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Abstract: Phase regression exploits the temporal evolution of phase in individual voxels to suppress
blood oxygenation level dependent (BOLD) signal fluctuations caused by larger vessels and draining
veins while preserving signal changes from microvascular effects. However, this process does not per-
form well when phase time series have low signal-to-noise ratios because of high levels of physiologi-
cal noise. We demonstrate that Savitzky-Golay filters may be used to recover the underlying change in
phase and completely restore the efficacy of phase regression. We do not make a priori assumptions
regarding phase evolution and perform a data-driven exploration of parameter space to select the
Savitzky-Golay filter parameters that minimize temporal variance in each voxel after phase regression.
This approach is shown to work well on data acquired with single-shot and multi-shot pulse sequen-
ces, and should therefore be useful for both human and animal gradient-echo fMRI at high spatial res-
olutions at high fields. The ability to improve the spatial specificity of BOLD activation may be
especially advantageous for clinical applications of fMRI that rely upon the accuracy of individual sub-
ject’s activation maps to assist with presurgical planning and clinical decision-making. Enhanced phase
regression with Savitzky-Golay filtering may also find other uses in analyses of resting state functional
connectivity. Hum Brain Mapp 35:3832–3840, 2014. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Functional magnetic resonance imaging (fMRI) based
upon blood oxygenation level dependent (BOLD) contrast
(Ogawa et al., 1990b) remains the primary technique for
non-invasive investigation of human brain function (Ban-
dettini et al., 1992; Kwong et al., 1992; Ogawa et al., 1992).
Although the majority of fMRI is still conducted at 1.5T or
3T, the greater-than-linear increase in BOLD contrast with
increasing magnetic field strength (Gati et al., 1997; Ogawa
et al., 1993) has been a clear impetus for the steady
increase in ultra-high-field (�7T) sites worldwide (Ug�urbil,
2012). The order-of-magnitude increase in BOLD sensitiv-
ity at high fields can be exploited for functional imaging at
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higher spatial resolutions [ranging from 1 to 3 cubic milli-
meters (Menon and Goodyear, 1999; Polimeni et al., 2010;
Stringer et al., 2011; Yacoub et al., 2001)] down to less than
a cubic millimeter (Harel et al., 2006; Koopmans et al.,
2011; Petridou et al., 2013) to reduce partial volume aver-
aging effects and improve the specificity of activation and
functional connectivity maps. However, gradient-echo
acquisitions are also sensitive to large vessels and draining
veins (Ogawa et al., 1990a) that can be several millimeters
away from the primary site of neural activation (Turner,
2002). Such degradation in spatial specificity is obviously
undesirable, and efforts have been made in both acquisi-
tion and post-processing methods to improve sensitivity
and specificity to signal changes in gray matter. Spin-echo
fMRI is known to be relatively more specific to BOLD
changes in the parenchyma (Duong et al., 2003; Zhao
et al., 2004), but technical challenges and physiological
limitations of spin-echo imaging at ultra-high fields, such
as achieving spatially uniform 180� pulses (Vaughan et al.,
2001) and adhering to safety limits of specific absorption
rate (SAR) in the brain (ICNIRP, 1998), currently accounts
for the use of T2

*-weighted gradient-echo sequences for
routine fMRI at 7T.

Although MR data are inherently complex, phase infor-
mation is irrecoverably discarded in the vast majority of
fMRI studies despite the well-known fact that phase con-
tains unique and useful information. Phase time series
have been characterized (Rowe 2005; Rowe et al., 2007),
and several groups have investigated the use of complex
data to construct or improve activation maps (Hahn et al.,
2009, 2012; Lai and Glover, 1997; Nan and Nowak, 1999;
Rowe and Logan, 2004). In fact, activation can be detected
directly from k-space (Rowe et al., 2009). The unique infor-
mation in the phase time series can also be exploited to
suppress BOLD signal fluctuations from large vessels and
draining veins (Menon, 2002; Nencka and Rowe, 2007),
thereby increasing the spatial specificity of BOLD activa-
tion. The algorithm proposed by Menon (2002) is referred
to as phase regression, and has since found additional uses
to mitigate false positive activations (Barry et al. 2010;
Martin et al., 2004) and increase activation map reproduci-
bility (Barry et al., 2012).

With respect to its original utility of suppressing BOLD
signal fluctuations originating from voxels containing large
vessels or draining veins, phase regression (PR) was origi-
nally applied to 4T data and shown to work well when
the phase time series exhibits high signal-to-noise ratio
(SNR). However, our experience with PR on 7T data
acquired using both 2D single-shot echo-planar imaging
(EPI) (Mansfield, 1977, 1994) and 3D multi-shot sequences
such as fast field echo (FFE) (Barry et al., 2011; Swisher et al.,
2012; van der Meulen et al., 1985, 1988) and PRESTO (PRin-
ciples of Echo-Shifting with a Train of Observations) (Barry
et al., 2011; Golay et al., 2000; Liu et al., 1993; Neggers et al.,
2008; Swisher et al., 2012) has uncovered many instances in
which the stability of the phase time series is insufficient to
obtain adequate suppression of many large vessels.

Numerous studies have investigated and quantified the
manifestation and/or obviation of physiological noise in
the magnitude time series of fMRI data (Bodurka et al.,
2007; Gonzalez-Castillo et al., 2011; Kr€uger and Glover,
2001; Murphy et al., 2007; Triantafyllou et al., 2005) but
only recently has the impact and mitigation of physiologi-
cal noise on phase time series been explored (Hagberg
et al., 2008, 2012; Petridou et al., 2009). Hagberg et al.
(2008) considered three models to account for variance in
the time series of phase images. The first model assumes
that physiological noise is negligible and thus MR data are
only contaminated by thermal noise. The standard devia-
tion of the phase time series (tSDu) in model I is therefore

expressed as tSDI
u51=SNR0 where SNR0 the SNR of a

magnitude image. In other words, if physiological noise
did not exist (and MR images contained only thermal
noise), then resting state functional images with a high
image SNR0 5 100 would contain individual voxels exhib-
iting an approximate 1/100 5 0.01 5 1% fluctuation in
either the magnitude or phase time series. However,
numerous studies have established that this model is not
appropriate for in vivo noise measurements, and thus a
scaling factor must be introduced to account for the
increase in temporal variance due to physiological noise
(Kr€uger and Glover, 2001; Triantafyllou et al., 2005). The
second (more realistic) model accounts for the impact of
physiological noise and introduces the scaling factor k to
represent increased temporal variance. In model II the

expression is expanded to tSDII
u5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11k2 � SNR2

0

� �q
=SNR0

where k is calculated from magnitude time series and
assumed to be the same for phase time series. Finally, the
third model extends model II by permitting the scaling
factor to be different between phase and magnitude

images, resulting in the expression tSDIII
u 5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11k2
u � SNR2

0

� �r
=SNR0. The intriguing possibility that

ku > k directly implies that certain physiological processes

can lead to increased instability in phase but not magni-
tude images. Hagberg et al. (2008) tested these three mod-
els and found strong evidence to support model III (i.e.,
ku >> k) regardless of the method used to unwrap phase

images. In gray matter at 3T, Hagberg et al. (2008) meas-
ured ku � 13 � k for temporal phase unwrapping and ku �
6 � k for spatiotemporal phase unwrapping. If we assume
a linear relationship between main field strength and tem-
poral phase instabilities, then ku for gray matter at 7T may

lie between 14 � k and 30 � k – and possibly higher if this
scaling is greater-than-linear or phase unwrapping is par-
ticularly challenging (e.g., in regions of high susceptibility
near the auditory canals and sinuses). Furthermore, sev-
eral studies have concluded that these additional phase
instabilities are dominated by global field fluctuations
resulting from normal subject respiration (Hagberg et al.,
2008, 2012; Petridou et al., 2009).
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Figure 1 presents an example of a 7T complex time
series with high magnitude SNR but low phase SNR. The
low-SNR phase time series is shown as the blue curve in
Figure 1D, and its use in PR without filtering results in
incomplete vessel suppression (blue curve in Fig. 1E). The
underlying modulation of phase due to BOLD signal
changes is, however, still obvious upon visual inspection,
and may be recovered with an appropriate low-pass filter.
Thus, we aimed to investigate the use of Savitzky-Golay
filters (Savitzky and Golay, 1964) to recover the underlying
change in phase (e.g., red curve in Fig. 1D) and enhance
the efficacy of PR (red curve in Fig. 1E). Savitzky-Golay fil-
ters were selected for this particular application because
they are robust filters that have been used in a wide range
of signal processing applications from forensics (Schneider
and Kovar, 2003) to fMRI (Geissler et al., 2007) to neuro-
gastroenterology (Paskaranandavadivel et al., 2013). As
temporal variance in both magnitude and phase time
series is dependent upon factors such as acquisition strat-
egy and spatial resolution, we validate the robustness of
enhanced PR using 7T data from 88 functional runs across
11 subjects acquired with four different pulse sequences at
two in-plane (and temporal) resolutions.

METHODS

Data Acquisition

Imaging data were acquired with a Philips Achieva 7T
scanner with a quadrature transmit coil and 16-channel
receive-only head coil (Nova Medical, Wilmington, MA).
A detailed description of data acquisition has been pub-
lished (Barry et al., 2011). In brief, twelve healthy volun-
teers were studied under a protocol approved by the
Vanderbilt University Institutional Review Board. Data
from one subject was not included in the current analyses
due to inconsistent performance across all runs. The visual
paradigm was a block design with four alternating seg-
ments of 24 sec baseline (central fixation) and 24 sec acti-
vation (stationary 8 Hz flashing checkerboard wedge in
the left visual field). Twelve 2-mm slices were planned
parallel to the calcarine sulcus with the shim volume situ-
ated over the occipital lobe. Eight functional runs were
acquired while cycling through four sequences (2D EPI
with 2.83 mm3 voxels, 2D EPI with 9.59 mm3 voxels, 3D
FFE with 2.83 mm3 voxels, and 3D PRESTO with
9.59 mm3 voxels) in pseudo-random order. A T1-weighted
anatomical volume (1.19 3 1.19 3 2 mm3 voxels, acquisi-
tion time 5 51.1 sec) with identical placement as the func-
tional runs was also acquired to facilitate accurate
registration between anatomic and functional images.

Data Preprocessing

Data workflow was handled using software written in
Matlab (MathWorks, Natick, MA), and preprocessing steps

were implemented using scripts in Matlab and AFNI (Cox,
1996). Where appropriate, function names and parameters
are listed in parentheses for easy reference. Physiological
noise correction via RETROICOR (Glover et al., 2000)
(afni_proc.py in AFNI using despike and –ricor_polort 4)
was applied to each run before PR. The order of these pre-
processing steps was reversed from our previous work
(Barry et al., 2012) to minimize physiological fluctuations
in magnitude images as much as possible before PR,
thereby focusing this study on the efficacy of vessel sup-
pression; RETROICOR is, however, performed on

Figure 1.

Time series for a single voxel containing a vein. The (A) real

and (B) imaginary time series add in quadrature to form the (C)

magnitude. In (D) the blue curve is the noisy, unfiltered phase

time series and the red curve is this phase time series after SGF.

In (E), the magnitude curve before PR exhibits a 38.8% signal

change relative to baseline. The blue curve is the magnitude

after PR using the unfiltered time series; the BOLD signal

change is partially suppressed, but still exhibits a 16.8% signal

change. Finally, the red curve is the magnitude after Savitzky-

Golay filtered PR and exhibits complete suppression with a

20.55% BOLD signal change.
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magnitude images, so unwrapped phase images were
saved separately before RETROICOR and then used to
reconstruct complex images afterwards.

Functional data were then processed using either stand-
ard PR (without phase filtering) or “enhanced” PR with
Savitzky-Golay filtering (SGF). SGF (sgolayfilt in Matlab)
requires two parameters to be specified (frame size, N,
and polynomial order, p). Selecting a smaller frame size
(or window) with higher-order polynomials will perform
less smoothing whereas larger windows with lower-order
polynomials will output a more smoothed signal. The opti-
mal values for N and p are unknown and vary from one
voxel to the next, so we implemented an exploratory
implementation of SGF that considered many possible
combinations of polynomial order and frame size (117 for
EPI and FFE, and 486 for PRESTO) for every voxel. Our
intent was not to perform an exhaustive search through all
possible combinations of N and p but rather to explore a
large subset of the parameter space to find a combination
that is optimal or close to optimal. We define “optimal” as
the combination of N and p that minimizes the temporal
variance of the magnitude time series and thus produces
the highest R2 (where the goodness of fit metric
R2 5 1 2 rPR/rorig where rorig denotes temporal standard
deviation of a voxel before processing and rPR denotes the
temporal standard deviation of the same voxel after PR).
For EPI and FFE data (with 96 time points), we considered
11 values of p (2, 3, 4, . . ., 11, 12) and up to 12 values of N
(5, 9, 13, . . ., 45, 49) with the condition that N> p. For
PRESTO data (with 192 time points because improved
temporal efficiency via echo shifting doubles the sampling
rate), we considered 23 values of p (2, 3, 4, . . ., 23, 24) and
up to 24 values of N (5, 9, 13, . . ., 93, 97) with N> p. The
effective use of PR is based upon an assumption that
BOLD-related phase changes in gray matter voxels are
small relative to physiological noise in the phase time
series, which is an important point that is reviewed in
detail in the “Discussion” section.

Phase time course SNR will vary naturally from one
voxel to the next—a few voxels may have sufficiently high
phase SNR and not require filtering before PR whereas the
vast majority of voxels (per Fig. 2) are expected to benefit
from exploratory SGF. It may be possible to estimate this
phase SNR threshold (that determines whether or not fil-
tering is required) a priori through simulations, although
the reliability of this result would be dependent upon the
accuracy of the simulations while considering numerous
complex factors (spatial resolution, rigid-body motion, par-
tial volume effects, etc.) and thus may be highly suspect.
We therefore propose a simple and effective three-step
implementation of PR with SGF. For each voxel: (1) stand-
ard PR is performed with the unwrapped but not tempo-
rally filtered phase time course and R2

no filtering is calculated;
(2) PR with data-driven filtering is performed for all
117 (or 486 for PRESTO) combinations of N and p, and the
highest R2 across combinations is selected to be R2

SGF; (3) if
R2

no filtering >R2
SGF then the resultant time series after stand-

ard PR is retained, otherwise the time series after PR with
filtering (using the N and p that produced R2

SGF) is retained.
Thus, the “enhancement” reflects the option of using the fil-
tered phase time course in the regression whenever it is
shown to produce a better fit to the magnitude time series.
This approach obviates the need for complex simulations to
estimate a phase SNR threshold and is effective because it

Figure 2.

Histograms of t-scores for 4971 voxels from 11 subjects before

(in blue) and after (in pink) PR without filtering (left column)

and with SGF (right column) for data acquired with (A) high-

resolution EPI (2.83 mm3 voxels), (B) high-resolution FFE (2.83

mm3 voxels), (C) lower resolution EPI (9.59 mm3 voxels), and

(D) lower resolution PRESTO (9.59 mm3 voxels). The overlap-

ping region between pairs of histograms is represented in

magenta. Although standard PR does suppress some higher t-

scores that are indicative of vessels, SGF suppresses the major-

ity of voxels with t> 10 (more likely vessels) while preserving

most voxels with t< 8 (more likely gray matter).
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provides the best possible fit both when phase SNR is high
(and thus filtering may not be required) and when phase
SNR is low (and thus filtering is required).

For each subject, resultant functional data were regis-
tered (3dAllineate) to the skull-stripped (3dAutomask)
anatomical with six degrees of freedom (in-plane transla-
tion, rotation, scaling, and shearing). For lower resolution
functional data, this step included resampling to the reso-
lution of the anatomical images. To ensure accurate regis-
tration between anatomic and functional images (which
can be challenging at any field strength but especially so
at higher fields), a spatial weighting function was con-
structed (and then passed to 3dAllineate) to emphasize the
unique anatomic features of each subject’s occipital pole
and guide the registration algorithm. This weighting func-
tion was constructed by aligning (for each posterior–ante-
rior column of each slice) 1D exponential decay curves
with a maximal value of “1” at the edge of the occipital
pole that quickly decayed to zero toward anterior regions.
The accuracy of each registration was visually and care-
fully verified using MRIcron (www.mccauslandcenter.sc.
edu/mricro/mricron). Spatial smoothing was not applied
to maintain the highest resolution possible and facilitate
single-subject analyses with respect to interpretation of
BOLD signal changes in larger veins and gray matter.

Data Analysis

Twelve activation maps were computed for each sub-
ject—one for data acquired with each of the four pulse
sequences for each of the three preprocessing pipelines (no
PR, standard PR, and PR with SGF). Linear and quadratic
drifts were removed from all functional runs before pairs
of runs (for each acquisition/preprocessing permutation)
were combined in deconvolution analyses (3dDeconvolve)
with autoregressive moving average, i.e., ARMA(1,1), cor-
rection for temporally correlated noise (3dREMLfit). To
protect against consideration of false positive activations,
only voxels with t> 4 across all four acquisition sequences
(without or with either implementation of PR) were con-
sidered in the histogram analyses described below (Fig. 2).

RESULTS

Figure 2 displays t-score histograms for voxels exhibit-
ing consistent activation before and after PR. Each histo-
gram contains 4,971 t-scores representing active voxels
from all 11 subjects (with a median contribution of 492
voxels per subject). For each acquisition sequence (row),
the left column represents standard PR (without filtering
the phase) and the right column represents PR with per-
voxel optimal implementation of SGF. Several authors
have observed that the largest signal changes in BOLD
fMRI can occur around larger vessels and draining veins
(Gati et al., 1997; Harel et al., 2006; Yacoub et al., 2005),
and so it follows that voxels containing larger vessels may

also tend to have the highest t-scores. We therefore con-
sider voxels with the top 20% of t-scores before PR as a
proxy for the expected efficacy of PR to suppress BOLD
signal changes caused by larger vessels. Percentages of
suppressed high t-score voxels are calculated as ratios of
reduction in histogram counts after PR to histogram
counts before PR. For high-resolution EPI (Fig. 2A), stand-
ard PR suppresses 8.56% of high t-score voxels and PR
with SGF suppresses 63.0%; for FFE (Fig. 2B) it is 10.1%
vs. 73.2%, for low-resolution EPI (Fig. 2C) it is 1.38% vs.
62.8%, and for PRESTO (Fig. 2D) it is 24.6% vs. 85.0%.

To visualize how PR without and with SGF affects single-
subject activation maps, Figure 3 presents statistical para-
metric maps for each acquisition sequence (row) using data
from four different subjects. The far left column displays the
underlying anatomy and the other labeled columns overlay
the statistical parametric maps at appropriate thresholds.
Regions of completely suppressed activation (indicated with
arrows in the far right column) are located within sulci
(where veins lie) and regions of remaining activation tend to
be more localized to surrounding gray matter. Furthermore,
active regions completely suppressed after PR with SGF are,
if at all, only partial suppressed with standard PR, which
highlights the benefit of filtering the phase before regression.
We note that the main region of “surviving” activation in
Figure 3C expands across both gray matter and a sulcus,
which is likely attributable to partial volume averaging
effects from the lower resolution acquisition.

DISCUSSION

Phase regression suppresses BOLD signal changes caused
by large vessels and draining veins in high-resolution gradi-
ent-echo data, thereby selectively emphasizing signal
changes from microvascular activation (Menon, 2002). How-
ever, standard PR at 7T does not work well when the phase
time series exhibits low SNR (e.g., Fig. 1D) due to an
increase in physiological noise (Hagberg et al., 2008, 2012;
Petridou et al., 2009). We have demonstrated that the
underlying modulation of phase can be recovered via SGF,
thus restoring the ability to suppress unwanted signal
changes caused by large vessels and draining veins. We do
not make a priori assumptions regarding the evolution of
phase in any voxel because it can be modulated by both
DR2

* and spatiotemporally varying B0 inhomogeneities
(Barry et al., 2010). We therefore adopt an aggressive data-
driven approach to identify the SGF parameters that mini-
mize temporal variance (i.e., noise) for each voxel. In this
context, “noise” refers to any modulation of phase with a
physiologic origin, be it BOLD fluctuations or respiration.
Our implementation of PR with SGF preserves signal
changes in the majority of voxels with lower t-scores (Fig.
2, right column), which is what we hypothesized to observe
because gray matter tends to have smaller magnitude signal
changes (Gati et al., 1997; Harel et al., 2006; Yacoub et al.,
2005) and negligible BOLD-related phase changes (Menon,
2002).
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It is theoretically possible that PR may not attenuate
BOLD signal changes in voxels with a vein at the
magic angle (approximately 54.7�). Menon (2002) investi-
gated this potential confound by examining the BOLD
signal change in 2,868 voxels with a phase fitting
parameter (A) that was not significantly different from
zero (and thus could represent gray matter or veins
orientated at the magic angle). Based upon the argu-
ment that vessels typically have high percent signal
changes and the observation that a subset of these

2,868 voxels residing within the brain exhibited rela-
tively low magnitude BOLD changes, Menon reasoned
that this subset most likely represented microvascular
structures and concluded that the potential problem of
not suppressing vessels at the magic angle is, in prac-
tice, minimal (Menon, 2002; p. 6). Indeed, we qualita-
tively examined activation maps from each subject
before and after PR with SGF and did not observe any
obvious veins that were not at least partially attenuated
after PR.

Figure 3.

Statistical parametric maps for four subjects constructed from

data acquired with (A) high-resolution EPI (t> 5), (B) FFE

(t> 4), (C) lower resolution EPI (t> 5), and (D) PRESTO

(t> 6). The far left column displays the underlying anatomy and

the adjacent columns present activation maps without PR, after

standard PR, and after PR with SGF. Arrows identify regions that

are only partially suppressed after PR but completely suppressed

after PR with SGF.
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Further consideration of the histograms reveals that
high-resolution data (Fig. 2, top two rows) have slightly
higher peaks and most suppressed voxels are redistributed
to the left of this peak (where t<�6). In comparison,
lower-resolution data (Fig. 2, bottom two rows) exhibit
broader peaks and suppressed voxels are redistributed to
a wider range of t-values (< �8). This pronounced incom-
plete vessel suppression for both lower spatial resolution
acquisitions is due to increased partial volume averaging
that dilutes or otherwise distorts the phase time series of a
large vessel with phase time series of surrounding gray
matter, white matter and/or cerebrospinal fluid. The par-
tial volume averaging effects are also evident in the activa-
tion maps. In the higher resolution acquisitions (Fig.
3A,B), activation after PR with SGF neatly follows the cort-
ical ribbon whereas in lower resolution acquisitions (Fig.
3C,D) the activation is, as to be expected, more diffuse;
however, the spatial specificity of lower resolution activa-
tion maps is still noticeably improved after PR with SGF.

Recent work by Feng et al. (2009) and Zhao et al. (2007)
is relevant to the application of PR at high fields because
they explore the possibility that gray matter voxels may
exhibit small but non-zero BOLD-related phase changes.
Feng et al. (2009) reported a maximum BOLD-related
phase change of 0.017 radians in gray matter at 3T. Simi-
larly, Menon (2002) observed a phase change of 0.03 radi-
ans in a voxel without an obvious vein at 4T, which was
five times smaller than the phase change from an adjacent
voxel containing a visible vessel. Although such small
phase changes reflect a theoretical confound given suffi-
ciently high SNR, they seem unlikely to represent a signifi-
cant confound in practice due to the high level of
physiological noise expected in phase time series. If we
assume high functional image SNR of SNR0 5 100, k 5 0.01
at 7T (Triantafyllou et al., 2005), and a conservative esti-
mate that ku510 � k50:1 (Hagberg et al., 2008), then
tSDI

u 5 0.010, tSDII
u 5 0.014, and tSDIII

u 5 0.10. Thus, the
expected temporal standard deviation of the phase time
course (due to physiological noise) may be 3–6 times
higher than the maximum BOLD phase change in a gray
matter voxel at 3T or 4T (0.10 vs. 0.02–0.03). Even if the
maximum BOLD phase change in gray matter increases
up to 0.05 radians, this is still a factor of two below the
expected noise level in the phase time series. Therefore,
although small BOLD phase changes in predominantly
gray matter voxels are theoretically possible (Zhao et al.,
2007; Feng et al., 2009) and have indeed been observed in
humans in vivo (Feng et al., 2009; Menon, 2002), such
phase changes seem unlikely to be a widespread confound
in practice because they should be smaller than the tempo-
ral phase variance due to physiological noise by at least a
factor or two and as much as an order-of-magnitude.
However, future work at even higher fields (9.4T1) in
both humans and animals should continue to investigate
this potential confound in vivo—especially with improved
phase unwrapping techniques (Hagberg et al., 2008) and

other methods to mitigate sources of variance in phase
time series (Hagberg et al., 2012; Petridou et al., 2009) that
cause ku ! k and thus tSDIII

u ! tSDII
u .

In summary, we have identified that increased physio-
logical noise at ultra-high fields can significantly impede
the efficacy of vessel suppression via PR, but that this effi-
cacy can be restored after low-pass filtering the phase time
series with a Savitzky-Golay filter. We make no a priori
assumptions regarding the evolution of phase and for each
voxel perform a data-driven exploration of parameter
space to select the two filter parameters that minimize
temporal variance after PR. We demonstrate that PR with
SGF works on fMRI data acquired with single-shot and
multi-shot pulse sequences at two resolutions (2.83 mm3

and 9.59 mm3 voxels), which shows that this technique is
robust, does not necessitate a specific pulse sequence to be
effective, and can be retroactively applied to previously
acquired complex data. Enhanced PR should therefore be
useful for both human and animal gradient-echo fMRI at
high spatial resolutions, and especially in applications
where standard PR did not perform as expected (Barry
et al., 2013). The ability to improve the spatial specificity
of BOLD activation (as shown in Fig. 3) may be especially
advantageous for clinical investigations that rely upon the
accuracy of individual subject’s activation maps to assist
with presurgical planning (Sunaert, 2006) and clinical
decision-making (Bartsch et al., 2006). Finally, PR may also
find new applications in analyses of functional connectiv-
ity, which is an intriguing avenue that has only begun to
be explored (Curtis et al., 2013).
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