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Abstract

Spinal cord stimulation (SCS) is used to manage chronic intractable neuropathic pain. We 

examined parameters of SCS in rats with spared nerve injury by modulating frequency (4Hz vs. 

60Hz), duration (30m vs. 6h), or intensity (50%, 75%, or 90% MT). To elucidate potential 

mechanisms modulated by SCS, we examined immunoreactivity glial markers in the spinal cord 

after SCS). An epidural SCS lead was implanted in the upper lumbar spinal cord. Animals were 

tested for mechanical withdrawal threshold (MWT) of the paw before and 2 weeks after SNI, 

before and after SCS daily for 4 days, and for 9 days after SCS. Seperate groups of animals were 

tested for glial immunoreactivity after 4 days of 6h SCS. All rats showed a decrease in MWT 2 

weeks after nerve injury and an increase in glial activation. For frequency, 4Hz or 60Hz SCS 

reversed the MWT when compared to sham SCS. For duration, 6h of SCS showed a greater 

reduction in MWT when compared to 30 min. For intensity, 90% MT was greater than 75% MT 

and both were greater than 50% MT or sham SCS. SCS decreased glial activation (GFAP, MCP-1 

and OX-42) in the spinal cord dorsal horn when compared to sham. In conclusion, 4Hz and 60Hz 

SCS for a 6h at 90% MT were the most effective parameters for reducing hyperalgesia, suggesting 

parameters of stimulation are important for effectiveness of SCS. SCS reduced glial activation at 

the level of the spinal cord suggesting reduction in central excitability.
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1. Introduction

Neuropathic pain is defined as pain resulting from damage or dysfunction of the peripheral 

nerves and more broadly, as a result of injury or disease of the somatosensory system. There 

are a number of diseases associated with neuropathic pain. Examples include autoimmune 
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disease (e.g., multiple sclerosis), metabolic diseases (e.g., diabetic neuropathy), infection 

(e.g., shingles and the sequel, postherpetic neuralgia), vascular disease (stroke), trauma, and 

cancer. The study of neuropathic pain in experimental animals has been done with four 

models: partial sciatic ligation (PSL), chronic constrictive injury (CCI), spinal nerve ligation 

(SNL), and spared nerve injury (SNI) [2]. The anomalous pain states evoked by nerve injury 

in humans can be mimicked in spinal nerve injury (SNI) animal models of neuropathic pain 

[26].

Spinal cord glia, microglia and astrocytes, have important roles in the induction and 

maintenance of pain facilitation in animal models of chronic pain induced by peripheral 

nerve injury, inflammation and cancer [14,34,53,71–73,86]. Although, the specific 

mechanisms underlying neuropathic pain after peripheral nerve injury are not fully 

understood, recent research suggests that peripheral nerve injury evokes a time dependent 

re-organization of the central and peripheral nervous systems. Pain hypersensitivity was 

originally thought to result exclusively from altered neuronal activity in primary sensory and 

spinal cord neurons. It is now clear that glial cells also play a significant role in the 

pathogenesis of neuropathic pain [12,37,80–82]. In fact there is a time-dependent activation 

of both astrocytes and microglia after SNI in the spinal cord [17,45,46]. Further, inhibition 

of glial activation reduces mechanical hypersensitivity in animals with nerve injury 

[41,72,74,91].

Spinal cord stimulation (SCS) is used to manage chronic, neuropathic, intractable pain 

generally for the trunk and or limbs via delivery of electrical impulses to spinal segments 

[62]. SCS has been successful in providing analgesia, improving function, and enhancing 

quality of life for patients suffering from chronic pain [21]. In animals with nerve injury, 

SCS reduces mechanical hypersensitivity up to 40 min after 10 min SCS at 50 Hz [8,30,39]. 

Similarly, 4 Hz and 60 Hz SCS, but not 100 Hz SCS, reduces mechanical hypersensitivity of 

the paw and muscle up to 24 h after 30 min SCS [33]. As SCS is clinically used for longer 

durations, this study tested the effects of long-duration SCS (6h) and compared effects to 

short-duration SCS (30 min). As intensities vary between studies ranging from 50–90% 

motor threshold we tested the intensity-effect of SCS (50–90% motor threshold intensity). 

Lastly, we tested if if SCS reduces glial cell activation in the spinal cord after SCS as a 

potential underlying mechanism.

2. Methods

2.1. Experimental procedures

The experiments were performed on adult Sprague–Dawley rats, weighing 250–350 g and 

housed in transparent plastic cages with free access to food and water, in a 12 h light–dark 

cycle. All the experimental procedures were approved by the Animal Care and Use 

Committee at the University of Iowa.

2.1.2. Nerve Injury Model—All rats were anesthetized with 2–3% isoflurane. The tibial 

and common peroneal nerves on one limb were tightly ligated with 4–0 silk and the sural 

nerve was kept intact, as previously described [10]. The overlying muscle was sutured with 

4–0 silk, and the skin was sutured closed with 3–0 silk.
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2.1.3. Implantation of the electrode—After nerve injury, a small laminectomy was 

performed at the level of T13 vertebra which corresponds to the upper lumbar spinal cord 

region. The lead was inserted epidurally in the rostral direction. The lead was fixed with 

sutures to the muscle, the wound was sutured in layers, and the lead was tunneled to exit the 

skin at the base of the neck [33]. We utilized a spinal cord lead designed for use in rats 

(Medtronic, Minneapolis, MN) which is similar to that used in humans. The proximal end of 

the lead was tunneled outside the animal for later connection to an external neuro-stimulator 

(model # 37021) and programmer (model: #8840) (Medtronic Inc., Minneapolis, MN).

2.2. Behavior tests

Before surgery, rats were acclimated to the behavior room for thirty minutes followed by 

acclimation to the transparent plastic cubicles on elevated wire mesh floor for fifteen 

minutes. To test for mechanical withdrawal thresholds of the paw, calibrated von Frey 

filaments (10 filaments, 1, 13, 20, 36, 49, 67, 83, 105, 188 and 402) were applied to the 

lateral surface of both the ipsilateral and contralateral paw in the area innervated by the sural 

nerve. Each filament was applied for approximately 1 s with enough to bend the filaments. 

Each filament was applied twice and a positive response was one withdrawal. Once a 

positive response was found, the filament above and below the filament that caused a 

positive response was tested. Confirmation of withdrawal threshold was established if there 

was a positive withdrawal from the filament above and no withdrawal from the filament 

below. The lowest withdrawal force that produced a withdrawal was recorded as the 

threshold. A decrease in mechanical withdrawal threshold of the paw is interpreted as 

cutaneous hyperalgesia of the paw in this study. This is based on the fact that nociceptors are 

activated by von Frey filaments of 14 mN or greater, and that large diameter afferents are 

activated by less than 14 mN [29].

2.3 Immunohistochemistry

We tested for glial cell activation in the spinal cord using immunohistochemistry of 

astrocyte and microglial markers. Rats were anestheized with 100 mg/kg sodium 

pentobarbital and were perfused intracadially with a saline solution containing heparin 

(10U/ml) followed by 4% paraformaldehyde (PFA) with 15% piric acid in 0,1M phosphate 

buffer. The spinal cords were extracted, post fixed in 4% paraformaldehyde for 1 h, 

transferred to 30% sucrose solution for 24 hours, then frozen in dry-ice with tissuetek OCT. 

Tissue sections were cut on a cryostat at 40µM and placed on slides for future staining.

All sections were first blocked with 3% of normal goat serum for thirty minutes, followed 

by Avidin-Biotin Block (fifteen minutes each). For astrocyte staining, sections were 

incubated overnight with monoclonal anti-mouse anti-GFAP (Milipore - 1:5000, 

Cat.#MAB360). On the second day, the sections were incubated with biotinylated goat anti-

mouse IgG (Invitrogen - 1:1000) for 1 hour followed by Strep-568 (Invitrogen - 1:1000) for 

1 hour. We then incubated sections overnight in goat anti-rabbit MCP-1 (Milipore −1:500, 

Cat.#1834P). On the last day of immunostaining, the sections were incubated in 

biontinylated goat anti-rabbit IgG (Invitrogen- 1:1000) for 1 hour followed by Strep-488 

(Invitrogen - 1:1000) for 1 hour. Slides were coverslipped with Vectashield. For microglia, 

we just changed the first primary antibody to OX-42 (AbD serotec, 1:2500, 
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Cat.#MCA275G). In a seperate group, we tested for p-p-38 activation (Cell Signal, 1:500, 

Cat.#4631S). All the antibodies were diluted (100%+ 1% NGS+ 0.1% Triton-X 100+ 0.2% 

sodium azide).

Five spinal cord sections (L4- L5) were randomly chosen from each rat. The stained sections 

were examined with a Nikon TE-300 fluorescence microscope (Japan). The superficial 

laminas (I–II) and intermediate and deep dorsal horn (III–VI) were outlined, and the number 

of pixels occupied by immunoreactive cells was measured using Image J 1.24 software 

(NIH) [28,83]. Specifically, each tissue section was first converted to eight-bit gray scale, 

and then each tissue section was calibrated independently using the “uncalibrated OD” 

function with pixel values ranging from 0 to 255. The density values represent pixels per 

area. A background reading taken from the white matter of the dorsal column was subtracted 

from the density reading taken from the gray matter of the same tissue section. This controls 

for differences in nonspecific staining as a result of the DAB reaction [20].

2.4. Experimental protocol

2.4.1. Experiment 1—Experiment 1 tested for differences in analgesia by different 

durations of stimulation. Mechanical withdrawal thresholds were tested before and 2 weeks 

after SNI, and before and after daily application of SCS for 4 days. SCS was applied two 

weeks after SNI as follows. The lead was connected to a neurostimulator and SCS was 

applied at 4Hz or 60Hz frequencies. Stimulation amplitude was 90% of motor threshold 

(MT) and at an intensity of 0.35 volts for 4 days. Animals received either 30 min or 6h of 

SCS. All parameters of stimulation were programmed into the stimulator immediately, prior 

to the start of stimulation. All groups were tested after the stimulator turned off at days 5, 8 

and 14 which corresponded to 1, 3, and 9 days after SCS. Animals were randomly assigned 

to 6 experimental groups, with two frequencies and two different durations of stimulation as 

follows: group 1 = 4 Hz with 30 minutes of SCS (n = 8), group 2 = 4 Hz with 6 hours of 

SCS (n = 6), group 3 = 60 Hz with 30 minutes of SCS (n = 8), group 4 = 60 Hz with 6 hours 

of SCS (n = 6), group 5 = Sham SCS for 30 minutes (n = 4) and Group 6 = Sham SCS for 6 

hours (n=6).

2.4.2. Experiment 2—Experiment 2 tested for differences in analgesia produced by 

different intensities of stimulation. Mechanical withdrawal thresholds were tested before and 

2 weeks after SNI, and before and after daily application of SCS for 4 days. SCS was 

applied two weeks after SNI as follows. Stimulation amplitude was 50 and 75% MT for 4 

days and were compared to 90% MT intensity. All animals received and either 4 Hz or 60 

Hz frequencies. All parameters of stimulation were programmed into the stimulator 

immediately prior to the start of stimulation. All groups were tested until day 5, 24h after 

stopping SCS. Animals were randomly assigned to 5 experimental groups, with two 

frequencies and two different amplitude doses of stimulation. The groups were divided into 

group 1 = 4 Hz with 50% MT (n = 8), group 2 = 4 Hz with 75% MT (n = 8), group 3 = 60 

Hz with 50% MT (n = 8), group 4 = 60 Hz with 75% MT (n = 8), group 5 = Sham SCS for 6 

hours (n=8). This data was compared to the data from Experiment 1 that received 90% MT 

to test for itensity-dependent effects. The sham animals were implanted with the 

Sato et al. Page 4

Anesth Analg. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



neurostimulation hardware and were tethered to the neurostimulator system, but did not 

receive SCS.

2.4.3. Experiment 3—Experiment 3 tested for glial cell activation in the spinal cord using 

immunohistochemistry of astrocyte and microglial markers. Perfusion was done 7 days or 15 

days after SNI, or after application of SCS for 4 days. SCS was applied two weeks after SNI 

as follows: amplitude was 90% MT, duration was 6 hours, and frequency was either 4 Hz or 

60 Hz fequency. The groups were divided into group 1 = 7 days SNI p-p38 marker (n = 5), 

group 2 = naive control p-p38 and 0X-42 (n=5) or GFAP and MCP-1 (n = 5), group 3 = 60 

Hz SCS OX-42 (n=5) or GFAP and MCP-1 (n = 5), group 4 = 4 Hz SCS OX-42 (n=5) or 

GFAP and MCP-1 (n = 5).

2.5 Statistical analysis

Analysis of the data was performed using SPSS 13.1 (Statistical Package for the Social 

Sciences). Data for mechanical withdrawal thresholds of the paw were presented as mean ± 

S.E.M‥ For tests, the differences between duration (sham, 30 minutes and 6 hours), 

amplitude-dose (sham, 50%, 75%, 90% MT), between frequency (4HZ, 60Hz) and side 

(right, left) before and after SCS were examined using a repeated measures ANOVA. Post 

hoc testing between different groups was performed with a Tukey’s test (parametric). A 

seperate analysis compared the percentage of responders and non-responders between 

durations and frequencies of stimulation. Responders and non-responsers were established 

based on the paw withdrawal threshold responses after SCS. Responders were defined as 

those with an increase in withdrawal thresholds during SCS compared to values prior to 

SCS. Density of immunostaining was analyzed using a one-way ANOVA and post hoc 

Tukey’s test (parametric). A p value <0.05 was considered significant.

3. Results

3.1 SNI model

Before SNI, baseline withdrawal thresholds had on average of 295± 18. Two weeks after 

SNI, all groups showed a significant decrease in mechanical withdrawal thresholds 

ipsilaterally averaging 20 ± 3.2 mN. The contralateral side showed a decrease that averaged 

89 ± 4.6 mN but was not statistically significant (Figure 1).

3.1.1. Effects of SCS—The paw withdrawal threshold singificantly increased ipsilaterally 

after treatment with either 60 Hz SCS or 4 Hz SCS (p=0.0001) when compared to sham SCS 

(p=0.0001). SCS for 6h showed significantly greater analgesia when compared to 30 min 

SCS (p=0.02) or sham (p=0.0001); 30 min SCS at 4 Hz was significantly greater than sham 

SCS (p=0.0001) (Figure 2A). Thus, the greatest reduction in withdrawal threhsold occured 

with 60 Hz SCS delivered for 6h at 90% MT. There is small but significant carryover effect 

1 day and 3 days after SCS that is reversed 9 days after SCS. Figure 2B shows the area 

under the curve for the 4 groups on days 1–4. Again, the greatest reduction occurs at 60 Hz 

stimulation for 6 hours.
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A seperate analysis examined differences between responders and non-responders. On Day 

1, the number of responders in the 60 Hz 6 hour SCS group was 100%, compared to 62% in 

the 60 Hz 30 min SCS group, 50% in the 4Hz 6h SCS group, and 17% in the 4Hz 30 min 

SCS group. After SCS, there was a significant difference when comparing 60Hz to 4Hz in 

the number of responders (p=0.013). When comparing duration of SCS for the number of 

responders there was no difference between durations of stimulation. However, 6h of 

stimulation was significantly different from sham (p=0.003).

After SCS the greatest effect occurred with an intensity of 90% MT which was significantly 

different from 75% SCS (p=0.023), 50% SCS (p=0.019), or sham (p<0.0001). The changes 

in the ipsilateral paw withdrawal thresholds were significantly greater after 75% MT SCS 

when compared to 50% SCS (p=0.019) or sham SCS (p=0.0019). There was a significant 

difference when comparing the three intensities as follows: 90% MT > 75% MT > 50% MT 

= sham SCS (Figure 3).

3.1.2. SCS suppressed spinal glial activation in neuropathic pain—After SCS, 

immunohistochemistry was performed to determine whether SCS suppressed glial activation 

in the spinal dorsal horn in animals with neuropathic pain. Both microglial (OX-42 positive) 

(Figure 4-A) and astrocytic markers (GFAP positive and MCP-1 positive) (Figure 5-A and 

B) were significantly increased bilaterally 2 weeks after SNI. Both 4 days of 4 Hz and 60 Hz 

SCS significantly decreased OX-42, GFAP and MCP-1 immunoreactivity bilaterally when 

compared to sham SCS (Figure 4-A, 5 A and B). There were no changes in p-p38 15 days 

after SNI. However, as previuosly reported p-p38 is increased earlier after nerve injury, as 

early as 12 hours and peaked after 3 days [23] - we confirmed this increase 7 days after SNI 

(Figure 4-B and C). There was a significant increase in the density of p-p-38 staining 7 days 

after SNI in laminae I-II bilaterally (ipsilateral: p=0.004; contralateral p=0.001) and laminae 

III-V bilaterally ipsiletaral; p=0.010; contralateral; p=0.001)(Figure 4-E).

The density of the microglia marker OX-42 was increased bilaterally in laminae I-II 2 weeks 

after SNI when compared to naive controls (ipsilateral p=0.01; contralateral p=0.008). Both 

60Hz and 4Hz SCS significantly decreased OX-42 staining in the superficial laminae 

bilaterally when compared to sham SCS: 60 Hz (ipsilateral p=0.0001; contralateral p=0.001) 

and 4Hz (ipsilateral p=0.0001; contralateral p=0.003). In laminae III-V the density of 

immunoreactivity for OX-42 was also increased after SNI both ipsilaterally (p=0.001) and 

contralaterally (p=0.001) when compared to naive controls. SCS signficantly decreased the 

OX-42 staining in the deep dorsal horn when compared to sham SCS: 60 Hz (ipsilateral 

p=0.005; contralateral p=0.004); 4 Hz group (ipsiletaral p=0.005; contralateral p=0.004) 

(Figure 4-D).

For the astrocyte markers we examined GFAP and MCP-1. Statistically significant increases 

in the density of immunoreactivity for GFAP and MCP-1 occured in laminae I-II for both 

the ipsilateral (GFAP p=0.0001; MCP-1 p=0.007) and the contralateral (GFAP p=0.001; 

MCP-1p=0.03) sides. SCS reduced the SNI-induced increased immunoreactivity for GFAP 

both ipsilaterally (60 Hz p=0.0001; 4Hz p=0.0001) and contralaterally (60 Hz p=0.002; 4 Hz 

p=0.0001) in the superficial laminae. Similarly, statistically significant increases in the 

density of GFAP and MCP-1 in laminae III-V after SNI occured after SNI and these 

Sato et al. Page 6

Anesth Analg. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



increases were reduced by both 60 Hz and 4 Hz SCS ipsilaterally (GFAP: control vs SNI 

p=0.0001, SNI vs 60 Hz p=0.002, SNI vs 4Hz p=0.462; MCP-1: control vs. SNI p=0.007, 

SNI vs 60 Hz p=0.002; SNI vs 4Hz p=0.843) and contralaterally (GFAP: control vs SNI 

p=0.001; SNI vs. 60 Hz p=0.845; SNI vs. 4Hz p=0.123; MCP-1: control vs SNI p=0.003; 

SNI vs. 60 Hz p=0.720; SNI vs. 4Hz p=0.269) (Figure 5-C and D).

4. Discussion

In the present study, we demonstrated that long duration SCS (6 h) produces greater 

analgesia than short duration SCS (30 minutes); that 60 Hz SCS is more effective than 4 Hz 

SCS; and both frequencies of SCS are better than sham. Further both 60 Hz and 4 Hz SCS 

decreased activation of glial cells (microglia and astrocytes) in the spinal cord suggesting 

that SCS reduces central excitability.

4.1. Effect of SCS depends on intensity

SCS is generally delivered both clinically and in experimental studies below motor threshold 

[33,38,66,76] and the majority of these use intesnities around 2/3 of motor threshold to 

produce analgesia [32,89]. The current study showed that intensities at 75% of motor 

threshold were less effective than 90% and 50% had no effect. Similarly, intensity 

dependent reductions in inflammation-induced hypersensitivity are observed for 

transcutaneous electrical nerve stimulation (TENS) in both animal and human subjects 

[43,58]. Higher intensities of SCS produce a longer reduction in hyperaglesia and greater 

intensities of SCS correlatewith longer duration and magnitude of pain relief [38,39,90]. In 

parallel, Gerardini et al., 1999 [15] also showed that higher intensities of SCS (90% motor 

threshold) increased the survival rate of skin flaps rendered ischemic when compared to SCS 

at lower intensities (70% of motor threshold). Thus intensity-dependent effects occur for 

both SCS and TENS suggesting intensity is a key factor in stimulation-produced analgesia.

4.2. SCS is more effective with longer-duration stimualation

We showed a small, but significantly greater reduction in hypersensitivity with 6h of 

stimulation, particularly with 60 Hz SCS. Prior studies clearly show reductions in 

hypersensitivity with stimualtion durations as little as 5 minutes with the majority of studies 

showing good reductions in hypersensitivity with 30 min to 1h of SCS [1,33,50,63,65,90]. In 

animals, fifteen minutes of SCS inhibited evoked responses of WDR neurons to noxious 

mechanical stimuli in a model of neuropathic pain (SNL) [18]. In humans, the duration of 

SCS is more variable with reports of 6–8 sessions per day for 10–60 min each session [87] 

or for longer periods between 5 and 12 hours in a session [9,27]. The current study confirms 

that longer duration stimulation produces greater analgesia than shorter durations.

4.3. SCS effects can persist after stimulation

Prior work in a rat model of neuropathic pain (ligature of the sciatic nerve), 10 minutes of 

SCS attenuated hypersensitivity of the hindpaw for up to 40 minutes after cessation of the 

stimulation [39]. SCS also inhibits nociceptive discharges of dorsal horn neurons for 

approximately 30–40 min after cessation of SCS [31,54]. The current study extends these 

prior findings and shows a small but significant reduction in mechanical hypersensitivity 
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with 60 Hz SCS for up to 3 days after cessation of stimulation. In humans, how long the 

pain relief endures after stimulation and which factors influence the duration of post-SCS 

pain relief is unknown [87]. Some authors explain that the carryover effect may involve a 

complex set of plastic changes and remodeling in spinal and supraspinal pain-processing 

structures [13,55,68] and repeated SCS in some studies shows a cumulative effect [33,90]. 

However, in the current and our prior study were were unable to show this cumulative 

inhibitory effect with repeated stimulation [58].

4.4. SCS reduces glial cell activation in the spinal cord

Glial cells have been implicated in producing hypersensitivity following nerve injury 

[42,56,60] with both spinal microglia and astrocytes activated after nerve injury 

[23,48,52,75]. In the current study, we showed activation of both microglia and astrocytes 

after nerve injury with early increases in phosphorylation of the mitogen activated kinase 

(MAPK) p-38 [23,78, 84]. However, our results showed the other microglial surface marker 

CD11b (OX-42) continued to show enhanced immunoreactivity and that microglial cells 

appeared to remain activated 10 days to 2 weeks after nerve injury [6,85]. The activation of 

astrocytes in the later phases also agrees with prior studies implicating these cells in the 

maintenance of mechanical allodynia in neuropathic pain [22,70].

The current study showed for the first time that both 4 Hz and 60 Hz SCS reduce microglia 

and astrocyte activation in the spinal cord. Similarly, other therapeutic treatments that use 

our endogenous analgesia system also reduce glial activation including electroacupunture, 

peripheral nerve stimulation, or joint mobilization [16,25,35,69]. SCS increases release of 

the inhibitory neurotransmitters GABA, serotonin, and opioids in the spinal dorsal horn 

[7,8,30,39,32,59,65,67-58] that could directly inhibit activation of glial cells. In fact both 

astrocytes and microglia express inhibitory neurotransmitter receptors including 

GABAergic, serotonergic and opioidergic receptors 

[11,19,24,36,44,47,49,51,52,61,64,67,79]. Further, activation of these inhibitory 

neurotransmitters in animals with neuropathic pain reduced glial cell activation [88]. 

Alternatively, neuronal release of excitatory neurotransmitters such as glutamate could 

activate microglia and increase release of more excitatory neurotransmitters from glial cells 

to perpetuate the nociceptive response [3,4,77]. Inhibitory neurotransmitters could indirectly 

reduce glial cell activity by reducing neuronal release of excitatory neurotransmitters [5]. It 

is likely that a combination of increases in inhibitory neurotransmitters and decreases in 

central exctiability result in the analgesia produced by SCS, and that the increase in 

inhibitory neurotransmitters contribute to the reduction in glial cell activity. Therefore, 

further studies examining the underlying mechanisms of the reduced glial cell activity are 

required.

The present study examined stimulation parameters and shows that the greatest analgesia 

produced by SCS occurs with 60 Hz SCS for 6 hour duration. We further show that SCS, 

both 4 Hz and 60 Hz, reduces glial cell activation of both astrocytes and microglia in the 

dorsal horn of the spinal cord. We suggest that SCS has the ability to modulate nociceptive 

input at the spinal cord using multiple inhibitory neurotransmitters that subsequently reduce 

glial cell activation.
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Figure 1. 
Average withdrawal thresholds before (baseline) and 2 weeks SNI for the ipsilateral and 

contralateral sides. Data are man + S.E.M. *, p<0.05
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Figure 2. 
A. Time course for changes in withdrawal thresholds after SNI and after SCS for up to 14 

days. SCS significantly increased the mechanical withdrawal threshold bilaterally when 

compared to sham SCS. A greater effect was observed with 6h of SCS compared 30min 

SCS. The arrow shows the time of SCS treatment. B. Averege area under the curve for the 

changes in withdrawal thresholds during SCS compared to prior to SCS for all groups 

averaged over the first 4 days of SNI. Data are mean difference scores between after SCS 

compared to before SCS with S.E.M. * p<0.05, different from sham group.

Sato et al. Page 15

Anesth Analg. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
SCS at 90% MT and 75% MT significantly increased withdrawal thresholds of the paw. 

Notice a dose-response effect ipsilaterally with increasing intensity of SCS. The difference 

in paw withdrawal threshold after SCS when compared to pre-SCS values 2 weeks after 

SNI. * diference between 90% MT and others groups, # difference between 75% and 50% 

and sham.
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Figure 4. 
A. Representative tissue sections for OX-42 immunostaining in the dorsal horn of naive 

control rats, SNI-7days, 60 Hz SCS and 4 Hz SCS. Bar =100µm. B. Representative tissue 

sections for p-p-38 immunostaining in the dorsal horn of naive control rats compared to 7 

days after SNI. Bar =100µm. C. Representative tissue sections with high magnification 

(40X) for OX-42 in red, p-p-38 in green and merge in yellow of control rats and 7 days after 

SNI. Bar =50µm. D. There is a significant increase in the density of OX-42 staining 

bilaterally in the dorsal horn after SNI. Both 60 Hz SCS and 4 Hz SCS significantly 
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decrease this staining. E. There is a significant increase in the density of staining bilaterally 

in the dorsal horn 7 days after SNI in p-p-38 staining. (*) compared with the naieve controls, 

(#) compared with the SNI, Data represent mean ≤ p=0.005.
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Figure 5. 
A. Representative tissue sections for GFAP immunostaining in the dorsal horn of control 

rats, SNI, 60 Hz SCS and 4 Hz SCS. Sketches delineating boundaries of different laminae 

are superimposed over the spinal sections of control rats. B. Representative tissue sections 

for MCP-1 immunostaining in the dorsal horn of native control rats, SNI, 60 Hz SCS and 4 

Hz SCS. C. There is a significant increase in the density of GFAP staining bilaterally in the 

dorsal horn after SNI. Both 60 Hz SCS and 4 Hz SCS significantly decrease this staining. D. 

There is a significant increase in the density of staining bilaterally in the dorsal horn after 
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SNI. Both 60 Hz SCS and 4 Hz SCS significantly decrease MCP-1 staining. (*) compared 

with naive controls, (#) compared with the SNI, (&) compared with 60Hz SCS. Data 

represent mean ≤ p=0.005. Bar =100µm.
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