caspase 3 activity had a tendency 
to increase in brain (and was increased in heart) of spon-
taneously hypertensive male rats (36). Also, the apoptotic 
area in the brain was increased in male Sprague-Dawley 
rats compared with females after experimentally induced 
focal cerebral infarction (37). these findings could be con-
sidered as consistent with our results showing the decrease 
of several proapoptotic factors in female brains. Decreased 

apoptosis in females compared with males was also dem-
onstrated by Huang coworkers (38). the authors have ana-
lyzed expression of proapoptotic Bax and antiapoptotic 
Bcl-2 in rat hearts, showing lower Bax protein level, higher 
Bcl-2 mRNA and protein levels, and increased ratio of Bcl-
2/Bax in females (38). Consistently, an increase in proapop-
totic Caspase 3, Caspase 9, and Bax was observed in male 
rats’ hearts after arteriovenous shunt (39). the results of 
the studies by Hofmann-Lehmann coworkers (40) are also 
in accordance with our current observations, pointing to 
the decreased potential for apoptosis in females. Namely, 
the rate of apoptosis in peripheral blood lymphocytes, 
expressed as a percentage of apoptotic cells determined by 
flow cytometry, was lower in female cats compared with 
males (40). thus, one could hypothesize that the decreased 
apoptosis in the female gender, observed in numerous spe-
cies, may be related to obvious differences in sex hormone 
levels between males and females. In fact, the results of the 
study by Le May coworkers (41) have demonstrated the 
protection of β-cells from oxidative stress–induced apopto-
sis in mice by estradiol—the main sex hormone in females. 
Furthermore, some authors even postulate that differences 
between genders may be an effect of sex differences at the 
cellular level (42). Sexual dimorphism may also affect the 
transcriptional regulation of several imprinted genes (43).

However, it should be emphasized that in some studies, 
there was no evidence of decreased apoptosis in females 
compared with males. For example, Sanz coworkers (44) 
have demonstrated that there are no differences between 
males and females in different markers of apoptosis, such 
as Caspase 3 and Caspase 9 activities, as well as mono- and 
oligonucleosomes in the liver, heart, and skeletal muscles 
in mice. Presumably, the mouse strain used in the study 
(C57Bl/6J) or the age of the animals (10  months) could 
lead to results different from our findings. Additionally, in 
the studies performed in humans, a serum level of inhibitor 
of apoptosis—soluble cell-surface receptor that transduces 
apoptotic signals (sFas)—was higher in men compared 
with women (45). On the contrary, a stimulator of apop-
tosis—sFas ligand (sFasL)—and one of the components 
of apoptosome—cytochrome C—were lower (but without 
statistical significance) in men compared with women (45). 
Moreover, in the Sprague-Dawley rats, the antiapoptotic 
Bcl-2 level was increased in males compared with females 
under physiological circumstances (46). However, after 
cardiac ischemia-reperfusion, Bcl-2 decreased in males, 
and the apoptotic cell number was lower in females (46). 
Nevertheless, considering results of all previous studies 
together with the present findings, we believe that female 
sex could be considered the factor that may lead to the 
decrease of apoptotic intensity.

Numerous studies have consistently demonstrated clear 
sex differences in mice with global and local disruption of 
GH-induced signaling. For example, Berryman cowork-
ers (47) reported significant differences based on sex for 
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percent fat mass and absolute lean mass in GHRKO mice. 
Moreover, sex-specific alterations in the expression of 
xenobiotic metabolizing enzymes in mice with altered GH 
signaling were recently reported (48). In another study, total 
lean body mass was increased only in female FaGHRKOs 
compared with controls (28). Also, serum leptin and cir-
culating interleukin-6 levels were changed only in female 
FaGHRKO mice (28). Similarly, in LiGHRKO mice, List 
coworkers (unpublished data) recently showed changes 
limited to female mice with hepatic GHR deletion (vs 
controls), such as increased local IGF-1 gene expression 
in subcutaneous and retroperitoneal white adipose tissue, 
increased circulating adipsin level, and decreased levels of 
circulating IGF-binding protein-5 (IGFBP-5) and IGFBP-
7. All of the above-mentioned differences in the examined 
parameters between male and female mice are likely related 
to differences in GH secretion pattern. Namely, the plasma 
GH pattern in males is characterized by high GH pulses 
occurring with a specific periodicity (49). In contrast, GH 
secretion is less variable in females, with smaller GH pulses 
and higher interpulse levels (49). these alterations are pre-
sumably caused by sexually dimorphic network responses 
in pituitary GH (50).

In summary, LiGHRKO mice provide a very interesting 
experimental model for analyzing the role of liver-specific 
GH signaling (or lack thereof) in the control of physiologi-
cal and pathophysiological processes, including apoptosis. 
It appears that the role of somatotrophic signaling in the reg-
ulation of these processes is much more complicated than 
once thought, and undoubtedly further studies are needed 
to determine all networks related to this crucial metabolic 
pathway. In this study, the expression of apoptosis-related 
genes is different between males and females in brains and 
kidneys but not in livers, and there is no effect of liver-spe-
cific knocking out of the Ghr gene. therefore, while trying 
to explain the results of the present study, it is tempting to 
assume that sexual dimorphism may play an important role 
in the regulation of apoptosis in the circumstances of an 
altered somatotrophic signaling. However, the differences 
observed between particular tissues may suggest that there 
are still unknown mechanisms participating in the regula-
tion of apoptosis, including, among others, GH-induced 
signaling and sex.
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