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Review Article 
Emerging players in prostate cancer: long non-coding 
RNAs
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Abstract: Recent observations of novel long non-coding RNAs (lncRNAs) have considerably altered our understand-
ing of cell biology. The role of lncRNAs as tumor suppressors or oncogenes has been extensively studied. Over-
expression of oncogenic lncRNAs promotes tumor-cell proliferation and metastasis through chromatin looping and 
distal engagement with the androgen receptor, anti-sense gene regulation, alternative splicing, and impeding DNA 
repair. Prostate cancer is the most common type of cancer and frequent cause of cancer-related mortality in men 
worldwide. Unraveling the molecular and biological processes that contribute to prostate cancer development and 
progression is a challenging task. In prostate cancer, aberrant expression of lncRNAs has been associated with 
disease progression. In this review, we highlight the emerging impact of lncRNAs in prostate cancer research, with a 
particular focus on the mechanisms and functions of lncRNAs. Increased research on lncRNAs will lead to a greater 
understanding of prostate cancercinogenesis and progression and may lead to novel clinical applications. LncRNAs 
have great potential to become new biomarkers for detection, prognostication and prediction in prostate cancer.
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Introduction

Prostate cancer (PCa) remains the most com-
mon type of cancer and frequent cause of can-
cer-related mortality in men worldwide [1]. 
Unraveling the molecular and biological pro-
cesses that contribute to PCa development 
and progression is a challenging task. In past 
decades, we started to understand that initia-
tion of PCa is a complex dynamic biological pro-
cess, involving multiple genomic and epig-
enomic changes. 

The roles of certain genomic alterations have 
been identified in prostate pathogenesis. For 
example, the loss of certain tumor-suppressor 
genes contributes to PCa development and 
progress [2]. Up to 60 percent of men with PCa 
have lost one copy of the PTEN gene at the time 
of diagnosis [3]. The PI3k/Akt signaling cas-
cade works with the TGF beta/SMAD signaling 
cascade to ensure PCa cell survival and protec-
tion against apoptosis [4]. P53 mutations in the 
primary PCa are relatively low and are more fre-
quently seen in metastatic settings. Therefore, 

p53 mutations are late event in pathology of 
PCa [5]. Mutations in BRCA1 and BRCA2, impor-
tant risk factors for ovarian cancer and breast 
cancer in women, have also been implicated in 
PCa [6]. RB loss was infrequently observed in 
primary PCa and was predominantly associated 
with transition to the incurable, castration-
resistant state [7]. Besides loss of tumor sup-
pressors, TMPRSS2-ETS gene family fusion, 
especially TMPRSS2-ERG or TMPRSS2-ETV1/4, 
is frequently found in Caucasian PCa cohorts 
[8]. Inherited genetic variations may contribute 
to PCa susceptibility in general population. Over 
one hundred PCa-risk-related loci have been 
discovered by genome-wide association stud-
ies (GWAS) based on case-control designs. 
Large scale GWAS identified at least three loci 
at 8q24 which are independent genetic risk fac-
tors PCa [9]. 

In addition to DNA structural changes in the 
PCa genome, epigenetic modification also con-
tributes to PCa development. DNA methylation 
and polycomb proteins are well-known media-
tors of epigenetic silencing in PCa process. For 
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example, hypermethylation of CpG islands 
located in gene promoters such as PTEN, RB or 
CDH1 is frequently found in advanced PCa [10-
12]. Dysregulation of histone methyltransfer-
ases (HMTs) or demethylases (HDMs) has been 
associated with PCa development and progres-
sion. EZH2, a subunit of polycomb repressive 
complex 2 (PRC2), silences gene expression via 
its histone methyltransferase activity. The 
oncogenic role of EZH2 in castration-resistant 
prostate cancer (CRPC) cells has been identi-
fied and its expression level significantly corre-
lated with less differentiated and more aggres-
sive PCa tumors [13, 14]. 

Recent advances in next-generation sequenc-
ing technologies have revealed that over 90% 
of human genome is actively transcribed. 
Whereas, only ~2% of the genome is translated 
into proteins, the remaining is expressed as 
noncoding RNAs (ncRNAs). NcRNAs are arbi-
trarily divided into short (<200 nt) and long 
(>200 nt) transcripts [15-17]. Short ncRNAs, 
especially microRNAs (miRNAs), have well-evi-
denced roles in human cancer via their post-
trancriptional role in modifying target mRNA 
expression [17]. 

In contrast to small ncRNAs, lncRNA are less 
evolutionary conserved at the sequence level. 
LncRNA can be divided into five biotypes in 
relation to their proximity to protein-coding 
genes: sense, antisense, bidirectional, intronic 
and intergenic [18, 19]. Despite the growing 
number of discovered lncRNAs, very few have 
been functionally characterized and experi-
mental validated. However, lncRNAs have 
emerged as new players in cancer research 
due to their functions in cancer gene regula-
tion. Some lncRNAs are significant contributors 
in molecular pathways in cancer, such as cell 
proliferation, tumor suppression evasion, can-
cer angiogenesis, anti-apoptosis and metasta-
sis. Dysregulated lncRNAs also have cancer 
biomarker applications. In this review, we brief-
ly summarize some known biological function 
of lncRNAs, highlight several known mecha-
nisms of action of lncRNAs in prostate carcino-
genesis and propose their potential clinical util-
ity for disease.

Functions and potential mechanisms of 
lncRNAs

LncRNAs have a length greater than 200 nucle-
otides and are located in the nucleus or in the 

cytoplasm. It has been estimated that approxi-
mately 15,000 lncRNAs are present in the 
human genome. lncRNAs are transcribed at 
any region in the genome by RNA polymerase 
II/III and, while the majority of identified lncRNA 
are polyadenylated, increasing numbers of 
them are non-poly-adenylated transcripts [18]. 

Emerging evidence suggests that lncRNAs con-
stitute an important component of biology. At 
the molecular level, lncRNAs may sequester 
regulatory RNAs or proteins; serve as scaffolds 
to coordinate ribonucleoprotein function or 
guide target proteins to certain genomic regions 
[20]. Therefore, at the cellular level, they may 
participate in regulation of many cellular pro-
cesses such as cellular differentiation, gene 
expression regulation, cell cycle regulation, 
chromatin modification, and nuclear-cytoplas-
mic trafficking [21]. In terms of gene expression 
regulation, lncRNAs are typically involved in 
transcriptional rather than posttranscriptional 
regulation. A new type of lncRNAs at gene 
enhancers, termed eRNAs, have also been 
implicated in transcriptional regulation [22]. 
Certain type of lncRNAs, which are retained 
within nucleus, also have been shown to serve 
as structural mediators in alternative splicing of 
some transcripts [23]. Antisense genes or 
antagonizer lncRNAs can be served as negative 
controllers in the gene expression [24]. 

LncRNAs play important roles in physiological 
and pathological processes, such as cell differ-
entiation, stem cell reprogramming, tissue 
development and disease pathogenesis includ-
ing cancer. LncRNAs can function as onco-
genes or as tumor suppressors. A few examples 
of lncRNA in tumor biology have been summa-
rized in Table 1 [25-37]. For example, as one of 
early discovered and well-characterized 
lncRNA, HOTAIR was found to be upregulated in 
many types of cancer. HOTAIR mediates the 
epigenetic repression of PRC2 target genes, 
and overexpression of HOTAIR increases PRC2 
recruitment to the genomic positions of target 
genes [31]. 

LncRNAs in prostate cancer

The progression of PCa is largely dependent on 
the activity of the androgen receptor (AR), which 
correlates to AR transcriptional regulatory net-
work. Quite a few lncRNAs have been linked to 
AR machinery disregulation. Two lncRNAs, 
PRNCR1 and PCGEM1, have been reported to 
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be involved in AR-mediated gene transcription 
in PCa [26]. In CRPC, both of PCGEM1 and 
PRNCR1 are able to active the transcription of 
AR splicing variants, even in the absence of 
ligand binding [31]. PRNCR1 and PCGEM1 are 
over-expressed in over 50% of PCa tissues [31]. 
However, the prognostic value of PCGEM1 and 
PRNCR1 has not been validated [38]. LncRNA 
CBR3 AS1 has been reported to be associated 
with changes in AR activity [27]. Furthermore, 
PCAT18, a highly prostate specific transcript, 
has been reported to be induced by AR signal-
ing and upregulated in PCa [39]. 

Although research on eRNAs is still in the earli-
est phases, an emerging role of eRNA, as AR 
critical regulators has been explored [40]. 
eRNAs have been most directly implicated in 
PCa, by assisting AR-driven signaling and being 
maintained by FOXA1 in several cell types [22, 
41].

Some PCa-specific lncRNAs have been des- 
cribed and summarized before [42]. Recently, 
Chinnaiyan group described approximately 
1,800 lncRNAs expressed in prostate tissue, 
including 121 lncRNAs that are transcriptional-
ly dysregulated in PCa. Among them, PCAT-1 
shows prostate tissue-specific expression. 
Intriguingly, PCAT-1 located in the Chr. 8q24 
gene desert. PCAT-1 functions as a transcrip-
tional repressor, trans-regulating known tumor 
suppressor including BRCA2 [25]. PCAT-1 and 
SCHLAP1 are selectively highly expressed in 
PCa, especially in high grade or metastatic PCa 
[25, 29]. SCHLAP1 expression has been shown 
to be a significant predictor of PCa aggressive-

ness, biochemical recurrence, disease progres-
sion and disease specific mortality in a cohort 
of 235 localized patients with PCa [29]. 

Besides PCa specific lncRNAs, overexpression 
of oncogenic lncRNAs may promote tumor cell 
proliferation and metastasis, and aberrant 
expression of lncRNAs in PCa is associated 
with disease progression. MALAT1 was first 
associated with high metastatic potential and 
poor patient prognosis in primary non-small 
cell lung cancer tumors [43]. Recently, MALAT1 
expression has been found to be significantly 
increased from hormone sensitive PCa to 
CRPC. Knocking-down MALAT1 in PCa cell lines 
22Rv1 and LNCaP inhibits cell growth, inva-
sion, and migration and results in cell cycle 
arrest in the G0/G1 phase, demonstrating its 
functional role in PCa [28]. 

Poliseno et al. proposed a model that tran-
scribed pseudogenes serve as a decoy for miR-
NAs that target the protein-coding mRNA tran-
scripts of their ancestral genes. They showed 
that pseudogene of PTEN and KRAS, may func-
tion as tumor suppressors by competing for 
miRNA binding sites with PTEN and KRAS. This 
appealing hypothesis shed light on the function 
of ncRNAs [44]. 

Applications of lncRNAs in prostate caner 
management

LncRNA diagnostic and prognostic biomarkers

PCa is very clinically heterogeneously, ranging 
from indolent to highly aggressive cancer. 

Table 1. Selected Examples of Cancer-related LncRNAs
lncRNA Category lncRNA Names Functions References
Oncogenes PCAT1 Represses DNA repair [25]

PRNCR1 and PCGEM1 Govern AR-mediated gene transcription [26]
CBR3-AS1 Changes AR activity [27]

MALAT1 and MASCRNA Mediate alternative splicing [28]
SCHLAP1 Regulates transcription complex [29]

PVT1 Hosts several miRNA genes [30]
HOTAIR Binds PRC2 and LSD1 [31]

H19 Imprints Igf2 locus [32]
Tumor Suppressors MEG3 Mediates p53 signaling [33]

GAS5 Prevents GR-mediated gene expression [34]
PTENP1 Competes PTEN-regulating miRNAs [35]
CCND1 Binds to TLS protein [36]

lncRNA-p21 Binds to hnRNP-K and induces cellular apoptosis [37]
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Therefore, developing new diagnostic and prog-
nostic biomarkers is always of great interest. 
Since lncRNAs are expressed in a tissue spe-
cific manor, they have great potential to become 
new biomarkers for detection, prognostication 
and prediction in PCa [45].

Several lncRNAs, such as prostate cancer anti-
gen 3 (PCA3), prostate cancer gene expression 
marker 1 (PCGEM1), and prostate cancer asso-
ciated ncRNA transcript 1 (PCAT1), are highly 
prostate-specific, posing as attractive biomark-
ers [25, 26, 46]. 

One of the first established lncRNA cancer diag-
nostic biomarker is PCA3. PCA3 was originally 
discovered in 1999 by demonstrating a unique, 
highly tissue-specific expression in PCa. It is 
still largely unknown that how PCA3 is involved 
in PCa development despite 15 years of study. 
However, PCA3 has become a successful 
model that translated into the clinical setting 
due to its highly PCa specific expression [47]. 
Recently, FDA has been approved the PCA3 
test in repeat prostate biopsies in helping 
determine the presence of PCa. PROGENSA 
PCA3 test is the first FDA approved urine-based 
molecular diagnostic test for men with elevated 
serum PSA and a previous negative biopsy [48]. 
So far, the correlation of PCA3 expression and 
clincopathologic variables is still inconclusive. 

PCGEM1 shows strikingly prostate specificity. 
PCGEM1 is significantly over-expressed in more 
than half of prostate tumors, especially in 
tumors from African-American patients or men 
with family history of PCa [26]. 

Though being located in 8q24 desert, PCAT1 
has been considered as a promising predictive 
biomarker. PCAT1 demonstrated a high degree 
of prostate specificity and is remarkably up-
regulated in a subset of high-grade localized 
(Gleason score >7) and metastatic PCa [25]. 

Ideally, biomarkers should be easily accessible 
such that they can be sampled non-invasively. 
Therefore, biomarkers that can be sampled 
from body fluids, such as serum or urine, are 
particularly desirable. Circulating nucleic acids, 
both RNA and DNA species, are extracellular 
nucleic acids found in cell-free serum, plasma 
and other body fluids from healthy subjects, as 
well as from patients.

Potential lncRNA-based treatment

Comparing with protein-coding genes, lncRNAs 
study is still in its infancy. Therefore, therapeu-
tic applications of lncRNAs may be possible in 
the future. Such therapies would be promising 
in cases whose designed drug targeting protein 
failed, or be considered in conjuncting with 
other available drugs to enhance their effects 
[48]. In addition, RNA therapeutics faces some 
obstacles, including reliability of delivery sys-
tems, dosage regimes and techniques to avoid 
off-target effects [49]. If these limitations are 
overcome, lncRNAs may be attractive thera-
peutic targets due to their high turnover rate 
and direct and specific regulatory functions 
that control the expression of other ‘conven-
tional’ genes.

Conclusions and future directions

Although it is clear that individual lncRNAs may 
play important and diverse biological roles, 
there is a large gap between the number of 
existing lncRNAs and their known relation to 
molecular/cellular function. In PCa, aberrant 
expression of lncRNAs is associated with dis-
ease progression. Over-expression of oncogen-
ic lncRNAs promotes tumor-cell proliferation 
and metastasis through chromatin looping and 
distal engagement with the androgen receptor, 
anti-sense gene regulation, alternative splicing, 
and impeding DNA repair. Although a lot of 
questions remain unanswered, lncRNAs have 
shown great potential as diagnostic or prognos-
tic biomarkers. In addition, they may also pos-
sess therapeutic applications in the future after 
intensive studies. 
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