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In order to understand the exploitation/exploration trade-off in
reinforcement learning, previous theoretical and empirical accounts
have suggested that increased uncertainty may precede the decision
to explore an alternative option. To date, the neural mechanisms that
support the strategic application of uncertainty-driven exploration
remain underspecified. In this study, electroencephalography (EEG)
was used to assess trial-to-trial dynamics relevant to exploration
and exploitation. Theta-band activities over middle and lateral frontal
areas have previously been implicated in EEG studies of re-
inforcement learning and strategic control. It was hypothesized that
these areas may interact during top-down strategic behavioral
control involved in exploratory choices. Here, we used a dynamic
reward--learning task and an associated mathematical model that
predicted individual response times. This reinforcement-learning
model generated value-based prediction errors and trial-by-trial
estimates of exploration as a function of uncertainty. Mid-frontal
theta power correlated with unsigned prediction error, although
negative prediction errors had greater power overall. Trial-to-trial
variations in response-locked frontal theta were linearly related
to relative uncertainty and were larger in individuals who used
uncertainty to guide exploration. This finding suggests that theta-
band activities reflect prefrontal-directed strategic control during
exploratory choices.

Keywords: EEG, exploration, prediction error, reinforcement learning,
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Introduction

Goal-directed decision making involves not only making better

decisions (exploiting) but also selecting alternative options

when uncertain of their value (exploring). However, the

circumstances that drive exploration remain undetermined

(Cohen et al. 2007). Experiments have demonstrated that this

process is not simply random: exploration may occur when

long-term utility is low, when local costs are high, when the

world has changed, or when there is uncertainty about

alternative options (Daw et al. 2006; Cohen et al. 2007; Frank

et al. 2009). Theoretical work has shown that reward can be

maximized by increasing exploration when one is uncertain

about reward statistics of alternative options (Gittins and Jones

1974; Dayan and Sejnowski 1996). However, exploration may

be associated with cost due to forgone exploitation and an

increased outcome risk (Cohen et al. 2007). It is clear that

uncertainty-driven exploration is a potentially important facet

of decision making, yet there is a dearth of empirical studies

investigating the effects of uncertainty on exploration in

humans. Moreover, there are currently no studies showing

neural indices of uncertainty-driven exploration. Here we

provide evidence that frontal theta-band oscillations reflect

neurophysiological processes linking uncertainty and the

exploration/exploitation trade-off to reinforcement learning.

Previous work has identified frontopolar areas, particularly

on the right side, as well as bilateral intraparietal sulci that

were associated with the selection of low-value decisions, which

the authors defined as exploratory (Daw et al. 2006). Frontopolar

areas are suggested to reflect a high-level system in the hierarchy

of behavioral control (Koechlin and Summerfield 2007; Badre

2008), thus this finding has been interpreted as evidence for

a top-down influence underlying the choice to explore. However,

the models and neural signals in this study (Daw et al. 2006)

did not provide evidence of guided exploration as a function of

uncertainty.

In contrast, our previous investigation of exploration used

a dynamic reward--learning task that tracked strategic adjust-

ments and estimations of success, demonstrating that relative

uncertainty predicted exploration (Frank et al. 2009). This

relative uncertainty measure captured variance associated with

responses outside of the current exploitative pattern. This

effect was presumed to reflect prefrontally mediated strategic

sampling of the reward structure, although this hypothesis has

not yet been supported with recordings of neural activities.

Since goal-directed decision uncertainty has been shown to

correlate with bilateral frontopolar cortex activity (Yoshida and

Ishii 2006), and this same brain area has been previously

associated with exploration (Daw et al. 2006), it is possible that

frontopolar activities in this dynamic reward--learning task

might reflect aspects of uncertainty-driven exploration.

The temporal specificity of electroencephalography (EEG)

provides a compelling methodological advantage for assessing

trial-to-trial effects reflective of exploration and exploitation.

EEG investigations of reinforcement learning have primarily

assessed the mid-frontal component known as the feedback-

related negativity (FRN), which reflects phase-locked theta-band

activities thought to originate from the mid and posterior

cingulate cortices (Miltner et al. 1997; Holroyd and Coles 2002;

Luu et al. 2003). This FRN/theta signal has been proposed to

reflect the calculation of a negative prediction error (Holroyd

and Coles 2002), which is critical for learning how to exploit.

This idea has been supported by recent investigations (Cavanagh

et al. 2010; Chase et al. 2010; Ichikawa et al. 2010; Philiastides

et al. 2010), yet others have questioned the valence specificity of

this signal (Oliveira et al. 2007; Baker and Holroyd 2011).

It has been shown that medial and lateral frontal areas

interact via theta-band phase dynamics during strategic control
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(Hanslmayr et al. 2008; Cavanagh et al. 2009; Cohen and

Cavanagh 2011) and during reinforcement learning (Cavanagh

et al. 2010). Therefore, theta-band activities over lateral and

frontal polar areas may be a candidate for identifying neural

activities involved in the instantiation of strategic control for

uncertainty-driven exploration. In sum, it was hypothesized

that theta-band activities in distinct neural systems would

reflect interactive processes when learning to exploit (medial)

and deciding to explore (lateral/polar).

Materials and Methods

Subjects
Seventeen (5 male) participants were recruited through the un-

dergraduate subject pool at the University of Arizona. All participants

gave informed consent for the project approved by the University of

Arizona Research Protections Office. Participants ranged in ages from

17 to 21 years (mean = 18.8 years).

Task
This task has previously been used to investigate trial-specific

reinforcement learning and exploration in genetic, patient, and

pharmacological cases (Moustafa et al. 2008; Frank et al. 2009; Strauss

et al. 2011). Participants were presented the outline of a circle; a small

ball traced the outline of the circle (0--360�) over the course of 4 s

(Fig. 1a). Instructions were as follows:

You will see a circle. A ball will make a full turn around the circle in 4

seconds. To win points, you need to stop the ball somewhere along this

circle. To stop the ball, press the spacebar with your dominant index

finger.

The time at which you respond affects in some way the number of

points that you can win. Sometimes you will win lots of points and

sometimes you will win fewer. Try to win as many points as you can! (If

you don’t respond by the end of the ball’s cycle, you will not win any

points). Hint: Try to respond at different times along the ball’s cycle in

order to learn how to win the most points.

The trial ended after the participant made a response or if the 4-s

duration elapsed without a response. Probabilistic feedback was then

presented 500 ms after the response for 1000-ms duration. Response

time (RT) was used to calculate the probability of winning points on that

trial and what the magnitude of points was (described below). Following

feedback, there was an intertrial interval that was randomly calculated to

be between 500 and 1500 s. Participants were also warned:

The length of the experiment is constant and is not affected by when

you respond. In other words, responding quickly won’t get you out of

here faster!

There were 4 different blocks with 120 trials each; each block

consisted of 1 of 4 counterbalanced conditions with differing RT-

determined reward contingencies (Fig. 1b--d). Information on the

different block types was also presented in the instructions:

In addition, this experiment also consists of four independent blocks.

These blocks are marked by different colored circles. You should

attempt to win the most points in each block. Try to respond at different

times along the circle to learn how to win the most points in each block.

In 3 of these conditions, the magnitude of reward increased over the

duration of the trial (4 s), yet the probability of reward decreased, as

shown in Figure 1b,c. The reward functions were calculated so that

expected value (EV: probability 3 magnitude) increased over time in

one condition (IEV: slower responses were better), decreased over

time in one condition (DEV: faster responses were better), or stayed

constant over time (CEV: all responses were equal in EV) (see Fig. 1d).

This CEV condition was used as a control condition. The fourth

condition had an increasing probability yet a decreasing magnitude of

reward (also with constant EV over the duration of the trial), providing

a reversed CEV condition (CEV-R: all responses were equal in EV).

Compared with CEV, slower RTs in the CEV-R condition are

interpreted as reflecting a risk aversive performance strategy in that

a high probability of reward is preferred over a high magnitude of

reward (this has been commonly observed in the aforementioned

previous applications of this task). While performance on each block

was separately analyzed to ensure that participants learned the task,

trials from all conditions were aggregated for EEG analyses.

Algorithmic Model of Performance
The computational model was applied to each block of the data in

order to capture variance associated with strategic trial-to-trial

adaptation (described in Frank et al. 2009). Participants were assumed

to update an expected reward value (V) after each feedback at time t

with fixed learning rate a = 0.1:

V ðt + 1Þ=V ðt Þ + aðdÞ;

where the update is based on reward prediction errors (d):

d=½Rewardðt Þ –V ðt Þ�:

These reward prediction errors can be positive or negative if the

reward was better or worse, respectively, than the current value

estimate V. To capture strategic processes, probability density

functions (PDFs) were used to reflect participant’s belief distributions

that specific actions would yield a better than average outcome (i.e.,

a positive prediction error; see Fig. 2a). Since reward functions are

monotonic, one does not have to track reward statistics for all possible

RTs. Rather, one only needs to track reward statistics for ‘‘slower’’ or

‘‘faster’’ responses (e.g., as compared to the ongoing average RT) and

then adjust RTs in proportion to (and in the direction of) their

difference. Thus, when faster RTs lead to reliably better outcomes than

slower RTs, this model predicts that participants would respond

proportionally faster. The model also predicts that subjects would

explore other responses when they are particularly uncertain about

their reward statistics, where uncertainty is quantified by the variance

in the belief distributions, as described below.

The belief distributions about reward statistics for slower or faster

responses were updated after each trial via Bayes’ rule. We use beta

distributions to represent these beliefs, in which Bayesian updating

simply amounts to incrementing hyperparameters g and b with each

positive and negative prediction error, respectively. The resulting PDF

is shown in Figure 2a and is as follows:

Figure 1. The task consisted of 4 blocks with varying EV of reward depending on RT.
(a) Example trial where the participant made a response ~1.2 s, receiving a 35-point
reward. Blocks consisted of different conditions that had varied probabilities (b) and
magnitudes (c) or reward over time, creating separate EV distributions (d). To
maximize reward, participants need to learn to respond faster when EV decreased
(DEV) and slower when EV increased (IEV) compared with when it was constant
(CEV). A fourth condition contained reversed magnitudes and probabilities with
constant EV (CEV-R); slower responses on this block reflect a preference for
magnitudes over probabilities and a risk-averse strategy.
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where the denominator reflects the beta function.
The probabilistic EV and uncertainty for each type of response

(slower or faster) was then computed analytically as the mean

l = g/(g + b) and variance r2 = (g 3 b)/[(g + b)2 3 (g + b + 1)] of

the PDF. This measure of variance quantifies the uncertainty about the

value of each response type (fast or slow). As participants make faster

or slower responses, the means come to reflect the probability that

a better than average outcome (positive prediction error) will be

experienced for that response type. The variance (uncertainty) about

Figure 2. Example model outcomes from a single representative participant. (a) PDFs. Early in the block, probability densities peak around 0.5 and have large variances. Later in
learning, these migrate and sharpen to provide estimates of value (mean) and uncertainty (variance). This investigation used the relative difference between slower and faster
variances to classify exploitative and exploratory strategies. (b) Feedback and prediction error. While positive prediction errors closely followed the magnitude of reward, negative
prediction errors largely occur to zero-reward feedback and were estimated from the model. (c) Explore parameter and RT change. Large differences in uncertainty predicted RT
swings in participants with high explore parameters.
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these means decrease with experience (albeit at a slower rate for more

variable outcomes). RT adjustments are well captured in this task by

assuming that participants adjust RTs in proportion to the relative

difference between the means (l) of slower and faster RTs [lslow(t) –

lfast(t)], scaled by free parameter q (i.e., the degree to which individual

subjects adjust RTs by EV). Because participants could not be confident

about the value of the means without sufficient experience, we further

assumed that participants might explore in proportion to the relative

difference in uncertainty between faster and slower responses.

Exploration was included in the model by adding the following term:

[rslow(t) – rfast(t)], scaled by free parameter e. If this fitted e parameter

was positive, participants were more likely to direct exploration toward

the more uncertain response. Trials immediately following exploratory

choices were forced to be 0 to avoid mis-estimation of exploration due

to recent task dynamics (see methods in Frank et al. 2009; Fig. 2c).

The model used here was identical to that used previously, which

provided the best fit to behavior (Frank et al. 2009; Strauss et al. 2011),

and included other free parameters to improve model fit including

baseline response speed with parameter K, autocorrelation of pre-

ceding RT scaled by parameter k, a putative striatal tendency to

generally speed up following positive prediction errors (aG) and slow

down following negative prediction errors (aN), and a ‘‘going for the

gold’’ factor that reflected seeking the highest rewarded RT thus far

[RTbest – RTavg], scaled by parameter m. In sum, free parameters (K, q, e,
k, aG, aN, v) were fit using a simplex method (Matlab function

‘‘fmincon’’) to minimize the sum of squared errors between predicted

and actual RTs across all trials for each subject (see Table 1). The model

took the form

RT
�
t

�
=K + q

h
lslow

�
t

�
– lfast

�
t

�i
+ e
h
rslowðt Þ – rfast

�
t

�i
+ kRT

�
t – 1

�
– +aGðdÞ + + +aN ðdÞ –

+ v

h
RTbest –RTavg

i
:

Note, however, that none of these additional parameters influence

the estimates of prediction error, mean or uncertainty, and thus any

neural response to these variables is independent of other aspects of

the model. In other simulations, we have further confirmed that the

model ranking of subjects’ tendencies to guide exploration by

uncertainty is robust to various assumptions about the other forms

that the model might take.

Trial-to-trial prediction errors (d) were used as predictor variables in

regressions with feedback-locked EEG power (see Fig. 2b). As in the

previous investigations (Frank et al. 2009; Strauss et al. 2011), the

relative difference in uncertainties was used to predict exploratory

decisions. Here the difference between the chosen and the unchosen

response options [rchosen(t) -- runchosen(t)] was specifically investigated

in the context of trial-to-trial event-related EEG power. For example,

since responses were characterized as either slow or fast, in the case of

RT slowing this chosen--unchosen difference would reflect the slow

PDF variance minus the fast PDF variance (and the opposite for RT

speeding). Therefore, a larger uncertainty value corresponded to

greater relative uncertainty for the chosen response.

It is important to note that some studies have described how

uncertainty ‘‘negatively’’ influences exploration due to ambiguity

aversion (Payzan-LeNestour and Bossaerts 2011). A critical difference

between the reinforcement-learning task used here and other tasks is

the absence of structural uncertainty (the reward dynamics do not shift

or reverse within a block) and the fact that here exploration can be

used to ‘‘reduce’’ future uncertainty in the long run. These issues are

discussed in greater depth in the discussion. In order to formally test

for any bidirectional influence of uncertainty on RT, we ran another

model in which we first defined exploratory trials (those selecting the

action with lower EV; Daw et al. 2006) and then refit the uncertainty-

exploration parameter ‘‘only’’ to those trials to determine whether

exploratory trials in particular were more often driven toward the most

uncertain option. This procedure prevented the fitting procedure from

penalizing model fit in all the exploitation trials in which the more

certain action was generally selected. Consequently, participants were

categorized as using uncertainty to drive exploration (those with

positive e) or not (those with nonpositive e) (see Table 1). This

characterization also allowed us to investigate whether neural

responses to uncertainty differed between those estimated to have

positive e and those that did not.

Electrophysiological Recording and Processing
Scalp voltage was measured using 58 Ag/AgCl electrodes, plus 2

mastoid sites, referenced to a site immediately posterior to Cz using

a Synamps2 system (band-pass filter 0.5--100 Hz, 500 Hz sampling rate,

impedances <10 kX), re-referenced offline to averaged mastoids. User-

identified bad epochs containing movement or muscle artifact, large

voltage shifts, or amplifier saturation were marked and removed (mean

= 5.6%, standard deviation [SD] = 3.3%), and bad channels were

interpolated. An infomax independent components analysis was run for

each subject using ‘‘runica’’ from the EEGLab toolbox; components

associated with eye blinks were removed (Delorme and Makeig 2004).

Event-Related Potentials
Feedback-locked event-related potentials (ERPs) were split by sign

(negative, positive) and size (big = above median, small = below

median) of prediction errors. These ERPs were low-pass filtered at 20

Hz since most of the ERP variance associated with prediction errors are

in low-frequency bands (Cavanagh et al. 2010; Chase et al. 2010;

Ichikawa et al. 2010; Philiastides et al. 2010). For analytic purposes,

consecutive peaks and valleys in the ERP were defined as P2 (176 ms),

FRN (276 ms), P3 (376 ms), and N4 (476 ms). While these labels may

not converge with some traditional definitions of ERP components,

they represent a logical nomenclature for defining ERP morphology.

For example, the term FRN is used instead of N2 to denote the

specificity of this component to reinforcement feedback, although we

acknowledge the ambiguity of this label given that numerous studies

that have suggested these are nondistinct entities (Holroyd and Coles

2002; Holroyd et al. 2008; Cavanagh et al. forthcoming). Values were

taken as the mean of the ERP in a ±50-ms window around the peak/

trough time indicated above. Baseline-independent amplitudes were

taken by subtracting the preceding or following negativity from the

local positivity (P2-FRN, P3-FRN, P3-N4).

Time--Frequency Calculations
Time--frequency calculations were computed using custom-written

Matlab routines (Cohen et al. 2008; Cavanagh et al. 2009). Time--

frequency measures were computed by multiplying the fast Fourier

transformed (FFT) power spectrum of single-trial EEG data with the

FFT power spectrum of a set of complex Morlet wavelets and taking the

inverse FFT. The wavelet family is defined as a set of Gaussian-

windowed complex sine waves: e–i2ptf e–t 2=ð23r2Þ, where t is time, f is

frequency (which increased from 1 to 50 Hz in 50 logarithmically

spaced steps), and r defines the width (or ‘‘cycles’’) of each frequency

band, set according to 4/(2pf). The end result of this process is

identical to time-domain signal convolution, and it resulted in 1)

estimates of instantaneous power (the magnitude of the analytic signal),

defined as Z[t] (power time series: p(t) = real[z(t)]2 + imag[z(t)]2), and 2)

phase (thephase angle) defined asut =arctanðimag½z ðt Þ�=real½z ðt Þ�Þ. Each
epoch was then cut in length to remove edge artifacts. Power was

normalized by conversion to a decibel scale (10 3 log10[power(t)/

power(baseline)]), allowing a direct comparison of effects across

frequency bands. The baseline for each frequency consisted of the

Table 1
Parameter estimations for both models, mean (SD)

Parameter Frank et al. (2009) model Bidirectional uncertainty

Baseline response speed K 1134 (347) 1196 (339)
Autocorrelation of RTs k 0.32 (0.17) 0.30 (0.16)
Highest reward thus far v 0.10 (0.10) 0.12 (0.11)
Gain learning rate aG 0.11 (0.26) 0.29 (0.26)
Loss learning rate aN 0.13 (0.27) 0.29 (0.25)
Mean difference scaling q 620 (390) 473 (394)
Variance difference scaling e 1937 (2437) 1027 (4529)
N subjects with positive e/mean (SD) 13/2353 (2506) 9/4583.67 (2053)
N subjects with nonpositive e/mean (SD) 4/0 (0) 8/-2974 (2742)
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average power from –250 to 0 ms prior to the onset of the cues. Whereas

the ERPs reflect phase-locked EEG variance, these time--frequency

measures reflect total power (phase locked and phase varying).

See Figure 3 for plots of power at the mid-frontal FCz electrode, with

overlapping ERPs and topographic plots of power in the time--frequency

regions of interest (hereafter referred to as TF-ROIs) identified by dashed

boxes.

Statistical Analyses
Analyses of prediction error aimed to separately assess the influence of

sign and magnitude of feedback expectancy. Separate regressions were

run for 1) all trials, 2) trials associated with a positive prediction error,

and 3) trials associated with a negative prediction error, with an

additional contrast of 4) negative--positive prediction errors. These

analyses investigated the relationship between the absolute value of the

prediction error and feedback-locked EEG power (across time and

frequency points at the FCz electrode and across channels for the FCz-

defined TF-ROI). Measures of regression slope (standardized b weight)

and intercept were retained at each time--frequency point for each

participant, providing separate estimates of EEG activities associated

with prediction error sign (intercept) and magnitude (slope). Data

points that had EEG activities 3 SDs beyond the mean were removed

prior to regression. Figure 5 displays mean slopes and intercepts across

participants. Intercepts were converted to decibel change from the

pre-cue baseline intercept for display.

Analyses of uncertainty used Spearman’s q correlations due to

nonlinearity in the relative uncertainty regressor. These correlations

were also calculated across time and frequency points at mid-frontal

(Cz) and right frontopolar (FP2) electrodes. Additional contrasts used

independent t-tests to compare the transformed Fisher’s q-to-z
coefficients of the 2 subgroups defined by the bivalenced uncertainty

model (positive e > nonpositive e), in order to determine whether

neural responses to uncertainty differed between these subgroups.

TF-ROIs were included given the strong a priori hypotheses about

the role of frontal theta in feedback- and response-locked signals. TF-

ROIs were defined based on the grand average time--frequency plots in

Figure 3 (response: 3--4.5 Hz, 0--150 ms; feedback: 4--8 Hz, 250--450 ms).

Figure 7 shows extended pre-response TF-ROIs (–250 to 150 ms) to

detail the range of effects in relevant topoplots. All time--frequency

correlation coefficient plots were thresholded by only including pixels

that were significantly (P < 0.05) above zero (prediction error slope;

uncertainty correlations), different from baseline (prediction error

intercept), different between conditions (prediction error negative >

positive contrasts), or different between groups (uncertainty positive e

> nonpositive e) with a minimum cluster size of 200 voxels. In Figure 8,

major findings are summarized by displaying the slope from the

unthresholded TF-ROIs in Figures 5 and 7.

Results

Performance

As in the previous investigations with this task (Moustafa et al.

2008; Frank et al. 2009; Strauss et al. 2011), RTs were averaged

within each block. Participants learned to exploit the task

structure by reliably slowing down when EV increased and

speeding up when EV decreased (IEV > CEV: t16 = 3.95, P =
0.0012; DEV > CEV: t16 = –3.80, P = 0.0016). Also replicating

previous findings, participants displayed a relatively risk-averse

strategy in the comparison between the 2 constant EV

conditions: participants preferred high probabilities over high

magnitudes of reward as evidenced by relative slowing in the

CEV-R condition (CEV-R > CEV: t16 = 2.38, P = 0.03). See Figure

4a,b.

Model parameters were similar to our previous investigation,

as shown in Table 1. Only 13 of the 17 participants had positive

e coefficients when this parameter was free to vary from zero

to positive values (Frank et al. 2009; Strauss et al. 2011); thus,

only these participants may be characterized as using un-

certainty to drive exploration. Indeed, similar to the previous

studies, there was a reliable correlation between the explore

term based on relative uncertainty in a given trial and the RT

adjustment from the previous trial in these 13 participants

(single-trial regression weights mean = 0.22, SD = 0.13, 1-

sample t13 = 6.29, P < 0.001). The additional bidirectional

uncertainty model, which allowed this parameter to be fit with

either positive, zero, or negative values, revealed that 9 of these

participants still had positive e coefficients while 8 participants

did not (Table 1). These positive e participants still had

a reliable positive correlation between relative uncertainty and

RT adjustment (mean = 0.20, SD = 0.21, 1-sample t8 = 2.88, P =
0.02), whereas nonpositive e participants did not (mean = 0.01,

SD = 0.21, 1-sample t < 1). Although the difference between

these groups was large, it was not statistically significant (t15 =
1.91, P = 0.075, see Fig. 4c). Nevertheless, at least 9 of the

participants in this investigation can be quantified with this

model as using uncertainty to drive exploration. Consequently,

subsequent investigations of uncertainty were split between

these positive e and nonpositive e subgroups.

Regression Coefficients: Prediction Error and Theta
Power

Figure 5 shows the results of significant single-trial regressions

between prediction error and feedback-locked EEG power.

The same feedback-locked theta-band TF-ROI outlined in

Figure 3 is detailed here. Time--frequency plots show the

regression slope (standardized beta weight) or the intercept at

each time--frequency point. The regression slopes demonstrate

that there was a direct relationship between the absolute value

of prediction error and theta power within this TF-ROI. This

relationship did not differ between reward and punishment, as

detailed by the difference plot in Figure 3. This null finding

stands in contrast to the intercept, which demonstrated

a significant increase for negative compared with positive

prediction errors. Thus, the mere presence of a negative

prediction error was associated with greater theta power

Figure 3. Event-related EEG at the FCz electrode to response and feedback. Positive
amplitude is displayed up on the y-axis. The ERP is superimposed over the power
plots in black. TF-ROIs are shown in the black boxes. Topomaps are taken from the
TF-ROIs shown here (±10 lV2 for feedback, ±2 lV2 for response).
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(compared with positive), but the degree to which EEG power

scaled with greater deviations from expectation (larger pre-

diction errors) was similar for both valences. Other time and

frequency areas were different between valences, particularly

in early delta and late theta through beta bands. These mid-

frontal EEG findings in the theta-band TF-ROI support prior

interpretations of a binary sign difference and a continuous

magnitude effect in dorsal cingulate coding of reinforcement

feedback (Hayden et al. 2011).

Comparison of FRN and Theta Power Split by Prediction
Error

To simultaneously visualize these separate sign-related offset

and magnitude-related scaling effects in formats common to

EEG analyses, ERPs and theta power were binned by small and

large valenced prediction errors (Fig. 6). Given the clear

hypotheses about these effects and the descriptive nature of

this analysis, separate general linear models were simply

calculated for each of the time bins for each EEG feature.

For FRN amplitudes in the P2-FRN range, there was only

a significant main effect for sign (F1,16 = 5.32, P = 0.035). In the

P3-FRN time range, there was a main effect for sign (F1,16 =
15.19, P < 0.001), a main effect for magnitude (F1,16 = 12.25,

P = 0.003), and an interaction (F1,16 = 6.16, P = 0.025), revealing

significant contrasts between big (P = 0.002), small (P = 0.007),

and negative (P = 0.001) prediction errors. In the P3-N4 time

range, there was again only a main effect for sign (F1,16 = 8.24,

P = 0.01). In sum, 4 of 5 significant main effects or simple

contrasts revealed bigger amplitudes for negative prediction

errors. Only a single statistical test revealed a within-sign effect

of magnitude, fitting with a signed prediction error account:

P3-FRN big > small negative prediction error amplitude (Fig.

6a). However, task dynamics may have contributed to an

imbalanced consistency between these conditions: 20% of

small negative trials consisted of nonzero rewards compared

with less than 1% for big negative trials.

For theta power (Fig. 6b), there were only main effects of

sign: in the P2-FRN time range (F1,16 = 8.67, P < 0.01), in the P3-

FRN time range (F1,16 = 18.82, P < 0.001), and the P3-N4 time

range (F1,16 = 21.39, P < 0.001). This overall pattern fits with

the FRN findings describing a general effect of larger EEG

power for negative prediction errors, and it strongly matches

the findings of the regression weights detailing a sign-related

intercept offset for worse-than-expected outcomes.

Uncertainty

Figure 7 details the trial-to-trial correlations between EEG

power and the relative uncertainty of the chosen minus the

unchosen option (Spearman’s q values). The leftmost time--

frequency plots include all N = 17 participants (the N = 13

participants with positive explore parameters in the model of

Frank et al. (2009) revealed the same significant patterns). To

demonstrate that these uncertainty--EEG correlations are

related to exploration, the rightmost time--frequency plots

show the significant statistical differences in the difference

between q correlation coefficients between participants who

used uncertainty for exploration (positive e) and those who did

not (nonpositive e) as defined by the bivalenced exploration

model.

Total relative uncertainty was correlated with mid-frontal

beta power and middle/frontopolar delta/theta power in the

time period around response commission (Fig. 7a). These

uncertainty-related responses were only present when partic-

ipants actually selected the uncertain option (exploratory

trials). Figure 7b shows how increasing uncertainty correlated

with greater EEG power in the delta/theta range in both right

lateral/frontopolar and mid-frontal areas during exploration,

preceding the response by up to 500 ms. These theta-band

effects were significantly greater in positive e compared with

nonpositive e participants, although the frontopolar effect

differentiating these groups occurred at somewhat earlier time

points and at a lower frequency than was expected. In contrast,

Figure 7c shows how exploitative responses were character-

ized by negative relationships between the degree of relative

uncertainty and a broad topography and spectra of EEG power.

This negative relationship occurs in exploitation because as

Figure 4. Average RT performance. (a, b) Participants learned to adapt RTs (smoothed with a 5-point kernel) depending on block-specific reward structure. For example,
participants responded slower when EV increased over time and they responded faster when EV decreased over time, even relative to their own performance when EV was
constant. Slower RTs to the constant EV-reversed (CEV-R) condition demonstrate a preference for reward probability over magnitude (risk aversion). (c) Positive e participants
were characterized by the model as using relative uncertainty to guide exploration. Here it can be seen that this group was characterized by significant correlations between trial-
to-trial measures of exploration and RT change.
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subjects choose the increasingly more certain (exploitative)

action, there is lower EEG power. There were no significant

differences between e groups in this exploit condition.

Together, these data suggest that frontal theta linearly scales

with the relative uncertainty of the chosen option. When peri-

response theta power over these sites was high, individuals

Figure 5. Mid-frontal (FCz) EEG relationships with prediction error measures. Topographic plots show regression slopes in the TF-ROIs. FCz is indicated on the first topoplot.
Time--frequency plots of slopes show the regression weight with absolute prediction error, demonstrating that prediction error magnitude scales with mid-frontal theta. This theta-
band relationship does not depend on the sign of the prediction error, as demonstrated by a lack of statistical difference between negative and positive prediction errors in the
theta-band TF-ROI. In contrast, there was an intercept offset for negative compared with positive prediction errors in this TF-ROI (converted to decibel change from pre-cue
baseline intercept). These plots demonstrate how mid-frontal theta does not reflect a signed prediction error; rather, it reflects the overall degree of surprise with an asymmetrical
offset when events are worse than expected.
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were more likely to explore the uncertain option in that trial.

This theta-uncertainty relationship was greater in those

subjects who were more sensitive to uncertainty in their

decisions to explore. These findings are consistent with

a hypothesis for prefrontally directed strategic control during

exploratory choices.

Summary

Figure 8 summarizes the major methods and findings, including

‘‘when’’ different effects occur, ‘‘how’’ conditions were defined

with model outcomes, ‘‘where’’ the effects are located on the

scalp, and ‘‘what’’ the patterns of correlation were for different

variables. Note that the exploitation slope is inverted in this

figure compared with Figure 7c in order to detail a single

continuum of theta power correlation with relative uncertainty

for the selected response.

Discussion

This investigation revealed that distinct frontal EEG responses,

primarily in the theta band, reflect neural measures related to

unexpectedness updating and uncertainty-driven exploration.

Advancing previous findings, here we characterized how the

medial theta-band response to feedback does not reflect

a negative reward (punishment) prediction error; rather it

reflects an asymmetrical sensitivity to worse-than-expected

events while directly scaling with the degree of unexpected-

ness. We found novel evidence that information related to

uncertainty is encoded during the decision time surrounding

response commission. Notably, enhanced theta power related

to uncertainty was specifically observed in trials in which

participants chose the uncertain option and primarily in

participants who used uncertainty to explore. This finding

provides novel evidence for a link between frontal cortical

activities and uncertainty-driven exploration.

Unexpectedness and Mid-Frontal Theta

Both mid-frontal theta and the mid-cingulate cortex are

particularly reactive to signals of novelty, error, punishment,

and conflict, yet also show a diminished response to reward

(Shima and Tanji 1998; Bush et al. 2002; Luu et al. 2003; Wang

et al. 2005). Given the role of mid-frontal theta and the mid-

cingulate cortex in evaluating performance and adjusting

behavior (Debener et al. 2005; Kennerley et al. 2006; Behrens

et al. 2007), error and punishment signals may be reliable

indicators of the need to adjust behavior—whereas correct

responses and rewards usually indicate that performance is on

the right track. However, it is likely that the dynamic reward

optimization task used here revealed a more sensitive role of

mediofrontal systems in unexpectedness updating and behav-

ioral adaptation (i.e., not specific to negative prediction errors).

Figure 6. Feedback-locked ERP (a) and total theta power (b) from the FCz electrode, split by sign and magnitude of prediction error. Bar graphs display mean values (±SEM)
taken from the time windows indicated by vertical dashed lines. For both EEG measurements, there was a strong and reliable effect for sign (negative[positive prediction error).
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The FRN/theta signal is commonly assumed to reflect

a signed negative prediction error since it is larger when

stimuli indicate a loss in value or a worse-than-expected

outcome (Holroyd and Coles 2002; Hajcak et al. 2006), and the

amplitude scales linearly with the degree of punishment

expectancy (Cavanagh et al. 2010; Chase et al. 2010; Ichikawa

et al. 2010; Philiastides et al. 2010). Even when valence and

expectation are independently manipulated, there appear to be

separate (Pfabigan et al. 2011) or interactive (Potts et al. 2010)

effects of both negative valence and expectancy in determining

FRN amplitude. However, recent studies have detailed how

a larger FRN has been observed to rewards when participants

were expecting punishment (Oliveira et al. 2007; Baker and

Holroyd 2011). Thus, it is clear that this signal can be

Figure 7. Nonparametric correlations (q values) between relative uncertainty (chosen--unchosen option) and EEG power at the time of the response, for all subjects (left
columns) and positive e[ nonpositive e groups (right columns). Topographic plots show EEG--uncertainty correlations in the extended TF-ROI (leftward topoplots are all subjects,
rightward topoplots are positive e [ nonpositive e). Mid-frontal and right frontopolar sites are indicated on the top topoplot. (a) Total relative uncertainty is characterized by
a positive relationship with medial beta power and medial and frontopolar theta power. (b) When participants selected the response with greater uncertainty, similar patterns
emerged: frontopolar theta and mid-frontal theta correlated with relative uncertainty. This specific effect was larger in subjects that the model identified as using uncertainty to
guide exploration (positive e). (c) In stark contrast, when participants selected the option with the lower relative uncertainty, there were widespread negative correlations
between relative uncertainty and medio/lateral/frontal beta and theta power and no difference between e groups.

Cerebral Cortex November 2012, V 22 N 11 2583



modulated by degree of unexpectedness to rewards or

punishments, suggesting that it may reflect a general signal of

expectation violation rather than signed reward prediction

error.

This is an important distinction as Caplin and Dean (2008)

have recently argued that neural responses must fulfill specific

axiomatic criteria to be declared reward prediction errors. The

FRN/theta signal appears to violate a core feature of these

criteria: unique sensitivity to a signed signal. The current study

demonstrated that feedback expectedness scaled linearly with

theta power for both positive and negative prediction errors

(similar slope) in the context of an asymmetrical sensitivity to

negative prediction errors (higher intercept). Thus, it does not

appear to reflect the same type of reward prediction error

coded by dopamine neurons (Schultz 2002) and striatal

activities (Rutledge et al. 2010), although it perfectly replicates

patterns observed in dorsal cingulate neurons (Hayden et al.

2011). It is possible that the conjoined sensitivity of this signal

to unexpectedness and negative sign reflects a dichotomized

computational scheme for coding a punishment prediction

error. However, it is also possible that increased theta power to

negative prediction errors is related to valence or behavioral

adjustment strategies. We hypothesize that future investiga-

tions will reveal separate unexpectedness updating (slope) and

valence-related (intercept) features of this signal and further

support the distinction of this signal apart from a reward

prediction error.

This reinterpretation of the FRN/theta response as a signal of

expectedness violation in the context of behavioral adaptation

fits with recent theoretical and empirical work (Holroyd et al.

2008; Cavanagh et al. forthcoming). Although this finding

actually diverges from our previous work describing how mid-

frontal theta specifically scaled with negative prediction error

(Cavanagh et al. 2010), it fits with another finding from that

same paper describing how lateral theta power scaled with

unsigned prediction error. In that same study, the lateral frontal

theta signal preferentially predicted future behavioral adapta-

tion in seeking reward, suggesting a specific role in reward-

based behavioral optimization. The findings from the current

study parallel this interpretation, where right frontal areas were

involved in the suggested top-down influence over exploratory

behavior.

Quantifying Exploration

Modeling exploration is not trivial because it requires predict-

ing that participants make a response that counters their

general propensity to exploit the option with highest value,

and therefore, any model of exploration requires knowing

‘‘when’’ this will occur. Daw et al. (2006) did not find evidence

that relative uncertainty about the reward statistics was

associated with exploration when it was modeled as an

uncertainty bonus. Rather, they found that exploration was

best characterized by the standard softmax logistic choice

Figure 8. Summary figure. In the left column, a sample trial details that a fast
response was chosen. Faster responses had higher probability distribution variance
than slow responses; thus, there was more relative uncertainty for the chosen option,
which was defined as an exploratory trial. Greater relative uncertainty correlated with
peri-response theta power in mid-frontal and right frontopolar areas. Response
characteristic slopes were taken from unthresholded TF-ROIs in Figure 7; conditions
where participants selected the response with lower relative uncertainty
(exploitation) were inverted from Figure 7c to demonstrate the continuous nature
of the relationship between relative uncertainty of the selected response and theta
power. This plot shows how individuals who used uncertainty to explore (positive e)

had significantly larger slopes only when exploring. The right column shows a sample
feedback. Given the current estimation of action value for fast responses (25), this
feedback (35) reflected a better-than-expected outcome (positive prediction error:
þ10). Prediction errors correlated with mid-frontal theta power. Response
characteristic slopes were taken from unthresholded TF-ROIs from Figure 5; valenced
prediction errors had similar slopes, yet negative prediction errors were characterized
by a larger initial offset (greater power overall).
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function in which exploration randomly occurred due to noise.

Payzan-LeNestour and Bossaerts (2011) assessed the positive

(bonus) or negative (penalty) influence of estimation un-

certainty on exploration, discovering a better fit for negative

influence—suggestive of ambiguity aversion. However, a nega-

tive influence of uncertainty may also arise simply because the

majority of trials are exploitative and tend to be directed

toward the more certain option. Our analysis facilitated the

revelation of a positive influence of uncertainty, particularly in

those trials in which participants were putatively exploring.

Moreover, it is worthy to note that studies failing to report

a positive effect of uncertainty on exploration have all used n-

armed bandit tasks with dynamic reward contingencies across

trials (Daw et al. 2006; Jepma and Nieuwenhuis 2010; Payzan-

LeNestour and Bossaerts 2011), where participants may have

responded as if only the very last trial was informative about

value (as adduced from the effective very high learning rates in

Daw et al. (2006) and Jepma and Nieuwenhuis (2010)). It may

be difficult to estimate uncertainty-driven exploration in this

context, given that participants would be similarly uncertain

about all alternative options that had not been selected in the

most recent trial. Here we used a task that did not have any

structural uncertainty (the reward dynamics did not shift or

reverse within a block, only between blocks); therefore,

exploration could be used to reduce uncertainty. Indeed, we

found significant positive correlations between RT swings from

one trial to the next and the relative uncertainty in those trials

in participants with positive e (Fig. 3c).

Uncertainty-Driven Exploration and Frontal Theta

Mid-frontal and right lateral/frontopolar areas appeared to

‘‘track’’ the degree of relative uncertainty of the chosen option

(as compared with the unchosen option) up to 500 ms prior to

response commission (Fig. 7a). Mid-frontal response-locked

ERP magnitudes have been shown to vary with uncertainty

about whether the selected response was correct during

action-monitoring tasks (Scheffers and Coles 2000; Pailing and

Segalowitz 2004). While these aforementioned response-

locked ERPs have also been shown to reflect phase-locked

mid-frontal theta-band activities (Luu and Tucker 2001; Luu

et al. 2004; Trujillo and Allen 2007), we are unaware of any

investigations of the EEG correlates of response uncertainty

during reinforcement learning. We suggest that this finding

relates to uncertainty-driven exploration in this specific

instance based on 3 pieces of evidence.

First, positive relationships between relative uncertainty and

EEG power were only present when participants were

selecting the option with greater uncertainty, which we have

previously associated with exploration (Frank et al. 2009). In

fact, the finding that these EEG--uncertainty relationships were

positive during exploration (Fig. 7b) and negative during

exploitation (Fig. 7c) suggests a direct relationship between

increasing uncertainty of the chosen option and EEG power

(Fig. 8). Second, these correlations were located over cortical

areas previously associated with exploration (dorsomedial

cortex [Pearson et al. 2009] and right frontal pole [Daw et al.

2006]) and in a frequency band previously associated with

strategic control (theta) when selecting the option with

greater uncertainty. In contrast, correlations with EEG power

during exploitation were broad in both topography and

frequency. Finally, these exploration-related effects were

significantly larger in participants with a positive e parameter

(whom the model identified as using uncertainty to guide

exploration) when compared with participants with a non-

positive e parameter. Convergent evidence suggests that the

enhanced theta power over mid-frontal and right lateral/

frontopolar areas reflects the decision to commit to a response

when exploring.

Conclusions

The use of computationally derived, theoretically motivated

parameters clarify the likely roles of the EEG patterns observed

here. EEG activities in distinct frontal regions, primarily in the

theta band, correlated with separable features of reinforcement

learning: unexpectedness updating and decision uncertainty.

First, we ‘‘clarify’’ the features of feedback-related unexpect-

edness updating: this signal is linearly related to unexpected-

ness but has an asymmetrical sensitivity to negative outcomes.

Second, we provided the first evidence for a link between

frontocortical activity and the strategic application of un-

certainty-driven exploration.

Notes
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