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Abstract

Triple-negative breast cancers (TNBC), negative for estrogen receptor, progesterone receptor, and 

Her2 amplification, are resistant to standard targeted therapies and exhibit a poor prognosis. 

Furthermore, they are highly heterogeneous with respect to genomic alterations, and common 

therapeutic targets are lacking though substantial evidence implicates dysregulated kinase 

signaling. Recently, six subtypes of TNBC were identified based on gene expression and were 

proposed to predict sensitivity to a variety of therapeutic agents including kinase inhibitors. To test 

this hypothesis, we screened a large collection of well-characterized, small-molecule kinase 

inhibitors for growth inhibition in a panel of TNBC cell lines representing all six subtypes. 

Sensitivity to kinase inhibition correlated poorly with TNBC subtype. Instead, unsupervised 

clustering segregated TNBC cell lines according to clinically relevant features including 

dependence on epidermal growth factor signaling and mutation of the PTEN tumor suppressor. 

We further report the discovery of kinase inhibitors with selective toxicity to these groups. 

Overall, however, TNBC cell lines exhibited diverse sensitivity to kinase inhibition consistent 

with the lack of common driver mutations in this disease. While our findings support specific 

kinase dependencies in subsets of TNBC, they are not associated with gene expression-based 

subtypes. Instead we find that mutation status can be an effective predictor of sensitivity to 

inhibition of particular kinase pathways for subsets of TNBC.
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Introduction

Triple negative breast cancers (TNBCs) disproportionately affect younger women and 

African-American women and exhibit a particularly aggressive phenotype. This disease 

remains a major therapeutic challenge due to its resistance to anti-hormonal and anti-HER2-

targeted therapies, both of which are effective in treating breast cancers that overexpress 

these key cellular receptors (1, 2). While TNBC patients respond well to chemotherapy 

initially, the frequency of relapse is high compared to other breast tumors (3), underscoring 

the need for the development of targeted therapies. However, studies have failed to identify 

tractable genomic alterations that consistently occur in a large fraction of TNBC (4–7), and 

consequently the molecular alterations that drive TNBC are still largely unclear. Functional 

viability screens represent an alternative approach to identify drivers of this disease by 

systematically assessing the consequences of eliminating expression of potential protein 

drivers (8, 9) or their catalytic activity (10) on cell viability.

Protein kinases represent attractive therapeutic targets due to their broad participation in 

pathways driving cell proliferation and survival and their readily targeted ATP-binding 

pocket. Dysregulated EGFR, PI3K pathway, and mTOR signaling have been associated with 

TNBC and represent potential therapeutic targets (5, 11–15), although the results of clinical 

trials using agents targeting these pathways have been disappointing (16, 17). Additionally, 

the protein tyrosine phosphatase PTPN12 was recently identified as a tumor suppressor in 

TNBC, while another phosphatase, UBASH3B, is overexpressed in TNBC (18, 19). These 

findings suggest that kinase signaling may represent a therapeutic opportunity in TNBC. 

Furthermore, given the heterogeneity of TNBC, it would be valuable to identify predictors 

of kinase inhibitor sensitivity to increase therapeutic success.

Recent studies have aimed to identify subtypes of breast cancer, including within TNBC, 

based on gene expression profiles or responses to gene knockdown (9, 20, 21). There has 

also been considerable focus on identifying predictive biomarkers for TNBC therapeutic 

response on a large scale (9, 10, 20, 21). Importantly, six subtypes of TNBC have recently 

been defined based on gene expression signatures, and these include two basal-like groups, 

mesenchymal-like, mesenchymal stem-like, immunomodulatory, and luminal androgen 

receptor types (20). The predictive value of these TNBC subtypes is still unclear, and 

additional studies to examine the key genetic events driving TNBC would be useful in 

understanding the molecular diversity of TNBC and predicting therapeutic benefit (22, 23).

In this study, we used systematic pharmacological inhibition of kinases using a highly 

characterized collection of kinase inhibitors in a panel of twelve TNBC cell lines in order to 

characterize kinase dependencies in TNBC. Importantly, the TNBC cell lines we screened 

included representatives of each of the six subtypes of TNBC recently defined by gene 

expression, and we sought to determine if these subtypes predicted response to our kinase 

inhibitor panel. We found that TNBC subtypes based on gene expression were poor 

predictors of response to our inhibitor panel, implying that gene expression alone may be 

insufficient to predict response to kinase targeted therapies in TNBC cell line models. 

Instead, we identified subgroups of cell lines with similar responses to EGFR and PI3K 
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pathway inhibitors, and demonstrated that PI3K inhibitor sensitivity can be predicted by 

PTEN mutation status in TNBC.

Materials and Methods

Cell Lines

BT20, BT549, HCC38, HCC70, HCC1143, HCC1187, HCC1806, Hs578T, and MDA-

MB231 human TNBC cell lines were obtained from the American Type Culture Collection 

(ATCC). CAL148 and MFM223 TNBC cell lines were obtained from Leibniz Institute 

DSMZ-German Collection of Microorganisms and Cell Cultures. MDA-MB468 cells were 

obtained from ATCC as part of the NCI-60 panel via the Cell Culture Facility at Fox Chase 

Cancer Center. All cell lines were purchased from suppliers that routinely authenticate cell 

lines using short tandem repeat profiling. The MDA-MB468 cells have not been 

authenticated by our group since their purchase from ATCC in 2003. All cell lines were 

cultured according to the supplier’s recommendations. All cell lines were amplified and 

frozen at low passage number within two months of receipt, and all experiments were 

performed within 20 passages of thawing. For cell viability assays, between 200 and 3000 

low-passage cells were plated per well in 384-well microplates using the Matrix Wellmate 

automated plate filler (Thermo Scientific). Optimal cell plating density was determined prior 

to screening for each cell line to allow for at least two population doublings and to avoid 

confluency by the end of the one week assay period (Supplementary Table 1).

Kinase inhibitors

A kinase inhibitor library containing 160 well-characterized kinase inhibitors was purchased 

from EMD Millipore. Neratinib, afatinib, PD153035, and GSK2126458 were purchased 

from Selleck Chem. RAD001 and GDC0980 were provided by Joseph Testa (Fox Chase 

Cancer Center), and BEZ235 was supplied by Timothy Yen (Fox Chase Cancer Center). The 

following compounds were purchased from LC Labs: bosutinib isomer, dasatinib, dovitinib, 

erlotinib, gefitinib, imatinib, lapatinib, masitinib, mubritinib, nilotinib, pazopanib, 

roscovitine, sorafenib, sunitinib, tandutinib, tofacitinib, tozasertib, vandetanib, vatalanib, 

and VX702. All compounds were solubilized and stored at −80°C in 100% dimethyl 

sulfoxide (DMSO).

Kinase Inhibitor Screen

Twenty-four hours after cell seeding in 384-well plates, cells were treated with DMSO or 

one of eight doses of kinase inhibitors (final concentration range 64 pM – 5 μM). Inhibitors 

were added by pin transfer, and the final concentration of DMSO was <0.3% for all inhibitor 

concentrations. This DMSO concentration was determined to have minimal effect on cell 

viability in each cell line. Cell viability was assessed one week later using the CellTiter Glo 

luminescent cell viability assay (Promega). Screening was performed in duplicate on 

separate days. Duplicate dose-response data were averaged and fit using a sigmoidal dose-

response curve in GraphPad Prism 6.0 in order to generate half maximal effective 

concentration values (EC50).
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Statistical Methods

Heat map—A re-ordered heat map of EC50 values for all kinase-inhibitor pairs was 

obtained using two-way hierarchical clustering based on Manhattan distance and complete 

linkage. No scaling was applied to this data. These choices of distance metric and linkage 

method are robust to outlying observations and identify compact clusters of cell lines 

associated with sub-groups of kinase inhibitors based on their EC50 values. In addition, this 

approach effectively handles the presence of a large number of observations in the dataset 

with an EC50 value of 20 μM. For the identification of Group-selective inhibitors, EC50 

values across the three Groups identified by hierarchical clustering were compared using the 

Kruskal-Wallis test to identify inhibitors where EC50 values were significantly lower in a 

particular group compared to the other groups.

Identification of potential cell line-specific kinase drivers—Each kinase inhibitor 

in the panel was first classified as either toxic (EC50< 5 μM) or non-toxic (EC50 ≥ 5 μM) to 

a given cell line. Next we used published in vitro specificity data for these kinase inhibitors 

against 300 kinases (kir.fccc.edu and (24)) to binarize the target spectrum of each inhibitor 

such that each of the 300 kinases was classified as either “targeted” (inhibited by > 50% in 

vitro) or “non-targeted” (inhibited by ≤ 50% in vitro) by a given inhibitor. Frequency data 

for each kinase across all inhibitors was summarized in the form of a 2 X 2 contingency 

table, and a one-sided Fisher’s exact test of association between compound toxicity and 

kinase targeting was performed.

Additional statistical methods—All other tests were two-sided and used a Type I Error 

of 5%. Due to the exploratory nature of this study, whose primary goal is to generate new 

hypotheses, no correction for multiple hypothesis testing was performed. All computations 

were performed in the R statistical language and environment(25).

For statistical analysis of gene mutation frequency, data were derived from the Cancer Cell 

Line Encyclopedia and the COSMIC database(10, 26), and Fisher’s exact test was used to 

associate the presence of mutations with Group membership.

Results

TNBC molecular subtype is a poor predictor of kinase inhibitor sensitivity

In order to gain insight into kinases important for growth and survival of TNBC, we 

screened a well-characterized library of 180 known kinase inhibitors (24) for growth 

inhibition of a panel of 12 TNBC cell lines, selected to represent each of the recently defined 

gene expression subtypes (molecular subtypes) of TNBC (20). Importantly, this inhibitor set 

has been shown to target the majority of human protein kinases (24) and includes FDA-

approved drugs as well as commercially available research compounds. We treated cells 

with 8 doses of each kinase inhibitor (5 μM – 64 pM) for one week and monitored cell 

viability, relative to solvent-treated control wells, using the CellTiter Glo assay to measure 

ATP released from cell lysates. The one week treatment time was chosen to increase the 

sensitivity of the viability assay for slower-growing cell lines. Viability data were fit to a 

sigmoidal dose-response curve and EC50 values were determined for each inhibitor-cell line 
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pair (Figure 1). Seven inhibitors had no effect on any of the tested cell lines, and these 

inhibitors were excluded from further analysis. The complete data set is presented in 

Supplementary Table 1.

Overall we observed significant heterogeneity in the effect of the compounds across the cell 

line panel (Figure 2), consistent with the genomic heterogeneity observed in TNBC (5, 20). 

For example, some TNBC cell lines, including MDA-MB468, HCC1806, CAL148, and 

BT20, were highly sensitive to kinase inhibition, exhibiting median EC50 values in the low 

micromolar range (black bars in Figure 2). Other cell lines, particularly HCC38, HCC1143, 

Hs578T, MDA-MB231, and MFM223, were strikingly resistant to the majority of kinase 

inhibitors tested. Notably, general sensitivity to kinase inhibition did not strictly correlate 

with TNBC molecular subtype (Figure 2).

Sensitivity of TNBC cell lines to individual compounds was also highly variable, suggesting 

that individual cell lines may exhibit diverse kinase dependencies (Supplementary Table 1). 

We used two-way, unsupervised hierarchical clustering to group TNBC cell lines with 

similar responses to the kinase inhibitors. Likewise, kinase inhibitors were clustered based 

on similarities in their toxicity profiles (Figure 3; Supplementary Figure 1). This analysis 

revealed three major subgroups within the cell line panel (Groups 1, 2, and 3), representing 

cell lines with most similar responses to the set of kinase inhibitors tested (Figure 3). As a 

singlet cell line, the CAL148 cell line was included in Group 1, given its proximity to Group 

1 cell lines after clustering, to increase the number of representatives of this group. As 

discussed below, though, CAL148 cells exhibit features that distinguish them from other 

Group 1 cell lines. Strikingly, cell lines of the same molecular subtype did not generally co-

cluster, suggesting that these subtypes do not strongly predict inhibitor sensitivity. To test 

this rigorously and quantitatively, we used the Adjusted Rand Index (ARI) and Normalized 

Mutual Information (NMI) indices to assess whether there is an association between 

molecular subtype and the three Groups determined by kinase inhibitor profiling (27, 28). 

The majority of TNBC cell lines in our panel fall into one of three major gene expression-

based subtypes; basal-like (BL), mesenchymal-like (ML), and luminal androgen receptor 

(LAR) (20). Two additional subtypes with only one representative cell line each (HCC1187, 

immunomodulatory subtype and BT20, unclassified) were excluded from the analysis. Next 

we calculated the ARI and NMI for the association between BL, ML, and LAR subtypes and 

Groups 1, 2, and 3 as −0.079 and 0.22, respectively, indicating poor correlations between the 

two groupings. A test of significance of the null hypothesis that there is no association 

between the classes (ARI or NMI = 0) against the one-sided alternative was performed using 

permutation testing. The realized p values based on 1000 random permutations were 0.84 

(ARI) and 0.61 (NMI) indicating that there is no evidence for association between BL, ML, 

and LAR subtypes and Groups 1, 2, and 3. Consistent with this finding, we found no kinase 

inhibitors with statistically significant toxicity specifically against cells of any one molecular 

subtype (not shown). Thus, our results indicate that molecular subtype is not a strong 

predictor of kinase inhibitor sensitivity.

Analysis of the clustering of kinase inhibitors revealed the presence of two major subgroups. 

Strikingly, the lower inhibitor cluster in Figure 3 included a disproportionate number of 

compounds that potently inhibited growth of all cell lines. We hypothesized that these 
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highly toxic compounds might include compounds that inhibit a larger number of kinase 

targets (more promiscuous inhibitors). Indeed, we found that the mean Gini coefficients, a 

measure of inhibitor selectivity ranging from 0 (promiscuous) to 1 (perfectly selective), of 

the two clusters were modestly different but showed strong statistical significance 

(Supplementary Figure 2; 0.67 vs. 0.60 for inhibitor clusters 1 and 2, respectively; p = 2.293 

x 10−5) (24, 29).

Identification of TNBC subgroups with similar kinase dependency

We next examined our data to identify kinase inhibitors that exhibited Group-selective 

toxicity. We performed a Kruskal-Wallis comparison of the mean EC50 values for each 

inhibitor across Groups 1, 2, and 3. Supplementary Table 2 presents the ranked list of 

compounds according to p value. We observed that several of the compounds most 

selectively toxic for Group 1 cell lines were reported previously to inhibit EGFR catalytic 

activity (24). Consistent with this finding, the BT20 Group 1 cell line has been previously 

shown to have increased EGFR expression and activity and has increased sensitivity to 

genotoxic drugs following pretreatment with EGFR inhibitors (14, 30, 31). To validate 

dependence on EGFR catalytic activity for the growth of Group 1 cells, we tested three 

additional EGFR inhibitors (afatinib, neratinib, and PD153035) in cell viability assays in 

each cell line. We calculated the mean EC50 for the 20 EGFR inhibitors from our screening 

set and afatinib, neratinib, and PD153035 in each cell line (Figure 4A; complete dataset in 

Supplementary Table 3). Consistent with EGFR-dependence, Group 1 cell lines BT20 and 

HCC1806 were 7- to 15-fold more sensitive to treatment with EGFR inhibitors compared to 

cell lines of Groups 2 and 3. Not surprisingly, CAL148 cells, which segregate from other 

Group 1 cell lines (Figure 3), did not show increased sensitivity to EGFR inhibitors. Figure 

4B presents examples of the most selective compounds for Group 1, with additional 

compounds significantly toxic to Group 1 shown in Supplementary Figure 3. In addition to 

inhibitors of EGFR (PD174265 and EGFR/ErbB2/ErbB4 Inhibitor), these include inhibitors 

of Rho kinase and the CDK2 cell cycle kinase. Notably, an additional inhibitor of Rho 

kinase, Y-27632, was also more toxic to Group 1, although this selectivity did not reach 

statistical significance (Supplementary Table 2). These data suggest that Rho kinase might 

also promote the growth of Group 1 cell lines.

Examples of kinase inhibitors preferentially toxic for Group 2 are shown in Figure 5A. 

These include AGL2043, an inhibitor of PDGFR and other type III receptor tyrosine kinases 

and SU9516, a cyclin-dependent kinase inhibitor. Intriguingly, all three Group 2 cell lines 

were previously shown to be highly sensitive to siRNA-mediated depletion of the CDK2/5/6 

partner cyclin D1 (32). In addition, the Aurora kinase inhibitors tozasertib and an additional 

Aurora kinase/CDK inhibitor were selectively toxic to Group 2 cells. Other compounds 

selectively toxic to Group 2 include the VEGFR inhibitor vatalanib, in clinical development, 

and a BCR-ABL inhibitor.

No kinase inhibitors tested were selectively toxic to Group 3 cell lines, consistent with their 

general resistance to the kinase inhibitor panel (Figure 3). To identify potential kinase 

drivers of individual cell lines in Group 3, we performed a statistical test for association 

between compound toxicity and the inhibition of particular kinases. This approach takes 
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advantage of previous comprehensive target characterization of the kinase inhibitors in our 

library (24). Inhibitors were classified as either toxic (EC50< 5 μM) or non-toxic (EC50 ≥ 5 

μM) for a cell line, and kinases were classified as targeted by an inhibitor if they were 

inhibited by > 50% in the in vitro analysis. Fisher’s exact tests were then used on a kinase by 

kinase basis to assess whether cellular toxicity was associated with inhibition of that 

particular kinase. The analysis produced numerous significantly enriched kinase targets for 

each of the Group 3 cell lines (Supplementary Table 4). Among the kinases most 

significantly associated with cellular toxicity for any member of Group 3 (p < 1 x 10−6) 

were the fibroblast growth factor receptors (FGFR) 1 and 2 in MFM223 cells. This finding 

is consistent with data showing FGFR2 gene amplification and a dependence on FGFR2 

activity for survival in this cell line (33, 34). Although analysis of existing gene expression 

data failed to generally associate kinase expression with sensitivity to inhibitors of those 

kinases (data not shown), increased expression of FGFR2 in MFM223 cells is consistent 

with FGFR dependence in this cell line. We also identified CDK6 and CDK1 as putative 

kinase drivers in HCC38 cells, consistent with previous evidence of their sensitivity to 

CDK4/6 inhibition (32). Additionally, inhibition of the tyrosine kinase FES/FPS was 

identified as highly significantly associated with toxicity to HCC1143 cells. FES/FPS has 

been previously associated with tumor growth and metastasis in breast cancer (35). These 

and the other significantly associated kinases identified from our statistical analysis warrant 

further investigation to examine their roles in growth and survival of these TNBC cell lines.

Our findings demonstrate that Group 1 TNBC cell lines exhibit a dependence on EGFR for 

growth or survival, consistent with a plethora of data supporting a role for this receptor in a 

subset of TNBC (14, 15, 31). In addition to EGFR, we have shown that inhibitors of Rho 

kinase and CDK2 are preferentially toxic to Group 1 cell lines. We have also identified 

kinase inhibitors selectively toxic to Group 2 cell lines, including those targeting CDKs, 

PDGFR, VEGFR, and Aurora kinase, all of which have been previously associated with 

TNBC (32, 36–38). Finally, we have identified a group of TNBC cell lines (Group 3) that 

appear generally resistant to kinase inhibition, and while as a group they do not appear to 

show a common dependence on a particular kinase pathway, we have identified potential 

dependencies for individual cell lines.

Features of TNBC cell lines predict kinase inhibitor response

In order to gain insight into the molecular features of TNBC cell lines that drive Group 

membership, we examined whether any mutations are over-represented in any particular 

Group. The mutation status of 623 genes was determined for each cell line using data from 

the COSMIC database and the Cancer Cell Line Encyclopedia (10, 26), and Fisher’s exact 

test was used to determine whether any particular gene was disproportionately mutated in 

any of the three Groups. Mutations in the lipid phosphatase and tumor suppressor PTEN 

were significantly associated with Group 2 cell lines (p=0.01), but no mutations reached 

significance in Groups 1 or 3 (p < 0.05). Indeed, all three Group 2 cell lines, BT549, 

HCC70, and MDA-MB468, have PTEN mutations that render the cells null for PTEN 

protein expression (39, 40).
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PTEN opposes the activity of PI3 kinases (PI3K), suggesting that elevated PI3K pathway 

activity may contribute to the growth and survival of Group 2 TNBC cells. To test this 

hypothesis, we calculated the mean EC50 value for inhibitors of PI3K pathway kinases for 

all cell lines, including 18 inhibitors from our screening panel and 4 additional PI3K 

pathway inhibitors (BEZ235, RAD001, GDC0980, and GSK2126458; complete data set in 

Supplementary Table 5). These inhibitors include compounds that target PI3K directly as 

well as the downstream kinases Akt and mTOR. Generally, we found increased sensitivity 

of Group 2 cell lines to inhibition of PI3K signaling relative to cell lines in Groups 1 and 3 

(Figure 5B). An additional PTEN null cell line, CAL148 from Group 1, was also highly 

sensitive overall to PI3K pathway inhibition. This observation is consistent with the role of 

PTEN loss in activation of the PI3K pathway and subsequent sensitivity to agents targeting 

this pathway. The BT20 Group 1 cell line was also quite sensitive to PI3K pathway 

inhibition, likely due to the presence of the H1047R activating mutation in PI3K (41). 

Despite sensitivity to PI3K pathway inhibitors, CAL148 and BT20 cells did not cluster with 

Group 2, perhaps because this dependence is overwhelmed by a general sensitivity to the 

majority of compounds tested (Figure 2). Overall, these results show that PTEN mutations 

predict sensitivity to PI3K pathway inhibitors in TNBC cell line models and highlight the 

relevance of performing functional assays in TNBC cell lines in demonstrating kinase 

inhibitor sensitivity.

Discussion

Both the aggressiveness of TNBC and the lack of therapeutic success with targeted agents 

have prompted studies to better characterize the disease and to predict which patients will 

benefit from which therapies (9, 20, 21). Here we have sought to further characterize the 

relevance of TNBC molecular subtypes defined by gene expression and their value for 

predicting sensitivity to kinase inhibition. We found that cell lines from the same molecular 

subtype were differentially sensitive to kinase inhibitors in our panel (Figure 3). We also 

found that no kinase inhibitors showed toxicity selectively to a particular molecular subtype 

(data not shown). These findings suggest that TNBC molecular subtypes may not be strong 

predictors of response to kinase inhibition. This finding can be understood based on the 

diverse potential mechanisms for dysregulation of kinase signaling other than alterations in 

expression at the mRNA level, including mutation or alteration in upstream regulators. 

Indeed, we found that although molecular subtype did not strongly predict kinase inhibitor 

sensitivity, PTEN mutation status correlated well with sensitivity to inhibitors of the PI3K 

pathway (Figure 5B). Thus, gene expression signatures on their own are unlikely to be 

generally effective predictors of kinase inhibitor sensitivity and highlight the advantages of 

functional profiling to identify kinases critical for TNBC growth.

Functional pharmacological profiling, though a powerful approach for characterizing 

cultured cell lines, is poorly suited to guiding personalized therapies for patient tumors. 

Consequently, clinically relevant biomarkers such as gene mutation or overexpression that 

predict kinase inhibitor sensitivity must first be identified in cell line panels and 

subsequently validated through clinical trials. Because our data and others’ suggests that 

TNBC may exhibit a broad and heterogeneous dependence on diverse kinase pathways, 

functional profiling of very large and diverse arrays of cell lines will likely be required to 
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identify dependencies on specific individual kinases that may be present in only a small 

proportion of TNBC patients. Nevertheless, even the modestly sized cell line panel 

examined here revealed expected dependencies on EGFR and PI3K pathways in a subset of 

TNBCs as well as additional subtype-selective agents (Figures 4&5).

While we found that kinase inhibitor sensitivity was not generally well predicted by 

molecular subtype, sensitivity to other anti-cancer agents has been linked to molecular 

subtype both in cell lines and clinically (20, 42, 43). For example, chemotherapeutic agents, 

such as cisplatin, taxanes, and anthracyclines, are more toxic to basal-like TNBCs, while the 

androgen receptor antagonist bicalutamide is selectively toxic to cell lines of the LAR 

subtype (20, 43). Interestingly, the SRC/ABL kinase inhibitor dasatinib was previously 

reported to exhibit preferential toxicity for mesenchymal-like TNBC cell lines (20). While it 

did not reach statistical significance, our mesenchymal-like cell lines, BT549, Hs578T, and 

MDA-MB231, were more sensitive to dasatinib than cells of other TNBC subtypes (p = 

0.12).

Our unsupervised hierarchical clustering of cell lines based on their similarity of kinase 

inhibitor sensitivity identified three major Groups of TNBC cell lines. We identified a 

significant feature of Group 1 as sensitivity to EGFR inhibition, and all EGFR inhibitors that 

we tested were toxic to BT20 and HCC1806 Group 1 cell lines, pointing to a subset of 

TNBC that is highly dependent on this kinase for growth and/or survival. The CAL148 cell 

line, included in Group 1 to increase the number of cell line representatives for this group, 

was not more sensitive to EGFR inhibitors, and we suggest that CAL148 cells rely more on 

alternate kinases for survival. We observed that CAL148 cells were the most sensitive to 

kinase inhibitors overall (Figures 2 and 3), suggesting the possibility that the specific 

kinases critical to the growth of CAL148 cells are overshadowed by a general sensitivity to 

kinase inhibitors (Figures 2 and 3).

In non-small cell lung cancer, increased efficacy of EGFR inhibitors can be seen in patients 

with high EGFR copy number, increased EGFR expression, or mutated EGFR (44, 45). 

Although EGFR mutations in TNBC are rare, EGFR overexpression or amplification has 

been reported in some TNBCs and basal breast cancers, making it an attractive therapeutic 

target for TNBC (12, 46–49). Our results suggest that EGFR expression or amplification, as 

seen in BT20 and HCC1806 cells(30, 49), is associated with response to small molecule 

inhibitors of EGFR (Figure 4A). Interestingly, though, the MDA-MB468 cell line also 

expresses high levels of EGFR(49) but is not highly sensitive to EGFR inhibitors (Figure 

4A). This suggests that for some high EGFR-expressing TNBCs, additional features may 

attenuate sensitivity to EGFR inhibition and is consistent with low patient response rate of 

anti-EGFR antibody cetuximab treatment in TNBC (17). Thus, a more complete 

understanding of the role of the EGFR pathway and its response to EGFR inhibitors in 

TNBC is needed to improve the prognostic value of EGFR overexpression for response to 

EGFR-targeted therapies.

A second group (Group 2) of TNBC cells showed increased sensitivity to PI3K pathway 

inhibition associated with mutations in the tumor suppressor PTEN. In fact, three of four 

PTEN-mutant cell lines in our TNBC panel clustered in Group 2. PI3K pathway activation, 
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either through mutational activation of PI3K or loss of the negative regulator PTEN, has 

been associated with TNBC, and our results confirm that a subset of TNBCs is dependent on 

PI3K signaling for growth (5, 10, 26, 50, 51). Interestingly, CAL148 and BT20 cells, which 

are both highly sensitive to PI3K inhibitors (Figure 5B), have documented activating PI3K 

mutations (H1047R) (10, 26). Our results suggest that routine sequencing for PTEN and 

PI3K mutations in TNBC patients would predict sensitivity to PI3K pathway inhibitors, and, 

consistent with this, recent evidence demonstrates increased efficacy of a highly-selective 

Akt inhibitor in PTEN-mutant cancer cell lines grown in culture and as xenografts(52).

Interestingly, we found no inhibitors significantly more toxic to Group 3 cell lines than to 

the other groups, and no mutations that we tested were enriched in Group 3. Group 3 cell 

lines appear overall to be more resistant to the kinase inhibitor panel, as evidenced by higher 

EC50 values generally (median EC50 values: 20 μM for Group 3; 15 μM for Group 2; and 

5.33 μM for Group 1; Figures 2 and 3). It has previously been shown that kinome 

reprogramming occurs following treatment of TNBC cells with MEK inhibitors, suggesting 

plasticity of the kinome in response to single-agent kinase inhibitors (53). The increased 

resistance of Group 3 cell lines might be due to a more inherent ability to rewire kinase 

signaling in response to kinase inhibition, and therefore combination therapies may be 

required to target the growth of these cell lines. Upon further analysis of potential kinase 

dependencies in individual Group 3 cell lines, we found that CDKs, FGFR, and FES/FPS, 

which have previously been associated with breast cancer (32–34, 36), were most 

significantly associated with toxicity to specific cell lines of Group 3 (Supplementary Table 

4). More broadly, the statistical method we have used to identify these associations provides 

an unbiased and widely applicable approach to identify candidate driver kinases from 

pharmacological profiling data in cell lines using compound libraries with defined target 

spectrums.

There have been several recent efforts focused on large-scale pharmacological studies of 

cancer cell lines though none have focused exclusively on triple-negative breast cancers (10, 

21, 54). The heterogeneity of this disease and the lack of predominant driver mutations 

suggest that the success of this approach for TNBC will depend on large and diverse, well-

characterized cell line panels with adequate annotation of mutation status and gene 

expression. Indeed, our analysis indicates that sensitivity to existing kinase inhibitors can be 

predicted based on clinically obtainable markers. Functional profiling of the diversity of 

TNBC remains a promising approach to defining these actionable kinase dependencies. 

While RNAi-mediated kinase inactivation is a successful alternative approach (9), 

pharmacological kinase inactivation provides a simpler and less expensive approach better 

suited to the large cell line panels required to capture the diversity of TNBC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Experimental setup of kinase inhibitor screen
TNBC and control cells were plated in 384-well plates, and 24 hours later, kinase inhibitors 

were added via pin transfer. Cells were incubated in the presence of inhibitors for one week, 

after which cell viability was assessed. Duplicate screening data were normalized to DMSO-

treated controls, and dose-response curves were fitted using GraphPad Prism version 6.0. 

EC50 values were generated and represent cell line responses to the kinase inhibitors.
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Figure 2. TNBC cell lines are differentially sensitive to kinase inhibitors
EC50 values for 12 TNBC cell lines treated with 180 kinase inhibitors for one week were 

sorted into bins of 2 μM increments. Black bars correspond to the bins containing the 

median EC50 value for each cell line. EC50 values ≥ 20 μM were set to 20 μM. TNBC cell 

lines are grouped according to gene expression subtype as described (20).
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Figure 3. Hierarchical clustering of EC50 values reveals groups of similarly-sensitive TNBC cell 
lines
Two-way hierarchical clustering of the TNBC cell line kinase inhibitor screening dataset, 

presented as a heat map of EC50 values. Cell line names are coded according to gene 

expression-based subtype (20) as follows: open squares – basal-like 1; black squares – basal-

like 2; open circles – mesenchymal; black circles – mesenchymal stem-like; gray circles – 

luminal androgen receptor; open hexagons – immunomodulatory; gray squares – 

unclassified. A fully-labeled high resolution version is presented in Supplementary Figure 1, 

and the full data table is presented as Supplementary Table 1.
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Figure 4. Group 1 TNBC cell lines are disproportionately sensitive to EGFR inhibition
A. Scatter plot of EC50 values over a one-week treatment period for 23 EGFR inhibitors. 

Mean EC50 value for all EGFR inhibitors was determined for each TNBC cell line and is 

shown by a black line. Groups 1, 2, and 3 correspond to clusters of TNBC cell lines as 

shown in Figure 3. B. Sensitivity of Groups 1, 2, and 3 to four kinase inhibitors, determined 

to be statistically significantly more toxic to Group 1. Error bars denote variation in EC50 

values within Groups 1, 2, and 3.
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Figure 5. Kinase inhibitors showing selective toxicity against Group 2 TNBC cell lines
A. Sensitivity of cell lines in Groups 1, 2, and 3 to six kinase inhibitors, determined to be 

statistically significantly more toxic to Group 2. Error bars denote variation in EC50 values 

within Groups 1, 2, and 3. B. EC50 values over a one-week treatment period for 22 PI3K 

pathway inhibitors are shown as a scatter plot. The mean EC50 value for all PI3K pathway 

inhibitors was calculated for each TNBC cell line and is shown by a black line. Groups 1, 2, 

and 3 correspond to clusters of TNBC cell lines as determined in Figure 3. PTEN-mutant 

cell lines are indicated (*).
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