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Introduction

Magnetic resonance imaging (MRI) is a valuable diagnos-
tic tool for detecting and evaluating intra-articular pathol-
ogy such as articular cartilage defects, meniscal lesions, 
and cruciate ligament ruptures. However, it remains diffi-
cult to uniformly evaluate aspects such as subchondral 
bone marrow lesions (BMLs).

BMLs are characterized by ill-defined hypointense 
zones on T1-weighted and proton density-weighted (PDw) 
MRIs, and ill-defined hyperintense zones on T2-weighted 
(T2w) fat-suppressed MRIs in the subchondral cancellous 
bone.1 Histological studies of these subchondral bone areas 
have shown trabecular abnormalities, bone marrow necro-
sis, and fibrosis rather than bone marrow edema alone.

BMLs are unspecific and may be observed in conjunction 
with various disorders of the knee. For example, they are 
observed in the knee joints following trauma, with and with-
out the occurrence of concomitant lesions such as articular 

cartilage defects or ligamentous injuries. Furthermore, they 
can occur as a result of osteonecrosis, transient bone mar-
row edema syndrome, arthritis, osteoarthritis (OA), com-
plex regional pain syndrome, and in tumors.2

In OA research, BMLs have been related to the progres-
sion of OA and are suggested to be related to clinical symp-
toms, such as pain.3-6 However, few studies are conclusive, 
and some are contradictory. This can be attributed in part to 
timing of MRI as well as to the fact that there is no gold 
standard for determining BMLs.
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Abstract

Objective: To determine the relationship of bone marrow lesions (BMLs) with phenomena such as clinical symptoms, 
histological subchondral bone damage, and development of osteoarthritis, a reliable and reproducible method to localize 
and quantify BMLs accurately is indispensable. Therefore, the goal of the current study was to develop and validate a novel 
semiautomated segmentation method based on the KNN classification technique on T2-weighted (T2w) SPIR and proton 
density-weighted (PDw) magnetic resonance images (MRIs), as this would provide an accurate, reliable, and reproducible 
tool. Materials and Methods: Twenty PDw and T2w SPIR MRIs were selected and manually segmented as a learning set for 
the software system. The manual segmentations were considered the gold standard. Automated segmentation based on 
the KNN classification technique was carried out on the same MRIs. To determine the accuracy and validity of the system, 
the automated segmentations were compared to the gold standard using the Dice Similarity Index (DSI). Results: The KNN 
classification system resulted both visually and statistically in an accurate segmentation of BMLs on T2w SPIR MRIs with 
an excellent mean optimal DSI of 0.702 (±0.202; range, 0.409-0.908). Elimination of specific areas smaller than 10 voxels 
improved the accuracy. The accuracy was independent of BML size. The segmentation of BMLs on PDw MRIs was less 
reliable with a mean optimal DSI of 0.536 (±0.156). Conclusion: Although the applicability of this method is limited on PDw 
MRIs, the KNN classification system provides an accurate, reliable, and reproducible tool for semiautomated segmentation 
of BMLs in T2w SPIR MRIs of the knee.

Keywords

bone marrow lesions, bone marrow edema, segmentation, quantitative method, cartilage, MRI, KNN classification

Original Article



Dijkstra et al.	 329

BML size has been assessed using semiquantitative as 
well as quantitative methods.7-10 Only a few methods for 
quantitative volumetric analysis have been validated. These 
methods use either manual or semiautomated segmentation 
of BML volume from surrounding normal bone marrow.7,11 
Recently, a new method, based on the K-Nearest Neighbor 
(KNN) classification technique, was developed for fully 
automated segmentation of white matter lesions (WMLs) 
on cranial MRIs.12 Both BMLs and WMLs appear as ill-
defined hyperintense zones on the T2w image that gradu-
ally converts into normal tissue. Furthermore, BMLs as 
well as WMLs are restricted to certain areas on MRI, which 
is relevant for the detection method. Because of the simi-
larities between the MRI aspect of BML and WML, it was 
our hypothesis that this MRI detection method and auto-
mated segmentation could also provide a useful tool for 
accurate determination of BML volumes in the knee.

Therefore, the goal of the current study was to develop 
a reliable and reproducible tool that is independent of the 
clinical interpretation of investigators and to validate such 
a novel semiautomated segmentation method based on the 
KNN classification technique to determine location and 
volume of a BML accurately on T2w SPIR and PDw MRIs.

Materials and Methods
Data Acquisition

The proposed segmentation method is based on the KNN 
classification, which is a statistical pattern recognition 
method. It uses a training set of MRI scans that are repre-
sentative for the whole study group. Twenty MRI scans of 
the knee that show a BML from patients with solitary car-
tilage defects of the femoral condyle were selected as a 
training set and to validate the method. The MRIs were 
acquired, using the same protocol, preoperatively and at 6, 
12, 24, or 36 months postoperatively after autologous 
chondrocyte implantation or microfracturing. The MRIs 
were selected based on spatial characteristics of the BML 
and the lesion volume with a considerable and clinically 
realistic variation in lesion size, such that they would rep-
resent the whole variety of lesions as much as possible.

MRI studies were performed on a Philips Gyroscan 
ACS-NT 1.5 Tesla whole-body system (Philips Medical 
Systems, Best, the Netherlands). All patients had the same 
magnetic resonance protocol of the knee consisting of a 
sagittal PDw scan without fat suppression and a sagittal 
T2w SPIR scan. All scans were performed with a 3-mm 
slice thickness, 0.3-mm slice gap, 24 slices, 0.29 × 0.29 
in-plane resolution. The individual scan parameters were 
PD: TR/TE 2243/35 ms and T2: TR/TE 4084/70 ms. The 
entire acquisition time per session was less than 20 min-
utes. The only difference in acquisition of the MRI scans 

was the use of different knee coils. In 9 MRIs, the Philips 
1.5T Sense knee coil 8 elements was used; in 10 MRIs, the 
Philips 1.5T knee coil 3 elements was used; and in 1 
patient, the Philips 1.5T Sense Flex M knee coil was used.

Manual Segmentation
Bone marrow edema lesions of the femoral condyle were 
manually segmented. The lesions were segmented on the 
T2w SPIR and the PDw image separately, resulting in dif-
ferent manual segmentations for the 2 images. The segmen-
tations were composed using the defined standard 
procedure: In each slice containing a BML, a threshold on 
the signal intensity was set, such that the entire lesion was 
included, resulting in a binary image containing the BML 
and other tissue. Next, all other tissue that did not belong to 
the BML was discarded manually from this image. The 
final BML segmentations were evaluated in a consensus 
meeting by 3 investigators (an orthopedic surgeon, an 
orthopedic resident, and a medical student who was trained 
in recognizing BMLs on MRIs in advance of conducting 
the current study). To guarantee the quality of the manual 
segmentations, a musculoskeletal radiologist was asked to 
look at the manual segmentations afterward. This was con-
sidered the gold standard against which the automated 
segmentation was tested.

Mask Generation
Masks were created on the PDw images to define the region 
of interest for the segmentation. We used only the masks 
created on PDw images because the border between carti-
lage and subchondral bone was more clearly visible on PDw 
images than on T2w SPIR images. Only slices with a visible 
BML were included in the mask. In these slices, the exact 
boundaries of the femoral condyle were defined, and the 
region within these boundaries was considered as the mask. 
Comparison by an image-processing software tool showed 
that the PDw and T2w images were spatially similar in 
almost all cases because the patients had not moved during 
scanning. In the cases in which PDw and T2w images did 
not agree spatially, a rigid co-registration step (only transla-
tion), based on mutual information, was performed.

The major goal of these masks was to increase accuracy 
in the segmentation because only voxels in the affected 
regions were taken into account. Furthermore, they 
reduce computation time and computer memory utilization 
substantially.

KNN Classification
The aim of the method for semiautomated segmentation of 
the BMLs was to determine the lesion probability of each 
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voxel. For this purpose, the KNN classification method was 
used: a nonparametric procedure for estimation of local 
class conditional probability density functions from sample 
patterns. In general, KNN classification is based on the 
classification of samples, dependent on their features. In 
the proposed method, each image voxel is treated as a 
separate sample. A feature space is defined, in which each 
axis represents one of the voxel features. A set of preclassi-
fied learning voxels is used as learning set. The feature 
space is filled with these voxels, at coordinates correspond-
ing to their feature values. Subsequently, an image voxel of 
a new patient is classified by inspection of the number of K 
learning voxels that are closest in the feature space. The 
new voxel is then classified according to the classes of 
those K neighbors. In many applications of KNN classifi-
cation, the most frequent class of the K neighbors could be 
assigned to it.

In our study, which used 20 learning patients, the learn-
ing set for segmentation of one patient was built from the 
voxels of the other 19 patients (the so-called leave-one-out 
method). All voxels in the learning set were labeled with 
the value of 0 (nonlesion class) or 1 (lesion class), derived 
from the manual segmentations. Due to limitations in com-
puter memory, 60% of the voxels were randomly selected 
for inclusion in the learning set. The segmentations were 
performed separately on the T2 and the PD image of the 
patients. This implies that the segmentations used separate 
training sets: one composed from the T2 images, the other 
from the PD images.

Three features were used in this study and can be 
divided into 2 categories: voxel intensities and spatial 
information. The 1st feature is defined by the signal inten-
sity of a voxel in the T2w SPIR or the PDw image. The 2nd 
group of features incorporates the spatial location of a 
voxel in the femoral condyle. These were added because in 
some regions of the femoral condyle, a BML lesion is more 
likely to occur than in others. Using the spatial features has 
the effect that not only the signal intensity but also the spa-
tial location of a voxel determines the probability of its 
being a part of the lesion. To identify these spatial feature 
values, the images of the left knees were first mirrored with 
respect to the y-axes in order to make the right and left 
knees comparable. Then, the in-plane x- and y-coordinates 
of the voxel were determined and defined as the 2nd and 
3rd features. This resulted in a KNN classification with a 
3-dimensional feature space.

Because different features have different ranges, a res-
caling of the feature space was necessary to define a proper 
metric to compare distances in the feature space, which is 
essential to justify classification based on KNN. In many 
applications, this is commonly done by variance scaling: 
subtraction of the mean of the feature values and division 
of the outcome by the standard deviation. This approach 

results in a mean of 0 and variance of 1 for every feature. 
However, the occurrence of a BML in the femoral condyle 
highly influences the intensity distribution of the image 
voxels. A Gaussian distribution, which is assumed in vari-
ance scaling, is not applicable anymore. Therefore, we 
determined the mode, which was the intensity reflecting the 
top of the histogram, and the 1-sided variance in the histo-
gram at the side that did not include the lesion voxels. In 
the T2 SPIR image, this was the left side of the histogram; 
in the PD-image, it was the right side. The features were 
scaled by subtraction of the voxel values with the mode and 
division by this variance.

The choice of K in KNN classification depends on the 
number of features and the number of cases. When a 
small value of K is used, the obtained results are more 
influenced by individual cases. A larger value of K 
smoothens the outcome of the classification.13 In this 
study, we used a relatively small number of features in 
combination with a large number of cases. Therefore, we 
opted for a relatively large K. Taking computation time 
into account, we concluded that 100 was an acceptable 
choice for K.

The lesion probability of every voxel was determined 
by inspection of the K nearest neighbors of the examined 
voxel in the feature space. It was defined as the fraction 
of lesion voxels among those K neighbors. The voxel 
probabilities were presented in a so-called probability 
map, which is an image where each voxel intensity value 
is defined by the lesion probability of that voxel.

Volume Calculation
Lesion volumes were calculated by multiplication of the 
number of BML voxels by the voxel size. The ratio was 
defined as the segmentation volume divided by the gold 
standard volume. A ratio larger than 1 resembled an over-
segmentation with respect to the gold standard volume.

Evaluation and Statistics
By applying different thresholds on the probability map, 
binary segmentations of the BMLs were produced. These 
segmentations were compared with the gold standard, 
where the number of correctly classified voxels (i.e., the 
true positives [TP] and true negatives [TN]), was counted 
as well as the number of false positives (FP) and false 
negatives (FN). The true positive fraction (TPF), which is 
the sensitivity, and the false positive fraction (FPF), which 
is 1 – specificity, was calculated for the threshold, running 
from 0 to 1. They are defined by

TPF
TP

TP FN
=

+
				    ,
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The TPF was represented in a receiver-operating charac-
teristic (ROC) curve as a function of the FPF. Furthermore, 
the binary segmentations were evaluated with the Dice 
Similarity Index (DSI).14 The DSI is a measure for the cor-
rectly classified lesion area relative to the total area of the 
BML in both the reference (the gold standard) and the area 
of the segmented image and is applied in many segmenta-
tion studies, such as for brain tissue. The DSI is defined by

DSI =
× ∩

+
2 ( )Ref

Ref Seg

Seg .

In these definitions, Ref denotes the volume of the refer-
ence and Seg is the volume of the binary segmentation (Fig. 1). 
The DSI was represented in a graph as a function of the 
threshold, running from 0 to 1, for all feature sets. A high 
value represents better correlation with the reference, and 1 
denotes that the segmentation equals the gold standard. In 
the literature, it is stated that a DSI value of 0.7 represents 
an excellent agreement.14 A series of binary segmentations 
was derived from the probability maps by applying thresh-
olds, running from 0 to 1. The DSI was calculated for these 
binary segmentations, and the segmentation with the high-
est DSI was considered the optimal binary segmentation. 
The threshold corresponding to the optimal binary segmen-
tation was called the optimal threshold. The optimal binary 
segmentations were adjusted, such that small groups of 

voxels (blobs) in the image were discarded. This was done 
for blobs less than 5 and 10 voxels, resulting in 2 binary 
segmentations with minimum blob sizes of 5 and 10. For 
the optimal binary segmentation (before discarding smaller 
blobs), and the binary segmentations with blob size mini-
mum 5 and 10, evaluation similarity measures were calcu-
lated as described above.

The correlation between the gold standard volume and 
the DSI of the segmentations with optimal threshold and 
minimal blobs of 5 and 10 voxels was determined by the 
Pearson correlation test. The gold standard volumes were 
compared with the segmentation volumes by the paired-
samples t-test. Excel (Microsoft Corp., Redmond, WA) and 
SPSS (New York, NY) were used for statistical analysis, 
and the values shown are means ± standard deviation.

Results
The 20 MRIs were derived from 19 patients. In 11 patients, 
the right knee was affected and scanned; in 7 patients, the 
left knee was affected; and in 1 patient, both knees were 
affected. The population average age was 32 years (±8; 
range, 20-42); 5 patients were female, and 14 were male.

The KNN classification generated a probability map on 
which different thresholds were applied for the generation 
of the binary segmentation (Fig. 2). The mean optimal 
threshold appeared to be 0.27 for T2w SPIR and 0.29 for 
PDw MRIs (Fig. 3).

The KNN classification system resulted both visually 
and statistically in an accurate binary segmentation of 
BMLs on T2w SPIR MRIs with a mean optimal DSI  
of 0.702 (±0.202; range, 0.409-0.908) using the mean opti-
mal threshold (0.27), which represents an excellent agree-
ment according to criteria formulated by Bartko (Figs. 2 
and 3).15

Discarding of small blobs (e.g., segmented areas that 
contain less than 5 or 10 voxels) results in a higher mean 
DSI of 0.716 (±0.198) and 0.721 (±0.193), respectively. 
This shows that increasing the blob size until 10 voxels 
improves the accuracy of the T2w SPIR segmentations. 
Three MRIs had a low DSI value: 0.409, 0.401, and 0.076, 
respectively. Analysis of the signal-to-noise ratio (SNR) 
showed that these 3 MRIs had an SNR lower than 1.5, 
whereas the other MRIs had an SNR higher than 1.5 (Fig. 
4). Leaving out the 3 MRIs with a low SNR results in a 
mean DSI of 0.752 (±0.122). The ROC curve shows the 
relationship between the sensitivity and 1 – specificity for 
different thresholds for T2w SPIR and PDw segmentations 
(Fig. 5). With the optimal threshold of 0.27 for T2w SPIR, 
the sensitivity and specificity of the segmentations are 
0.843 and 0.956, respectively. With the optimal threshold 
of 0.29 for PDw images, the sensitivity and specificity of 
the segmentations are 0.656 and 0.973, respectively.

Figure 1. Comparison of a binary segmentation (Seg) with the 
manual segmentation (gold standard; Ref), with the correctly 
classified voxels (Overlap), the false positives (Extra), and the false 
negatives (Miss).
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Figure 2. An example to illustrate the meaning of the probabilistic measures and to provide a better intuitive understanding of the KNN 
classification is presented. (A) Example of the original T2w SPIR magnetic resonance images (MRI) containing a bone marrow lesion 
(BML). Using the KNN classification, a probability map of the BML is generated (B). Accordingly, a binary segmentation is generated (red) 
after applying the mean optimal threshold (C). This segmentation can be compared with the gold standard (green; D). (E) Shows the 
result after discarding blobs of less than 10 voxels (cyan).

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 

D
S

I 

Threshold

DSI as a function of different thresholds  

T2w SPIR 

PDw 

Optimal threshold T2w SPIR 

Optimal threshold PDw 

Figure 3. Dice Similarity Indices of binary bone marrow lesion 
(BML) segmentations of all patients for T2-weighted SPIR and 
proton density (PD)–weighted magnetic resonance images (MRIs) 
as function of the threshold.
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Figure 4. Dice Similarity Indices of binary bone marrow lesion 
(BML) segmentations of all patients for T2-weighted SPIR and 
proton density (PD)–weighted magnetic resonance images (MRIs) 
as function of the signal-to-noise ratio.
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Figure 5. Receiver-operating characteristic (ROC) curves of 
classifications of all patients for T2w SPIR and proton density weighted 
(PDw) magnetic resonance images (MRIs) showing the relationship 
between the sensitivity and 1 – specificity for different thresholds.

Little or no association was observed between the gold 
standard volumes and the DSI (Fig. 6). Pearson correla-
tion coefficients in the T2w-SPIR segmentation were 0.29 
for the correlation with the optimal DSI, 0.31 for DSI with 
mimimal blob size 5, and 0.29 for the DSI with minimal 
blob size 10. No significant differences were observed 
between the gold standard volumes and the segmented 
volumes by the paired-samples t-test (P > 0.05) for all 
segmentations.

The binary segmentation of BMLs by the software sys-
tem on PDw MRI scans was less reliable, with a mean 
optimal DSI of 0.536 (±0.156; Fig. 5).

Discussion
The goal of our study was to develop and validate a semiau-
tomated segmentation method based on the KNN classifica-
tion to determine BMLs on T2w SPIR and PDw MRI scans.

The combination of spatial information and signal inten-
sities of MRIs in KNN classification provides an accurate, 



Dijkstra et al.	 333

reliable, and reproducible tool for semiautomated segmen-
tation of BMLs of the femoral condyles in T2w SPIR MRI 
scans of the knee with a high sensitivity and specificity and 
excellent DSI scores. Increasing the blob size to discard 
until 10 voxels even improves accuracy of the segmenta-
tions, which may be explained by the assumption that 
individual aspecific voxels should be eliminated from the 
segmentation, as BMLs on T2w SPIR MRI scans are repre-
sented by continuous lesions rather than individual abnor-
mal voxels.

The Pearson correlation coefficients show that the accu-
racy of the method is independent of BML size. This means 
that the proposed method is applicable for all BML volumes.

In 3 MRI scans, the software system was unreliable; this 
may be explained by the fact that these scans showed a 
significant lower SNR compared to the other MRI scans, 
which may be influenced by operator-dependent and non-
operator-dependent factors. The non-operator-dependent 
factors include field strength of the magnet and intrinsic 
molecular structure of the tissue being examined. Operator-
dependent factors include the type of coil, the field of view, 
the number of acquisitions, sampling band width, matrix 
size, slice thickness, and the TR, TE, and flip angle. Of 
these operator-dependent factors, the type of coil was the 
only parameter that was variable among the MRI scans. 
The 3 unreliable MRI scans were acquired on the Philips 
1.5T 3 elements knee coil, which suggests a significant fac-
tor of the coil type on the reliability of the system. On the 
other hand, various other MRI scans using this coil had 
good results. More likely, the lower SNR is caused by non-
operator-dependent factors, such as obesity or clothing. A 
lower SNR likely results in a diffuse oversegmentation, 
which can be easily differentiated from the BML by visual 
inspection and should be excluded for automated segmen-
tation in future studies.

To identify which images will result in suitable segmen-
tations, we recommend performing an SNR analysis of the 

image. The SNR is defined by SNR = mean/standard 
deviation, where mean and standard deviation denote the 
mean and standard deviation of the signal intensities of the 
background voxels (i.e., all voxels inside the mask that are 
non-BML). When the SNR is high enough (>1.5), the seg-
mentation method performs well. A lower SNR (<1.5) 
results in a poorer segmentation.

In contrast to the excellent accuracy of the proposed 
method for the T2w SPIR MRI scans, the DSI found for 
segmentation of PDw MRIs without fat suppression dem-
onstrated insufficient accuracy. The discrepancy in accu-
racy between T2w SPIR and PDw MRIs might be explained 
by the difference in grayscale contrast between the lesion 
and normal bone marrow, which is in favor of the T2w 
SPIR MRIs due to the application of fat suppression. In 
addition, on T2w SPIR MRIs, BMLs are much more homo-
geneous than on PDw MRIs. Therefore, it can be concluded 
that the proposed method is less suitable for segmentation 
of BMLs on PDw MRI scans without fat suppression.

The difficulty in segmenting BMLs lies in the fact that, 
on MRI, BMLs have a gradual transition into normal bone 
marrow. This makes segmentation methods prone to high 
interobserver and intraobserver variability. That is probably 
why most of the studies on BMLs used semiquantitative 
scoring methods instead of quantifying BMLs by segmen-
tation methods. Only a few studies have validated a semi-
automated segmentation method. Frobell et al. described 
and used a segmentation method quantifying BMLs, which 
still requires many manual steps. This makes their method 
time-consuming and more susceptible for higher intraob-
server and interobserver variability.7 Mayerhoefer et al. 
described a computer-assisted quantitative analysis of 
BMLs of the knee that provides highly reproducible results 
and is largely observer independent.11 However, the accu-
racy of this software system is not shown. Thereby, this 
method also requires manual interference to outline the 
contours of the examined bone marrow and to draw a 
region of interest, which makes the system highly time-
consuming. Furthermore, this method is based only on 
grayscale intensity.

The KNN classification method, on the other hand, is 
not only based on grayscale intensity but also takes into 
account spatial features, which makes it less susceptible for 
segmentation of aspecific lesions at unlikely sites of the 
femoral condyle.

The reproducibility of this proposed method may be 
even further optimized by implementing the same learning 
set voxels rather than randomly selected learning set voxels 
for segmentation of the MRIs. Other variables influencing 
the reproducibility are the selection of those slices contain-
ing BMLs and the creation of a mask of that region.

The reproducibility of the proposed method is very high 
by definition, because this method is carried out almost 

0,4

0,5

0,7

0,8

0,9

0,0

0,1

0,2

0,3

0,6

1,0

0,0 5,0 10,0 15,0 20,0 25,0 30,0

D
S

I

BML volume (cc)

DSI as function of BML volume

Figure 6. Dice Similarity Indices of binary bone marrow lesion 
(BML) segmentations of all patients for T2w SPIR as function of 
the BML volume (cc).



334		  Cartilage 1(4)

fully automatically and may be even further optimized by 
implementing the same learning set voxels rather than ran-
domly selected learning set voxels for segmentation of the 
MRIs. Other variables are the selection of those slices con-
taining BMLs and generating a mask of that region.

The proposed method is carried out almost fully auto-
matically, which also makes it much less time-consuming 
than previously described semiautomated segmentation 
methods. Generating a mask of those slices containing a 
bone marrow lesion takes approximately 2 minutes per 
MRI, and the rest is done automatically by the software. 
Because of these advantages, we recommend using this 
method in future studies evaluating BMLs.

In conclusion, the KNN classification method in combi-
nation with the optimization techniques described in the 
current study provides an accurate, reliable, and reproduc-
ible tool for analysis of BML lesions on large numbers of 
T2w SPIR MRIs and can, therefore, be implemented in 
future studies analyzing the relationship of BMLs with 
phenomena such as clinical symptoms, histology of 
subchondral bone damage, and future development of OA.
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