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Abstract

Background—Minimizing the imbalance of key baseline covariates between treatments is 

known to be very important to the precision of the estimate of treatment effect in clinical research. 

Dynamic randomization allocation techniques have been used to achieve balance across multiple 

baseline characteristics. However, empirical data are limited on how these techniques compare in 

terms of balance and efficiency. We are motivated by a newly funded randomized controlled trial, 

in which we have the option of choosing between two methods of randomization at the subject 

level: (1) randomizing individual subjects consecutively as they are enrolled, using Pocock and 

Simon’s minimization method, and (2) simultaneously randomizing blocks of subjects once all 

subjects in a block have been enrolled, using a balance algorithm originally developed for cluster 

randomized trials.

Purpose—To compare dynamic block randomization and minimization in terms of balance on 

baseline covariates and statistical efficiency. Simple randomization was included as a reference.

Methods—A simulation study using data from a previous randomized controlled trial was 

conducted to compare balance statistics and the accuracy and power of hypothesis testing among 

the randomization methods.

Results—Dynamic block randomization consistently produced the best balance and highest 

power for various sample and treatment effect sizes, even after post-adjustment of the pre-

specified baseline covariates in all three methods. Consistent with previous reports, minimization 

performed better in balance and power than simple randomization; however, the differences were 

noticeably smaller compared to those between dynamic block randomization and simple 

randomization.

Limitations—In this simulation study, we considered three sample sizes and two block sizes for 

a two-arm randomized trial. We assumed no interactions among the multiple baseline covariates. 
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It is necessary to evaluate how the results may vary when the simulation conditions are changed 

before drawing broader conclusions regarding comparisons between the randomization methods.

Conclusions—This study demonstrates that dynamic block randomization outperforms 

minimization with regard to achieving balance and maximizing efficiency. Nevertheless, the 

differences across the three randomization strategies are modest. The statistical advantages 

associated with dynamic block randomization need to be considered in relation to the planned 

sample size and the practical issues for its implementation in deciding the preferred method of 

randomization for a given trial (e.g., the time required to accrue blocks of subjects of adequate size 

as balanced against the need to commence intervention/treatment immediately in those 

randomized to that experimental condition).

Background

Randomized controlled trials (RCTs) are the most rigorous method of generating 

comparative efficacy and effectiveness evidence on different clinical interventions and 

necessarily occupy a central role in clinical research. One experimental condition 

(treatment) in such trials is generally considered to be the control or comparison condition 

and this condition often represents the current standard of care for the clinical problem being 

studied. The key requirements of RCTs are that they minimize bias, balance potential or 

known confounders, and hence ensure an efficient and unbiased comparison [1,2]. In an 

RCT, it is essential to assign subjects unpredictably and to balance the treatment groups on 

important baseline covariates.

Randomization ensures that each subject is assigned to each treatment independently of 

his/her baseline characteristics, measured or unmeasured, including characteristics that are 

the current values of potential outcomes of treatment. The use of randomization was clearly 

specified in The Design of Experiments (1935) by Fisher [3]. Simple randomization 

generally allocates subjects based on random numbers that ensure that each subject is 

assigned to the various treatments with equal probability. The element of unpredictability in 

an RCT is easily accomplished in simple randomization, but balance between treatments in 

terms of number of subjects and baseline characteristics cannot be guaranteed by this 

strategy and may not result even in moderatesized trials.

Various allocation techniques have been developed to minimize the potential imbalance on 

important baseline characteristics in different design settings. Minimization is a dynamic 

randomization technique that sequentially assigns subjects to treatment by attempting to 

minimize the total imbalance between treatments over multiple baseline covariates. The 

minimization method achieves marginal balance by looking at all of the selected baseline 

covariates for the previously assigned subjects and assigning the next subject to a treatment 

with a probability in favor of minimizing the overall imbalance across the covariates [4]. 

Use of nonextreme allocation probabilities (e.g., 2/3: 1/3 in a two-arm trial) maintains 

unpredictability.

Cluster randomized designs are useful for studies in which it is desirable to implement 

treatments at the level of a naturally occurring group of patients or other units (a block). 

Cluster randomized trials consider the variances at both unit and block levels [5]. Assuming 
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that all units within a block are enrolled prior to their randomization, the availability of 

complete knowledge of baseline covariates of all units can be used in order to achieve an 

optimal balance between treatments [6]. Raab and Butcher explored the importance of 

balancing covariates between treatments and provided several possible approaches to 

selecting a well-balanced allocation in cluster randomized trials. A natural extension of these 

approaches is their application to blocks of subjects as they are enrolled [7]. An important 

goal for this application is to balance between blocks as well as within. Carter and Hood 

programmed a balance algorithm in the R Software, which is freely available [8], that 

calculates the within and between block imbalance measure using baseline covariate 

information [7].

In a two-arm RCT funded in 2009, we will evaluate the efficacy of a comprehensive 

behavioral weight loss intervention (focusing on diet, physical activity, and behavioral self-

management) relative to usual care for the treatment of asthma in obese adults (the BE 

WELL trial; trial registration: NCT00901095). We plan to recruit cohorts of approximately 

65 subjects who are obese and have inadequately controlled asthma and to recruit a total of 

five sequential cohorts (total n = 324). The intent is to randomize equal numbers of 

participants to the intervention and usual care arms. The intervention involves a 4-month 

intensive (weekly) group counseling program, followed by face-to-face and phone 

counseling of each participant for 8 months. A group intervention class will begin whenever 

the number of new patients randomized to the intervention arm who can attend the class 

reaches 10. One possible randomization strategy for this study would be to assign each 

subject to intervention or control consecutively using Pocock and Simon’s minimization 

method. A second strategy would be to randomize subjects in, for example, blocks of 20 by 

applying the balance algorithm developed by Raab and Butcher (2001) for cluster 

randomized trials to take advantage of complete data on baseline covariates across the 

recruited sample prior to randomization.

There is limited empirical data on how these strategies compare in terms of balance and 

efficiency that could inform our decision making. We therefore undertook a simulation 

study to compare these strategies in terms of balance statistics and the accuracy and power 

for hypothesis testing. We also included simple randomization in the comparison because it 

has been used broadly as a reference method for allocation strategy comparisons.

Methods

Allocation strategies

Minimization—Minimization is designed to minimize marginal imbalance over multiple 

important baseline covariates as each consecutive treatment assignment is made. Pocock and 

Simon’s minimization method requires continuous covariates to be categorized in order to 

calculate treatment imbalance [4,9]. For an arbitrary point in the succession of 

randomizations, denote nijk as the number of patients with level j of covariate i who have 

been previously assigned to treatment arm k (i = 1,2, …,C; j = 1,2, …, J; and k = 1,2, …, K, 

where C, J, and K are the numbers of covariates, levels of covariate i, and treatment arms, 

respectively). Let the next patient entering the trial have levels r1, r2, …,rC on the covariates 

1, …,C. Pocock and Simon proposed several ways of measuring the cumulative imbalance 
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on the previously assigned patients and after assignment of a new patient [4,9]. We chose 

the simplest form – marginal totals – as the imbalance measure in this study, which is 

defined as:

(1)

The G is a function that calculates the resulting overall imbalance of the treatment 

assignments if the subject is assigned to treatment k. The G scores corresponding to each 

treatment k can then be ranked from the smallest to the largest, and the treatment assignment 

that results in the least overall imbalance will be chosen with a high probability (pk) so as to 

increase the chance of maximizing balance among the covariates. The choice of pk 

determines the degree of balance and the predictability of treatment assignments.

Dynamic block randomization—Dynamic block randomization minimizes the 

imbalance over multiple important baseline covariates between treatment arms for all 

allocations within and between blocks. The imbalance criterion is defined as:

(2)

where i is the i-th baseline covariate (i 1, …,C); x̄1i and x̄2i are the average of i-th covariate 

for treatment 1 and 2, respectively; and the weights (w) determine the relative contribution 

of each covariate to the imbalance score (B) [6]. Weights for covariates may be estimated 

from previous trials that have used the same set of baseline covariates. Alternatively, it is 

typical to standardize the covariates and assume equal weights for all, and we used this 

approach in this study. Nominal categorical covariates must be coded as orthogonal dummy 

variables in order to calculate the imbalance score.

The imbalance scores of all possible allocations within a block are calculated using 

expression (2). Calculation of the imbalance scores for second and subsequent blocks is 

conditional on the selected allocation of earlier blocks. Optimal allocations are defined as 

the set of allocations with the smallest 1000 B values for block sizes ≥ 17, with the smallest 

100 B values for block sizes between 12 and 16, and with the lowest quarter of B values for 

block sizes between 8 and 11 [7]. An allocation is then randomly selected from the optimal 

allocations as the assignment for the block. Within each additional block, the number of 

units will be equally split between treatment arms if the block size is even (regardless of 

previous blocks), whereas if the block size is odd, the number of units allocated to each 

treatment arm in previous blocks will be considered to make the total number of units 

between treatments as equal as possible.

Simple randomization

In simple randomization, treatment assignments are made on a 1/2: 1/2 basis without regard 

to subjects’ baseline characteristics. It is included for comparative purposes.
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Simulation study—We evaluated the three allocation strategies in a simulated two-arm 

trial using data on the five baseline covariates for randomization in the BOAT trial, which 

investigated the efficacy of a shared treatment decision-making approach to asthma care 

management in comparison to usual care and an active control condition (a conventional 

care management approach)[10]. BOAT preceded BE WELL and similarly targeted adults 

in the same health care system whose asthma was not well-controlled; BE WELL 

specifically focuses on obese individuals. In our simulation (Flowchart in Figure 1), we used 

the original five baseline covariates in the BOAT trial: sex (2 levels: male and female), prior 

asthma hospitalization (2 levels: none and ≥ 1), ethnicity (2 levels: White and non-White), 

age (3 levels: 18–34, 35–50 and ≥ 51), and asthma controller medication use (3 levels: none, 

1–3 days per week, and ≥4 days per week). Table 1 shows the distributions of the covariates. 

The sample sizes considered were 40, 60, and 80, with effect sizes of 0, 0.2, 0.5, and 0.8, 

respectively. The simulation data set consisted of 1,000 samples of 80 subjects randomly 

selected from the 612 BOAT participants, and then the first 40 or 60 of each sample were 

used to create 1000 samples of 40 or 60 subjects.

Because there is no obvious decision rule for optimizing the choice of pk for any individual 

trial, we evaluated the performance of minimization at various pk values found in the 

literature for assigning the next subject to the treatment arm with smaller value Gk (i.e., pk = 

2/3 [11], 3/4 [9], 0.8 [12], 0.9 [12], 1 [4]). We started the minimization method with simple 

randomization of the first 10 patients, a strategy that is often used to prevent guessing of 

assignments [13]. We carried out dynamic block randomization as follows. Given that the 

samples of 40, 60, or 80 subjects were to be randomized in sequential blocks of 20, with all 

baseline covariates collected prior to randomization, simple balanced randomization was 

first performed to assign 10 subjects to the treatment arm and the remaining 10 subjects to 

the control arm. The number of possible allocations was the number of combinations of 

choosing 10 out of 20 (n = 184,756). The imbalance score of each of these allocations was 

calculated and they were all ordered from the smallest to the largest score. From the 1000 

allocations with the lowest imbalance scores, one was randomly chosen and assigned to the 

first block. The same steps were repeated for each subsequent block of 20 subjects, except 

that calculation of the imbalance scores for the new block was conditioned on the selected 

allocation of earlier blocks. To assess the effect of block size on performance, we also ran 

dynamic block randomization in blocks of 10 subjects.

For simple randomization, the subjects were assigned in a 1: 1 ratio to the treatment and 

control arms based on random numbers generated using PROC PLAN in SAS Enterprise 

Guide 4.2 (SAS Institute, Cary, NC).

Six measures were used comparing the three allocation strategies:

1) Imbalance score (B): Imbalance scores were computed using expression (2).

2) Marginal imbalance (b̄M, MaxbM): For a given baseline covariate, treatment 

comparisons need to be examined marginally within each categorical level of the covariate 

[14]. Let nijk represent the number of subjects who are assigned to treatment k (k = 1,2) and 

who have level j of covariate i as previously denoted. Define
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(3)

as the imbalance within the marginal subgroup of subjects with level j of covariate i [15]. 

Define b̄M = b̄Mij and MaxbM = maxij{bMij}. MaxbM is a better indicator of the undesirable 

situation in which most covariate levels are well balanced while a few are highly imbalanced 

[15].

3) Significance of imbalance (IPi): Pearson chi-square tests were performed to eval uate the 

association between each baseline covariate and treatment. IPi indicates the significance of 

the test of association for covariate i (IPi = 1, where p-value <0.05; IPi = 0, otherwise).

4) Power: To evaluate the impact of balancing properties in the design stage on the power 

of testing for the treatment effect, we considered effect sizes of 0, 0.2, 0.5, and 0.8 assuming 

standard normal random error and pre-specified fixed effects for the five covariates. An 

effect size of 0 was selected to evaluate the type I error rate. Effect sizes of 0.2, 0.5, and 0.8 

were selected as they conventionally represent small, medium, and large effect sizes, 

respectively [16]. The following simulation model was used:

(4)

where Y is the outcome vector; TRT is the vector for treatment assignment; Xi is the 

corresponding vector for baseline covariate i; and βs are the coefficients for all fixed effects; 

and e~N(0, I). The β coefficients for each level of the five covariates were selected from the 

range 0 to 1 for simulating Y and then were re-estimated to evaluate the significance of 

treatment difference. All tests were two-sided at the 5% significance level. The estimated 

type I error rate, α^ was the percentage of significant results out of 1000 total samples using 

Y simulated given an effect size of 0, and the estimated power, 1 — β^, was such a 

percentage using Y simulated given effect sizes of 0.2, 0.5, and 0.8. In addition, the ideal 

situation in which there was no confounding but only a pure treatment effect was also 

simulated by setting the baseline covariate βs to 0 for all possible combinations of the effect 

sizes and sample sizes, and power estimates based on independent t-tests were used as the 

reference. To quantify the increase in efficiency of dynamic block randomization and 

minimization compared with simple randomization, we also calculated the gain in required 

sample size based on the power estimates for a sample size of 60 and an effect size of 0.8 

but assuming a pure treatment effect.

Descriptive statistics such as means and quartiles for the imbalance score (B), and marginal 

imbalance (bM̄, MaxbM), and the number of baseline covariates that were significantly 

different (p < 0.05) by treatment arm were summarized and compared across the three 

randomization allocation strategies for all of the simulated sample sizes.
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Results

Balance

Tables 2 and 3 show the distribution statistics of imbalance scores (B) and marginal 

imbalance measures b̄M and MaxbM for 1000 samples of sizes 40, 60, and 80, respectively. 

Among the three allocation strategies, dynamic block randomization in blocks of 20 

consistently had the lowest means and quartiles of all of the measures. The means and 

quartiles of the imbalance measures for minimization improved with increasing probabilities 

(pk) and approached, but never outperformed, those of dynamic block randomization with a 

block size of 20. When the block size was reduced to 10, the imbalance measures of 

dynamic block randomization were comparable to those of minimization at pk = 0.9. As 

expected, simple randomization had the worst imbalance according to all the measures. 

Also, as expected, all imbalance measures decreased with increasing sample sizes, 

regardless of allocation strategy.

Table 4 shows the number of significant p-values comparing five baseline covariates 

between treatments (Εi Ipi) for all 1000 samples of sizes 40, 60, and 80, respectively. 

Dynamic block randomization produced no significant results. Minimization generated some 

significant comparisons for pk = 2/3, 3/4, 0.8, and 0.9 but none for pk = 1. The numbers of 

significant p-values for simple randomization were around the expected 250 for 5000 tests 

(5 covariates * 1000 samples) of a true null at 5% alpha.

Power

As shown in Table 5 (Panel a), all allocation strategies resulted in type I error rates around 

the conventional 5% level across the three sample sizes, assuming no treatment effect. The 

exact 95% confidence interval for an observed error rate of 5% from 1000 simulations is 

3.7–6.5%, and none of the type I error rates in Table 5 (Panel a) was outside this range. 

Therefore, The fact that the observed percentages are within the expected confidence 

interval is consistent with the expectation that adjusting for the baseline covariates achieved 

the 5% type I level for all three sample sizes using any of the allocation strategies.

Table 5 (Panel b) shows that dynamic block randomization with a block size of 20 resulted 

in the highest power for all three sample sizes and all effect sizes. For sample sizes of 80 and 

60, the levels of power achieved by dynamic block randomization with a block size of 20 

were comparable to the ‘no-confounding’ reference levels, which were based on 

independent t-tests assuming zero β coefficients for the covariates. Changes in the power 

estimates were small when the block size was reduced to 10. Compared to simple 

randomization, the increased power associated with dynamic block randomization at either 

block size was equivalent to a gain in sample size of 20% for a sample size of 60 and an 

effect size of 0.8. Minimization resulted in similar power estimates at various pk values, and, 

for a sample size of 60 and an effect size of 0.8, the gains in sample size relative to simple 

randomization ranged from 8% to 12% at various pk values.
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Discussion

To the best of our knowledge, there has been no prior published methodological report that 

provides a direct comparison between randomization using the minimization method and 

dynamic block randomization using an algorithm that originated in cluster randomized trials, 

probably due to the presumed difference in the unit of randomization. In this study, one 

balance algorithm used in cluster randomized trials was extended to a practical example in 

which the subject is the unit of randomization.

In our case study, we were particularly interested in comparing dynamic block 

randomization for a block size of 20 with Pocock and Simon’s minimization method at 

varying allocation probabilities, pk. We found that dynamic block randomization at that 

block size outperformed minimization in terms of both balance and power. Compared with 

minimization, dynamic block randomization achieved a higher level of balance, as indicated 

by the total imbalance score, average marginal imbalance, and maximum marginal 

imbalance, while preserving the unpredictability of the allocation. The balance achieved by 

dynamic block randomization at that sample and block size was notably better than that 

achieved by minimization, even for the extreme pk = 1 where there is no unpredictability.

At the sample sizes evaluated, our model-based analyses showed that dynamic block 

randomization resulted in greater power for detecting treatment effects than minimization, 

that is larger increases in the effective sample size, when both methods were compared with 

simple randomization. Covariance adjustment is more efficient, statistically, when the 

covariates are more balanced [6,17]. The increase in balance decreases the standard error of 

the covariance-adjusted, estimated treatment effect, which has the effect of increasing the 

sample size and hence the power [17]. The pursuit of balance on covariates is not only 

important for statistical efficiency in smaller trials, as shown in our results, but also is 

desirable in larger trials in that it tends to increase the credibility of the trial, and to 

maximize the knowledge gained from all analyses in the trial, not just those relating to the 

primary measure of efficacy or to the sample as a whole [18]. The relative advantage of 

dynamic block randomization over minimization, for example, decreases as sample size 

increases, and at sizes where its advantages are not large, the delay in randomization 

necessary to accumulate blocks of, for example, 20 patients, may offset the gains associated 

with blocks.

Statistical efficiency is also affected by model assumptions that may not be robust to 

violations. Dynamic block randomization has the additional advantage of providing a basis 

for (nonparametric) randomization inference, whereas the minimization method does not 

have this benefit due to its conditional independence criterion. Significance that can be 

assessed without unverifiable assumptions, what Tukey termed ‘platinum standard 

significance’ [2], requires that the clinical trial be randomized in such a manner that one 

assignment is chosen from a list of pre-defined, acceptable assignments with known (often 

equal) probability. Dynamic block randomization meets this requirement because it defines 

a set of optimal allocations based on the imbalance score, B, and assigns equal probability to 

each allocation [6].
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For the purpose of comparability, we used categorized baseline covariates in the simulation. 

However, unlike Pocock and Simon’s minimization method [4,9], the balance algorithm for 

dynamic block randomization that we applied is capable of handling continuous covariates 

as well. Where a continuous covariate is more predictive of outcomes than a given 

categorization of that covariate, dynamic block randomization would have an added 

advantage over this minimization method.

To assess the impact of block size on performance, we also investigated performance with a 

block size of 10. Compared with a block size of 20, this smaller block size resulted in 

somewhat inferior balance but comparable efficiency. Nevertheless, even at a block size of 

10, dynamic block randomization still achieved a level of balance similar to that of the next 

best performing minimization method at pk = 0.9, while preserving a higher level of 

unpredictability. The differences in balance associated with block size are driven by the 

sampling space, which is determined by the optimal imbalance score (B) values for each 

block and by the number of blocks. As mentioned in the Methods, the recommended 

threshold for optimal imbalance score values is the smallest 1000 B values for block sizes 

≥17, the smallest 100 values for block sizes between 12 and 16, and the lowest quarter for 

block sizes between 8 and 11. The B values for subsequent blocks are conditional on the first 

block [7]. For a given sample size, a smaller sampling space gives rise to better balance but 

relatively less concealment.

As indicated above, the performance of randomization methods also varies with sample size. 

Over the range of sample sizes from 40 to 80, we demonstrated that, not surprisingly, 

balance and power improved with sample size for all three randomization methods, and that, 

for dynamic block randomization, a block size of 20 consistently performed better than a 

block size of 10. Also, as expected, the magnitude of the improvement, and the advantages 

of dynamic block randomization over minimization, diminished with sample size. For 

instance, the decreases in the imbalance measures were notably smaller from a sample size 

of 60–80 compared to from a sample size of 40–60. Further increases in sample size would 

likely lead to imbalance measures eventually becoming asymptotic to 0 for all three 

randomization approaches, although at different rates. At sample sizes of 60 and 80, the 

efficiency achieved by dynamic block randomization with a block size of 20 approached that 

of independent t-tests assuming a pure treatment effect with no confounding. Studies of 

additional block and sample sizes will provide further insights into the impact of these two 

critical parameters on the performance of dynamic block randomization.

In this simulation, we did not consider interactions among covariates, which may affect 

response to treatment. It would be impractical to balance for all covariate interactions of any 

order in most clinical trials [4]. Nevertheless, both dynamic block randomization and 

minimization can incorporate a first-order interaction between two categorical covariates by 

creating a new variable whose levels correspond to all combinations of the two covariates. 

Additionally, dynamic block randomization can also account for first-order interactions 

between categorical and continuous covariates and between two continuous covariates. 

Future studies are needed to investigate the impact of interactions among covariates on the 

performance of these randomization strategies. Future work is also needed to examine the 
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use of dynamic block randomization in randomized trials with three or more arms, whereas 

we assumed only two treatments in the current study.

Dynamic block randomization was originally developed for cluster randomized trials in 

which the unit of randomization is a naturally occurring group of units (e.g., physician 

practices, clinics, hospitals, households, schools, communities). In this article, we 

demonstrate that this method can be readily adapted to clinical trials where, even though the 

unit of randomization is the individual, it is practical to accrue groups of individuals before 

randomizing them. The motivation to do this may be somewhat greater when the 

intervention is one that is implemented in groups, as is often the case in behavioral 

intervention trials. The method is also applicable in health services research studies for 

chronic disease prevention and management, in which potential participants are pre-

identified using information in medical records and hence can be recruited, enrolled, and 

randomized in cohorts in relatively brief time intervals of a few weeks duration. In our 

ongoing clinical trials [19,20], we find that recruitment in cohorts provides practical 

advantages beyond the design advantages of allowing dynamic block randomization, in that 

it focuses the efforts of recruitment personnel and increases the efficiency and effectiveness 

of the recruitment process. Another example of a reasonable application is in animal studies 

where there are important baseline covariates (e.g., weight), as the animals are frequently 

examined in batches. However, the statistical advantages of dynamic block randomization, 

even over minimization, for small to moderate sample sizes, are sufficiently compelling that 

consideration of this approach is warranted even for interventions/treatments that are 

delivered on an individual basis. Benefiting from complete knowledge of baseline covariates 

across the recruited sample, dynamic block randomization consistently produces better 

balance and power while preserving a high level of unpredictability, compared with 

minimization. However, its statistical gains need to be considered in relation to the practical 

issues for its implementation in deciding the preferred method of randomization for a given 

trial.

As noted by Carter and Hood (2008) [7], for block sizes exceeding 20, the total number of 

enumerated allocations becomes computationally intense exponentially. Therefore, the 

feasibility of randomizing more than 20 subjects in a block in trials where this is desired will 

depend on the amount of available RAM, in addition to logistic considerations (e.g., the time 

required to accrue blocks of adequate size as balanced against the need to commence 

intervention/treatment in those randomized to that experimental condition).
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Figure 1. 
Simulation flowchart
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Table 1

Distributions of the covariates selected from the BOAT trial

Balancing variable All (n = 612)
n (%)

Sex

 Female 266 (43.5)

 Male 346 (56.5)

Prior asthma hospitalization

 None 396 (64.7)

 ≥1 216 (35.3)

Ethnicity

 White 379 (61.9)

 Non-White 233 (38.1)

Age category

 30–50 120 (19.6)

 51–70 256 (41.8)

 >70 236 (38.6)

Asthma controller medication use

None 135 (22.1)

 1–3 days per week 123 (20.1)

 ≥4 days per week 354 (57.8)
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Table 2

Comparisons of total imbalance scores B by allocation strategies

Mean 0% 25% 50% 75% 100%

Panel (a): n = 80

Dynamic block randomization

Block size = 20 0.010 0 0.008 0.010 0.013 0.021

Block size = 10 0.038 0.005 0.028 0.038 0.049 0.097

Minimization

Pk = 2/3 0.155 0.008 0.080 0.130 0.204 0.747

Pk = 3/4 0.090 0.004 0.048 0.073 0.117 0.482

Pk = 0.8 0.067 0.004 0.035 0.056 0.084 0.380

Pk = 0.9 0.037 0.002 0.021 0.032 0.048 0.177

Pk = 1 0.024 0.003 0.015 0.021 0.031 0.084

Simple randomization 0.349 0.018 0.196 0.305 0.458 1.703

Panel (b): n = 60

Dynamic block randomization

Block size = 20 0.020 0 0.015 0.021 0.025 0.039

Block size = 10 0.065 0.004 0.048 0.064 0.081 0.153

Minimization

Pk = 2/3 0.249 0.016 0.129 0.213 0.331 1.073

Pk = 3/4 0.149 0.005 0.080 0.122 0.194 0.933

Pk = 0.8 0.119 0.004 0.062 0.098 0.153 0.539

Pk = 0.9 0.067 0.004 0.037 0.056 0.086 0.276

Pk = 1 0.044 0.003 0.026 0.040 0.055 0.275

Simple randomization 0.459 0.041 0.261 0.399 0.611 1.894

Panel (c): n = 40

Dynamic block randomization

Block size = 20 0.047 0 0.035 0.045 0.059 0.118

Block size = 10 0.140 0.010 0.104 0.136 0.174 0.657

Minimization

Pk = 2/3 0.445 0.027 0.251 0.386 0.570 2.109

Pk = 3/4 0.308 0.026 0.165 0.265 0.406 1.293

Pk = 0.8 0.245 0.023 0.132 0.205 0.317 1.427

Pk = 0.9 0.161 0 0.087 0.138 0.208 1.103

Pk = 1 0.101 0.010 0.062 0.089 0.127 0.452

Simple randomization 0.703 0.057 0.398 0.630 0.913 2.461
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Table 4

Numbers of significant p-values comparing the base line covariates between treatment arms

Number of significant P-value <0.05

Method n = 80 n = 60 n = 40

Dynamic block
 randomization

  Block size = 20 0 0 0

  Block size = 10 0 0 0

Minimization

   Pk = 2/3 22 33 68

   Pk = 3/4 2 6 16

   Pk = 0.8 0 0 11

   Pk = 0.9 0 0 2

   Pk = 1 0 0 0

Simple randomization 248 225 262
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