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SUMMARY

We present a novel analysis of arterial pulse wave propagation that combines traditional wave intensity
analysis with identification of Windkessel pressures to account for the effect on the pressure waveform of
peripheral wave reflections. Using haemodynamic data measured in vivo in the rabbit or generated numer-
ically in models of human compliant vessels, we show that traditional wave intensity analysis identifies
the timing, direction and magnitude of the predominant waves that shape aortic pressure and flow wave-
forms in systole, but fails to identify the effect of peripheral reflections. These reflections persist for several
cardiac cycles and make up most of the pressure waveform, especially in diastole and early systole. Ignoring
peripheral reflections leads to an erroneous indication of a reflection-free period in early systole and addi-
tional error in the estimates of (i) pulse wave velocity at the ascending aorta given by the PU –loop method
(9.5% error) and (ii) transit time to a dominant reflection site calculated from the wave intensity profile
(27% error). These errors decreased to 1.3% and 10%, respectively, when accounting for peripheral reflec-
tions. Using our new analysis, we investigate the effect of vessel compliance and peripheral resistance on
wave intensity, peripheral reflections and reflections originating in previous cardiac cycles. © 2013 The
Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Blood pressure and flow waveforms in systemic arteries carry valuable information for the diagno-
sis and treatment of cardiovascular disease and play a significant role in clinical conditions such
as hypertension. The waveforms result from a complex ventricular-vascular interaction involving
cardiac contraction, impedance of large and medium-sized distensible arteries and resistance of
smaller arteries and arterioles. Blood behaves as an incompressible fluid in arteries, which distend
to accommodate the sudden increase in blood volume delivered by cardiac contraction. When elas-
tic energy stored in the distended arterial walls is released, arteries contract. The regular expansion
and contraction of arteries (the pulse) that follows cardiac contraction propagates in the form of
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Figure 1. Blood pressure (P ) waveform measured in vivo along the human (left, modified from [1]) and
rabbit (right) aortas. (a) Measurements were made every 10 cm down the aorta starting approximately 5 cm
from the aortic valve. Each waveform is an ensemble average of continuous pressure measurements over
1 min using the peak of the R-wave of the electrocardiogram as the reference time. The circles indicate the
time of the diastolic pressure (Pd) after which pressure increases due to left ventricular ejection of blood.
The slope of the dotted lines connecting the circles indicates the pulse wave speed (6.9 m s�1) with which
the pressure wavefront at the start of cardiac contraction propagates down the aorta. Systole is the phase of
the cardiac cycle when the heart muscle contracts, and diastole is the phase when the heart muscle relaxes.
(b) Measurements were made every 1 cm starting approximately 1 cm from the aortic valve, as described in
Section 2.1. Each waveform is an ensemble average of ten continuous cardiac cycles using the foot of the

flow waveform in the aortic root as the reference time.

pulse waves. These produce continuous changes in blood pressure and flow that can be studied as
pressure and flow wavefronts (infinitesimal changes in pressure and flow)‡ running forwards and
backwards (away from and towards the heart, respectively), with backward wavefronts originating
from reflected forward wavefronts at sites of vascular impedance mismatch.

Figure 1 shows typical blood pressure waveforms measured in vivo along human (left) and rabbit
(right) aortas, from the root to the aorto-iliac bifurcation, under normal conditions. The slope of the
line joining the feet of these waveforms shows clearly that the pressure wavefront originated at the
start of cardiac contraction propagates away from the heart; the measured space-averaged speed is
6.9 m s�1 in the human and 6.1 m s�1 in the rabbit. Thus, during a typical cardiac cycle, which
takes about 1 s in the human and 0.25 s in the rabbit, a pulse wave has sufficient time to travel from
the heart to the arterial vasculature and back multiple times.

Several studies have used wave intensity analysis (WIA) to investigate the role of wave reflec-
tions in shaping in vivo pressure and flow waveforms in systemic arteries [2–11], including the
coronary circulation [12–14]. Given simultaneous measurements of blood pressure and flow veloc-
ity with time at an arbitrary location in the arterial network, we can calculate the local pulse wave
velocity (PWV) and apply WIA to quantify the timing, direction and magnitude of the predominant
waves that shape the pressure and velocity waveforms [15, 16]. Accurate estimation of PWV is not
only important for WIA but is also clinically relevant, because PWV is an important predictor of
cardiovascular events [17].

Numerical modelling has been used to assess the following: (i) the ability of WIA to quantify
reflection coefficients [18]; (ii) haemodynamic information provided by WIA in a model of aortic
coarctation [19] and the fetal circulation [20]; (iii) a modified WIA based on the reservoir-wave
separation [21]; and (iv) the performance of several methods for PWV calculation [22–25]. Numer-
ically generated pressure and flow waveforms are free of measurement errors, and the theoretical
values of haemodynamic properties that affect waveforms (e.g. PWV, location of reflection sites, and
magnitude of reflected waves produced) are available for comparison with corresponding estimates
given by WIA and methods of calculating PWV.

‡In this article, the term ‘wave’ refers to a change in blood pressure, flow and luminal area with a finite duration; ‘wave-
front’ refers to infinitesimal changes in these properties; and ‘waveform’ refers to the shape of these properties over the
cardiac cycle. Wavefronts are the elemental waves in wave intensity analysis (WIA).

© 2013 The Authors. International Journal for Numerical
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In the present work, we used pressure and flow velocity waveforms measured in vivo in the rabbit
or generated numerically in several models of human compliant vessels to (i) show the inability
of traditional WIA to identify the important role of peripheral reflections in shaping the pressure
waveform; (ii) test the accuracy of the modified PU –loop method of calculating PWV proposed by
Mynard et al. [24], which accounts for peripheral reflections originating in previous cardiac cycles;
and (iii) propose a new analysis of arterial pulse wave propagation to study the predominant waves
that shape pressure and flow waveforms during systole and the contribution to the pressure wave-
form, over the whole cardiac cycle, of wave reflections originating in previous cardiac cycles, vessel
compliances, peripheral resistances, outflow pressures and the flow at the root. We used our new
analysis to study the effects of vessel stiffness and peripheral resistance on numerically-generated
aortic pressure and flow waveforms.

We generated all numerical data using the nonlinear one-dimensional (1-D) formulation of blood
flow in compliant vessels, because WIA is derived from this formulation and, hence, 1-D model
pressure and velocity waveforms provide an ideal mathematical framework for our study. Several
comparisons against in vivo [26–29], in vitro [30–34] and 3-D numerical [35] data have shown
the ability of the 1-D formulation to capture the main features of pressure and flow waveforms
in large human arteries. The nomenclature and abbreviations used in this paper are listed in the
supplementary material.

2. METHODS

We first describe the in vivo (Section 2.1) and numerical (Section 2.2) pressure and flow wave-
forms used in our work. Next, we summarise the mathematical formulation of traditional WIA
(Section 2.3) and show how we quantified the magnitude and timing of wave reflections
(Section 2.4). We then introduce the Windkessel model to study arterial haemodynamics during
diastole and account for peripheral reflections in WIA and the PU –loop method (Section 2.5).

2.1. Rabbit in vivo pressure and flow waveforms

Ten New Zealand white male rabbits (Harlan UK) with the properties shown in Table I were main-
tained on a standard laboratory diet and housed at 18ıC on a 12-h light cycle. The rabbits were
pre-medicated with Hypnorm (0.1 ml kg�1) intramuscularly and anaesthetised with sodium pen-
tobarbitone (35 mg kg�1), administered intravenously via the marginal vein of the right ear. They
were then placed in the supine position and artificially ventilated with a Harvard Small Animal
Ventilator (with a respiratory rate of 50 breaths min�1; inflation pressure set for trough 25 cmH2O
and peak 50 cmH2O). Body temperature was maintained near 39 ıC (monitored using a rectal ther-
mistor probe) by placing the rabbits on a heating blanket with a temperature controller (CWE Inc.
TC1000). The animal procedures complied with the Animals (Scientific Procedures) Act (1986) and
were approved by the Imperial College London local ethical review process.

For each rabbit, a midline thoracotomy was made and the rib cage was retracted to expose the
ascending aorta and place a perivascular blood flow probe (6 mm diameter, type MA6PSB, Tran-
sonic Systems Inc.) around it, near the aortic valve. The thoracotomy was closed using clamps. The
right femoral artery was exposed at the level between the knee and groin for insertion of pressure
measurement wires. Two pressure waveforms were simultaneously measured with the aortic flow
waveform, from the aortic root to the iliac artery in 1 cm increments (Figure 1(b)) using a dual
sensor Millar Mikro-tip catheter transducer (model SPC-721, size 2.5F, sensors 5 cm apart). The
aortic pressure waveforms at the root and 5 cm distally (Figure 2(b)) allowed us to calculate the
PWV using the ‘foot-to-foot’ method (cff) [25], which we used as the gold standard PWV at the
aortic root (Table I). Brief asystole (cessation of heart contraction) were induced by gently tapping
the left ventricle (LV) (Figure 2(a,b)). All data were acquired at a sampling rate of 1 kHz using the
NOTOCORD-hem acquisition software (NOTOCORD Systems, France).

Prior to euthanasia, heparin (2,000 units) was administered intravenously for anticoagulation of
the blood in preparation for production of a resin cast of the arterial system (Figure 2(e)). The thorax
was reopened and the LV was cannulated with a polythene tube (filled with saline solution: 9 g/L
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Table I. Properties of the 10 mature rabbits as follows: age, weight (W), crown-to-rump length (C-R),
heart rate (HR), cardiac output (CO), mean pressure (Pm), pulse pressure (PP), outflow pressure (Pout),
time constant of the decline in pressure during diastole (RTCT) and pulse wave velocity at the aortic root
calculated using the foot-to-foot method (cff), the traditional PU –loop (cPU) and the modified OPU –loop

( OcPU), with �D 1, 015 kg m�3 in both loop methods.

Rabbit Age W C-R HR CO Pm PP Pout RTCT cff cPU OcPU
No. (days) (kg) (cm) (beat/s) (ml/s) (kPa) (kPa) (kPa) (s) (m/s) (m/s) (m/s)

1 100 3.22 43 3.7 3.1 8.1 2.9 3.0 0.32 4.3 3.9 4.3
2 114 3.20 41 2.9 2.3 5.2 2.8 2.2 0.37 4.5 4.2 4.4
3 93 2.55 40 4.0 2.4 6.9 2.8 2.3 0.28 4.7 4.2 4.6
4 72 2.29 40 4.5 2.6 6.2 2.2 2.2 0.28 5.1 4.6 5.1
5 92 2.67 40 4.7 4.2 7.7 3.4 2.8 0.18 4.5 4.0 4.5
6 136 2.54 42 3.1 4.1 6.0 2.4 1.3 0.28 3.5 3.0 3.4
7 143 3.00 41 3.4 4.9 8.6 3.1 2.3 0.30 4.5 4.2 4.6
8 114 3.26 43 3.6 4.0 10.5 2.8 4.5 0.32 4.4 4.0 4.4
9 159 3.48 45 4.7 4.4 8.1 2.6 1.7 0.34 4.3 3.9 4.3
10 133 3.13 41 5.2 5.4 8.5 3.0 3.1 0.26 3.9 3.5 3.8

Mean 116 2.93 41.6 4.0 3.7 7.6 2.8 2.5 0.29 4.37 3.96 4.34
SEM 9 0.12 0.5 0.2 0.3 0.5 0.1 0.3 0.02 0.13 0.14 0.14

We calculated Pout and RTCT by fitting an exponential function of the form given by Equation (19) to the decline
in pressure during diastole, with T0 the time at the beginning of the exponential fit. The last two rows are mean
and standard error of the mean (SEM) for all ten rabbits.

Figure 2. In vivo (a) flow rate at the aortic root and (b) pressure at the aortic root (P1) and 5 cm distally in
the aorta (P2) with time, measured during an asystole in Rabbit 8. (c) Time constant (RTCT) and (d) asymp-
totic pressure (Pout) calculated along the aorta and iliac artery at 5 cm increments (indicated by yellow dots
in (e)). RTCT and Pout were derived from an exponential function (Equation (19)) fitted to the decline in
pressure during an asystole (shaded area in (b)). Dashed lines indicate the corresponding average values. (e)

Cast of the systemic vasculature of Rabbit 8. The aorta and its main branches are shaded.

© 2013 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley
& Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:249–279
DOI: 10.1002/cnm



NOVEL WAVE INTENSITY ANALYSIS 253

NaCl) via an apical stab wound. The cannula was flushed through with approximately 5 ml saline.
Casting resin (Batson’s no. 17, Plastic Replica and Corrosion kits, Polyscience, USA, prepared
according to the manufacturer’s instructions) was infused into the arterial system via the cannula,
at a pressure equivalent to the mean arterial pressure that was recorded in vivo in the thoracic aorta.
Infusion was continued until the casting resin ceased to flow because of setting of the resin; the
final perfusion volume was approximately 100 ml of resin. The cast was allowed to cure for at least
12 h; then the carcass was completely submerged in an aqueous solution of potassium hydroxide
(25% w/v). The alkaline corrosion process was allowed to continue for 14 days. Then the corrosion
solution was removed to reveal the arterial cast, which was submerged in a strong warm solution
of detergent (Decon 90, Decon Laboratories Ltd., East Sussex, UK) and left for 24 h. The cast was
rinsed gently and thoroughly in water and allowed to dry.

We used the cast to locate accurately the sites of pressure measurements and determine the lumi-
nal cross-sectional area of the aortic root, which is required to convert measured flow rate to flow
velocity; the latter, combined with simultaneous pressure at the root, allowed WIA.

2.2. Human numerical pressure and flow waveforms

To generate the numerical pressure and flow data for this study, we solved the nonlinear 1-D equa-
tions of blood flow in compliant vessels in a single-vessel model of the human thoracic aorta [35]
(Figure 3(a,b,c), Table II) and also in a model of the 55 larger systemic arteries in the human [1]
(Figure 3(d,e,f,g,h), Table III), using a DG scheme with a spectral/hp spatial discretisation [32].
These equations can be derived by applying conservation of mass and momentum to a differential
1-D control volume of the vessel [36, 37],8̂̂<
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where t is the time, x is the distance along the vessel, A.x, t / is the area of the luminal cross section
of the vessel, U.x, t / is the axial blood flow velocity averaged over the cross section, P.x, t / is the
blood pressure averaged over the cross-section, � is the density of blood (assumed to be constant),
and f .x, t / D �22��U is the frictional force per unit length, with � D 4 mPa s the viscosity of
blood.

Both models are based on data from young and healthy humans. The single-vessel model is uni-
form and contains a single peripheral reflection site, which simplifies our initial assessment of WIA.
The 55-artery model allows us to assess WIA in the presence of tapering and multiple outflows and
reflection sites; all these properties have been shown relevant for analysis of pulse wave propagation
phenomena [38–41].

To account for the fluid-structure interaction of the problem and close the system of equations (1),
we obtained the following explicit algebraic relationship between P and A (or tube law). Assum-
ing the arterial wall to be a thin, incompressible, homogeneous, isotropic, Voigt-type visco-elastic
membrane, which deforms axisymmetrically, each cross-section independently of the others, we can
relate blood pressure (P ) to luminal cross-sectional area (A) through [32]
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Figure 3. Pressure and flow rate with time, at (a,c) the inlet, midpoint and outlet of a single-vessel model
of the human thoracic aorta (b) [35] and (d-h) the aortic root (Root, Segment 1), midpoint of the aortic arch
B (Arch, Segment 14), thoracic aorta B (Tho, Segment 27) and abdominal aorta D (Abd, Segment 39), left
common carotid (CCA, Segment 15), left brachial (Bra, Segment 21), right renal (Ren, Segment 38) and
left femoral (Fem, Segment 46) arteries of a model of the 55 larger systemic arteries in the human (e) [1].
They were calculated using the nonlinear purely elastic (a,c) and visco-elastic (d,f,g,h) 1-D equations (1)
and (2). At the root of both models, we prescribed a flow rate measured in vivo (labelled ‘Root’ in (c,g)).
At the outlet of each terminal branch, we coupled a three-element Windkessel model of the perfusion of the
microcirculation (b), withR1 DZ0 to minimise wave reflections [42]. The properties of the aortic model are
shown in Table II. The names and properties of the segments in the 55-artery model are shown in Table III.

The uniform Windkessel pressure, pw, given by Equation (17) is shown in red in (a,d,f).

where Pe is the elastic component of pressure, h.x/ is the wall thickness, E.x/ is the Young’s
modulus, '.x/ is the wall viscosity, and A0.x/ is the reference area at P D 0 and @A

@t
D 0.

For some simulations, we considered a purely elastic tube law (i.e. P D Pe) as it is assumed
in WIA.

We implemented all the boundary conditions of our simulations and solved matching conditions
at bifurcations by taking into account the correct propagation of the characteristic information and
neglecting energy losses and visco-elastic effects (see [1] for a detailed description).

Both models exhibit the following characteristic features of the pressure and flow waveforms
that are observed in vivo under normal conditions. The foot of the pressure and flow waveforms in
early systole propagates away from the heart (compare the simulated pressures in Figure 3(a,d) with
the in vivo pressures in Figure 1(a,b)). The pulse pressure (the difference between the maximum,
systolic, and minimum, diastolic, pressures) increases in the aorta with increasing distance from
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Table II. Parameters of the single-vessel model of the human tho-
racic aorta coupled to a three-element Windkessel model of the

rest of the systemic circulation (Figure 3(b)).

Parameter Value

Length, l 24.137 cm
Radius at diastolic pressure, rd 1.2 cm
Wall thickness, h 1.2 mm
Blood density, � 1, 060 Kg m�3

Young’s modulus, E 400.0 kPa
Mean flow rate, 6.170 l min�1

Windkessel resistance, R1 11.75 Pa s cm�3

Windkessel compliance, C 10.16 mm3 Pa�1

Windkessel resistance, R2 111.67 Pa s cm�3

The resulting wave speed at mean pressure is 5.2 m s�1.

the heart (Figures 3(a,d) and 1(a,b)), whereas mean pressure gradually decreases§. In the ascend-
ing aorta, pressure features a ‘shoulder’ or point of inflection (Figures 3(a,d) and 1(a,b)). From the
ascending aorta to the upper thoracic aorta, a small pressure peak is observed at the start of diastole,
which forms the dicrotic notch. This vanishes in the lower thoracic region (Figures 3(d) and 1(a,b)),
but it is observed in other proximal arteries such as the common carotid arteries (Figure 3(f)) [43].
Moreover, the initial pressure increase becomes steeper and narrower in time in more peripheral
locations (wave steepening) (Figures 3(a,d) and 1(a,b)), and a wide pressure peak appears in diastole
from the abdominal aorta to the leg arteries [44, 45] and in the brachial artery [46] (Figure 3(d,f)).
With increasing distance from the heart, the aortic flow waveform (Figure 3(c,g)) becomes charac-
terised by an increase in width, a reduction in the amount of reverse flow and a decrease in amplitude
and mean value¶ [44,45]. Reversed flow is absent in the suprarenal region of the aorta [29,47], renal
arteries [44, 48] and carotid arteries [29, 49, 50]. There is, however, a region of reverse flow in early
diastole in the infrarenal region of the aorta and leg arteries [47, 50].

2.3. Traditional wave intensity analysis

Wave intensity analysis is derived from the system of equations (1). Velocity and pressure wave-
forms are decomposed into successive wavefronts, with dP and dU as changes in pressure and
velocity, respectively, across a wavefront. Fluid viscous losses are assumed to be negligible locally,
and A is assumed to depend only upon P through a purely elastic tube law, with uniform and con-
stant properties. Under these conditions, Riemann’s method of characteristics applied to the system
of equations (1) shows (Figure 4(a)) that for any point .X ,T / in the .x, t / space, there are two char-
acteristic paths, Cf and Cb, defined by Cf ,b �

d Oxf ,b
dt
D U ˙ c, on which Wf and Wb are constant

[15]. The quantities Wf and Wb are generally known as the characteristic variables or Riemann
invariants and satisfy

dWf ,b D dU ˙
dP
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D U ˙ c, c D

s
A

�
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@A
, (4)

where the pressure-dependent c is the PWV, that is the speed at which pulse wavefronts travel in the
absence of convective velocity (U ) (further details are given in Appendix A). For the purely elastic
tube law given by Equation (3),

c D

s
ˇ

2�A0
A1=4. (5)

§This is difficult to observe in Figures 1(a,b) and 3(a,d) because the decrease in mean pressure is small compared to pulse
pressure.

¶The mean flow does not decrease in the single-vessel aortic model because the outlet is the only outflow of this model.
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Table III. Parameters of the 55-artery model (Figure 3(e)). rin! rout, mean cross-sectional radii at the inlet
and outlet of the arterial segment (radii decrease linearly); cin! cout, mean wave speed at the inlet and outlet

of the segment.

Mean Mean Peripheral Peripheral Wall
Arterial segment Length rin! rout cin! cout pressure flow resistance compliance viscosity
name (cm) (mm) (m s�1) (kPa) (ml s�1) (GPa s m�3) (m3 GPa�1) (kPa s)

1. Ascending aorta 5.8 15.4! 15.4 4.0! 4.0 13.34 102.8 — — 0.5
2. Aortic arch A 2.3 13.2! 12.6 4.2! 4.2 13.33 89.3 — — 0.5
3. Brachiocephalic 3.9 10.6! 9.4 4.5! 4.6 13.32 13.5 — — 1.0
4. R. subclavian 3.9 6.0! 4.7 5.3! 5.7 13.32 7.0 — — 1.0
5. R. common carotid 10.8 5.7! 2.9 5.3! 6.5 13.29 6.5 — — 6.0
6. R. vertebral 17.1 1.9! 1.4 8.1! 8.7 11.98 2.3 4.51 0.090 6.0
7. R. brachial 48.5 4.2! 2.4 6.4! 7.5 12.68 4.7 — — 2.5
8. R. radial 27.0 1.9! 1.6 8.0! 8.4 10.82 2.4 3.96 0.099 6.0
9. R. ulnar A 7.7 1.9! 1.7 8.0! 8.2 12.25 2.3 — — 6.0
10. R. interosseous 9.1 1.1! 0.9 9.5! 10.0 11.89 0.2 63.22 0.032 6.0
11. R. ulnar B 19.7 1.6! 1.4 8.4! 8.7 10.08 2.2 3.96 0.077 6.0
12. R. internal carotid 20.5 2.9! 2.2 7.1! 7.7 12.29 5.8 1.88 0.259 6.0
13. R. external carotid 18.7 1.3! 0.8 9.1! 10.4 9.53 0.7 10.42 0.193 6.0
14. Aortic arch B 4.5 11.2! 10.9 4.4! 4.4 13.28 83.8 — — 0.5
15. L. common carotid 16.0 5.1! 2.5 5.5! 6.8 13.18 5.5 — — 6.0
16. L. internal carotid 20.5 2.2! 1.7 7.7! 8.2 11.1 5.1 1.88 0.189 6.0
17. L. external carotid 18.7 1.0! 0.6 9.8! 11.1 7.21 0.5 10.42 0.173 6.0
18. Thoracic aorta A 6.0 10.4! 9.9 4.5! 4.6 13.25 76.5 — — 0.5
19. L. subclavian 3.9 5.7! 4.4 5.3! 5.8 13.26 7.2 — — 1.0
20. L. vertebral 17.0 1.9! 1.4 8.1! 8.7 11.98 2.3 4.51 0.090 6.0
21. L. brachial 48.5 4.2! 2.4 6.4! 7.5 12.64 4.9 — — 2.5
22. L. radial 27.0 1.8! 1.4 8.2! 8.7 10.25 2.2 3.96 0.085 6.0
23. L. ulnar A 7.7 2.2! 2.2 7.7! 7.7 12.40 2.7 — — 6.0
24. L. interosseous 9.1 0.9! 0.9 10.0! 10.0 11.94 0.2 63.22 0.028 6.0
25. L. ulnar B 19.7 2.1! 1.9 7.8! 8.0 11.54 2.6 3.96 0.130 6.0
26. Intercostals 9.2 6.6! 4.9 5.1! 5.6 13.20 2.0 6.00 0.104 0.5
27. Thoracic aorta B 12.0 8.6! 6.7 4.7! 5.1 13.05 74.5 — — 0.5
28. Abdominal aorta A 6.1 6.3! 6.3 5.2! 5.2 13.00 61.3 — — 0.5
29. Celiac A 2.3 4.1! 3.6 5.9! 6.1 13.05 13.2 — — 0.5
30. Celiac B 2.3 2.7! 2.5 6.7! 6.8 13.04 8.9 — — 0.5
31. Hepatic 7.6 2.8! 2.3 7.2! 7.6 12.97 4.3 2.72 0.205 2.5
32. Gastric 8.2 1.6! 1.5 8.4! 8.5 12.22 2.6 4.06 0.082 6.0
33. Splenic 7.2 2.2! 2.0 7.7! 7.9 12.45 6.3 1.74 0.140 6.0
34. Superior mesenteric 6.8 4.1! 3.7 5.9! 6.1 13.00 16.7 0.70 0.481 1.0
35. Abdominal aorta B 2.3 6.0! 5.9 5.3! 5.3 13.00 44.6 — — 0.5
36. L. renal 3.7 2.7! 2.7 6.7! 6.7 12.77 13.4 0.85 0.231 2.5
37. Abdominal aorta C 2.3 6.1! 6.1 5.2! 5.2 12.98 31.2 — — 0.5
38. R. renal 3.7 2.7! 2.7 6.7! 6.7 12.72 13.4 0.85 0.231 2.5
39. Abdominal aorta D 12.2 6.0! 5.7 5.3! 5.3 12.96 17.8 — — 0.5
40. Inferior mesenteric 5.8 2.4! 1.6 7.5! 8.4 12.92 2.2 5.16 0.133 2.5
41. Abdominal aorta E 2.3 5.6! 5.4 5.4! 5.4 12.94 15.6 — — 0.5
42. L. common iliac 6.8 4.1! 3.6 5.9! 6.1 12.92 7.8 — — 1.0
43. R. common iliac 6.8 4.1! 3.6 5.9! 6.1 12.92 7.8 — — 1.0
44. L. external iliac 16.6 3.3! 3.1 6.3! 6.3 12.72 5.9 — — 2.5
45. L. internal iliac 5.8 2.1! 2.1 7.9! 7.9 12.78 1.9 5.96 0.137 6.0
46. L. femoral 50.9 2.7! 1.9 7.3! 7.9 11.32 2.9 — — 6.0
47. L. deep femoral 14.5 2.1! 1.9 7.9! 8.0 12.02 3.0 3.58 0.127 6.0
48. L. posterior tibial 36.9 1.6! 1.4 8.4! 8.6 7.77 1.8 3.58 0.074 6.0
49. L. anterior tibial 39.8 1.3! 1.1 8.9! 9.1 6.08 1.1 4.19 0.051 6.0
50. R. external iliac 16.6 3.3! 3.1 6.3! 6.3 12.72 5.9 — — 2.5
51. R. internal iliac 5.8 2.1! 2.1 7.9! 7.9 12.78 1.9 5.96 0.137 6.0
52. R. femoral 50.9 2.7! 1.9 7.3! 7.9 11.32 2.9 — — 6.0
53. R. deep femoral 14.5 2.1! 1.9 7.9! 8.0 12.02 3.0 3.58 0.127 6.0
54. R. posterior tibial 36.9 1.6! 1.4 8.4! 8.6 7.77 1.8 3.58 0.074 6.0
55. R. anterior tibial 39.8 1.3! 1.1 8.9! 9.1 6.08 1.1 4.19 0.051 6.0

Mean pressures and flows calculated in the midpoint of the segment. The outflow pressure (Pout) is 1.33 kPa at
each terminal branch and the blood density is �D 1, 050 Kg m�3. R., right; L., left.
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Figure 4. (a) In the .x, t / space, every point .X ,T / of a vessel domain is intersected by a unique pair of
characteristic curves Cf W

d Oxf
dt
D U C c and Cb W

d Oxb
dt
D U � c on which the respective characteristic

variables Wf and Wb are invariant. (b) Sketch of our calculation of the transit time in the midpoint of the
single-vessel aortic model of length l between an incident wavefront and its reflection. c is the PWV, U is
the flow velocity and Uinc and Uref are the average flow velocities during the propagation of the incident and

reflected wavefronts, respectively.

Under physiological flow conditions, c is much greater than the maximum U , so that U C c > 0
and U � c < 0 (i.e. the flow is subcritical). Therefore, changes in P and U propagate in the forward
and backward directions (we define the forward direction as the direction of mean blood flow, in
which x increases) with speeds of U C c and U � c, respectively.

In vivo measurements of P and U with time are typically taken at a fixed point x D X ,
rather than along a characteristic line. Solving the two equations in (4) at x D X for dP and
dU yields

dP D
�c

2
.dWf � dWb/ , dU D

1

2
.dWf C dWb/ . (6)

Wave intensity (dI ) is defined as [15, 16]

dI.t/D dP dU D
�c

4

�
.dWf/

2 � .dWb/
2
�

, (7)

which is the flux of energy per unit area carried by the wavefront as it propagates and has dimensions
of power/unit area and SI units W m�2. Note that dI is calculated with time at a fixed point x DX .
According to Equation (7), dI is positive if dWf > dWb and negative if dWf < dWb. Therefore, dI
‘measures’ the importance with time of changes in P and U in the forward and backward directions
at x D X . Whenever dI > 0, forward changes in P and U dominate over backward changes; the
flow is accelerated if dP > 0 and decelerated if dP < 0. Whenever dI < 0, backward changes in P
and U dominate over forward changes; the flow is accelerated if dP < 0 and decelerated if dP > 0.

2.3.1. Application to measured data. Given simultaneous measurements of P.t/ and U.t/ at
an arterial site of the numerical models or rabbit, we used a Savitzky–Golay filter to smooth
dP.t/ D P.t C dt / � P.t/ and dU.t/ D U.t C dt / � U.t/, where dt is the time between two
adjacent sampling points of P or U . This filter is commonly used for WIA because it preserves
peaks in dP and dU (and hence dI ) [16, 51] [52, p. 650]. We normalised the value of dI given by
Equation (7) by dt2 to make the magnitude of dI independent of the sampling frequency. We used
customised MATLAB software (The MathWorks, Inc., MA, USA) for our data analysis.

2.3.2. Forward and backward waveforms. The measured waveforms P.t/ and U.t/ can be sep-
arated into forward-travelling (Pf.t/, Uf.t/) and backward-travelling (Pb.t/, Ub.t/) components,
that is P D Pf C Pb and U D Uf C Ub. Separating dP and dU into changes across the forward
(dPf , dUf ) and backward (dPb, dUb) wavefronts, that is dP D dPf C dPb and dU D dUf C dUb,
and using the water hammer equations,
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dPf D �c dUf , dPb D��c dUb, (8)

yield [15]

dPf ,b D
1

2
.dP ˙ �c dU/ , dUf ,b D

1

2

�
dU ˙

dP

�c

�
. (9)

A derivation of Equations (8) from the system of equations (1) using the method of characteristics
is given in [15]. In Appendix A, we provide an alternative derivation of Equations (8) by directly
applying conservation of mass and momentum to a control volume moving with the forward or
backward pulse wavefronts.

If the PWV (c) is known, Equation (9) allows us to obtain Pf ,b.t/ and Uf ,b.t/ from the measured
P.t/ and U.t/ by adding the differences dPf ,b.t/ and dUf ,b.t/, that is Pf ,b.t/ D

P
dPf ,b.t/C P0

and Uf ,b.t/ D
P

dUf ,b.t/C U0. We considered the integration constants P0 and U0 to be half the
pressure and velocity, respectively, at the end of diastole. Thus, wave intensity (dI ) at a fixed point
x DX can be separated into forward (dIf > 0) and backward (dIb < 0) components,

dIf ,b D dPf ,b dUf ,b D
˙1

4�c
.dP ˙ �c dU/2 . (10)

We can calculate c from simultaneous measurements of P and U using the PU –loop [15, 53]
method (see Appendix B for more details) or from two measurements of P (or U ) at two different
sites using foot-to-foot, least squared difference or cross-correlation techniques [25].

2.4. Wave reflections

At sites of impedance mismatch, pulse waves are partly reflected and partly transmitted. Using a
linearised version of the 1-D equations (1), we can relate the changes in pressure and flow velocity
across the reflected wavefront (dPref, dUref) in the parent and two daughter vessels of an arterial
bifurcation to the corresponding changes in pressure and velocity in the incident wavefront (dPinc,
dUinc) through

dP jref DR
j
f dP

j
inc, dU jref D�R

j
f dU

j
inc, j D p, d1, d2. (11)

The superscripts p, d1 and d2 refer to the parent and first and second daughter vessels, respectively.
The reflection coefficients for wavefronts propagating in the parent

�
R
p
f

�
and daughter (Rd1f and

Rd2f ) vessels can be expressed as a function of the characteristic admittance, Y j0 D A
j
0=
�
�c
j
0

�
,

j D p, d1, d2, where c0 is the PWV at zero pressure (see Appendix C for a detailed derivation of
Equations (11) and (12)),

R
p
f D

Y
p
0 � Y

d1
0 � Y

d2
0

Y
p
0 C Y

d1
0 C Y

d2
0

, Rd1f D
Y d10 � Y

d2
0 � Y

p
0

Y
p
0 C Y

d1
0 C Y

d2
0

, Rd2f D
Y d20 � Y

p
0 � Y

d1
0

Y
p
0 C Y

d1
0 C Y

d2
0

. (12)

At the outlet of each terminal branch coupled to a single resistance (R1) we have [42]

dPref DRf dPincC
Z0Pout

R1CZ0
, dUref D�Rf dUinc �

Pout

A0.R1CZ0/
, (13)

where Pout is the outflow pressure, Rf D .R1 � Z0/=.R1 C Z0/ is the local reflection coefficient
and Z0 D 1=Y0 is the characteristic impedance of the terminal branch. Note that R1 D Z0 yields
Rf D 0, in which case dPinc and dUinc are completely absorbed by the outflow model.

From Equation (11) to Equation (13) with Pout D 0, we can relate the wave intensity of
the reflected wavefront (dIref D dPref dUref) to the wave intensity of the incident wavefront
(dIinc D dPinc dUinc) through

dIref D�.Rf/
2 dIinc. (14)
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Figure 5. Illustration of the calculation of the transit time (TT) between the incident and reflected waves
and apparent reflection coefficient

�
R

app
f

�
using the wave intensity profiles dIf and dIb.

Given a wave intensity profile separated into dIf and dIb, we defined the initial positive and neg-
ative regions as the incident and reflected waves, respectively (Figure 5). Note that these waves are
made of many wavefronts across which wave intensity (dI ) changes. We then calculated the time of
arrival (Tinc and Tref) and magnitude (Iinc and Iref) of the incident and reflected waves using either
peak values or area-average values; they are indicated by empty squares or stars, respectively, in
Figure 5. Given the wavefronts that make up the incident, dIinc, or reflected, dIref, wave, we defined
the area-average values as

Iinc,ref D

P
dIinc,ref dt

tend � tini
, Tinc,ref D tiniC

P
dIinc,ref t dt � tini.tend � tini/Iinc,ref

Iinc,ref.tend � tini/
, (15)

where the sum is taken from the start to the end of the wave, and tini and tend are, respectively,
the times at the start and end of the wave. These area-average values account for all the wave-
fronts that make up the incident and reflected waves and not only the wavefronts that define their
peaks. Finally, we calculated the transit time (TT) between the incident and reflected waves and the
apparent reflection coefficient (Rapp

f ) based on Equation (14) as

TTD Tref � Tinc, R
app
f D

s
�
Iref

Iinc
. (16)

Thus, we obtained a pair of TT and Rapp
f using peak values and another pair using area-average

values. We also calculated TT using two foot values, which we defined as the point when dIinc and
dIref are greater than 1% of the peak Iinc and Iref, respectively (they are indicated by empty circles
in Figure 5).

2.5. Haemodynamics during diastole

We can describe pressure and flow during diastole using a zero-dimensional Windkessel model. At
any point in a distributed 1-D model, pressure becomes increasingly well described with increas-
ing time in diastole by a space-independent Windkessel pressure, pw.t/ (Figure 3(a,d,f)), given
by [39, 54]

pw D PoutC .pw.T0/�Pout/e
�
t�T0
RTCT

C e
�

t
RTCT

CT

Z t

T0

�
Qin.t

0/C
PM
jD2

CjZ
j
0
R
j
2

R
j
2
CZ

j
0

dq
j
out.t
0/

dt 0

�
e

t0

RTCT dt 0, t > T0,
(17)

1

RT
D

MX
jD2

1

R
j
2 CZ

j
0

, CT D CcCCp, Cc D

NX
iD1

C i0D, Cp D

MX
jD2

R
j
2C

j

R
j
2 CZ

j
0

, (18)

where N is the number of arterial segments, with i D 1 the aortic root and j D 2, : : : ,M termi-
nal segments coupled to resistance-compliance-resistance (RCR) Windkessel models (Figure 3(b)),
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M � 1 < N is the number of terminal branches, Qin.t/ is the flow waveform at the aortic root, RT

is the net peripheral resistance of the arterial network, CT is the total systemic compliance, Cc is the
total conduit compliance, C i0D D A

i
0l
i=.�.ci /2/ is the compliance of segment i (with luminal area

Ai0, length l i and PWV ci ), Cp is the total peripheral compliance, pw.T0/ is the pressure pw at the
reference time t D T0 (T0 = 0 in Figure 3(a,d,f)) and qjout.t/ is the outflow in the terminal segment j .
The parameters of the RCR Windkessel models are R1 DZ0, C , R2 and Pout (Figure 3(b)). During

diastole, it is reasonable to assume Qin D 0 and dq
j
out.t/

dt
D 0, j D 2, : : : ,M , in normal conditions,

which reduces pw to

pw D PoutC .pw.T0/�Pout/e
�
t�T0
RTCT , t > T0. (19)

Equations (17) and (19) neglect nonlinearities, flow inertia and flow viscous dissipation within the
1-D model arterial segments and assume that wall compliance and fluid peripheral resistance are the
dominant mechanisms of blood flow. These are reasonable assumptions towards the end of diastole,
when Equation (19) provides accurate predictions of blood pressure, as shown by in vivo studies in
dogs [55] and numerical solutions of the three-dimensional Navier–Stokes equations in compliant
vessels [35].

The flow rate (qw) driven by pw �Pout during diastole is linearly dependent on x in each arterial
segment i D 1, : : : ,N [56],

qiw.x, t /D qiin �
C i0D
l i

dpw

dt
x D qiinC

C i0D
l i

pw �Pout

RTCT
x, t > T0, (20)

where qiin.t/ is the flow rate at the inlet of the segment. The wavefronts associated with pw and qiw
during diastole at a fixed point x in Segment i , i D 1, : : : ,N , are

dpw.t/D
Pout � pw

RTCT
dt , dqiw.x, t /D dqiinC

C i0D
l i

dpw

RTCT
x, t > T0, (21)

respectively, with dpw.t/ uniform in space. The wave intensity dI iw given by dpw and dqiw is

dI iw D dpw
dqiw
Ai0
D dpw dqiinC

1

�.ci /2
.dpw/

2

RTCT
x, i D 1, : : : ,N , (22)

where dpw dqiin is the wave intensity at the inlet of Segment i and we have used C i0D D
Ai0l

i=
�
�.ci /2

�
.

At the ascending aorta, we have dpw dqin D 0, since we assumed zero flow at the root dur-
ing diastole. Assuming the aorta to be a uniform vessel without branches, we have dIw D
.dpw/

2 x=
�
RTCT�.c/

2
�

during diastole. Note that .dpw/
2 is exponential with a time constant

RTCT=2 (see Equation (19)). During the systolic ejection, we can relate the velocity (dUs) and pres-
sure (dPs) wavefronts using dUs D dPs=.�c/ [16, 53], which yield an early-systole wave intensity
dIs D .dPs/

2=.�c/. Finally, dIw and dIs are related through

dIw

dIs
D

�
dpw

dPs

�2
1

c

1

RTCT
x, (23)

which shows that local (c) and global (RT and CT) properties of the vasculature are responsible for
the change of wave intensity from early systole to late diastole.

3. RESULTS AND DISCUSSION

We first study the predominant waves identified by traditional WIA in the aorta of our numerical
models and rabbits and discuss their role in shaping the pressure and flow waveforms (Section 3.1
to 3.5). In particular, we show that the wave intensity profile is misleading by indicating a reflection-
free period in early systole, which introduces additional error in the estimate of PWV at the aortic

© 2013 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley
& Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:249–279
DOI: 10.1002/cnm



NOVEL WAVE INTENSITY ANALYSIS 261

root by the traditional PU –loop method (Section 3.2). We then show that WIA does not iden-
tify peripheral reflections (Section 3.6) and assess the ability of the Windkessel model to describe
haemodynamics during diastole (Section 3.7) and the modified PU –loop method for PWV calcu-
lation suggested in [24] (Section 3.8). We describe our new WIA (Section 3.9), which accounts for
peripheral reflections using the Windkessel model, and use it to study the effect of vessel compli-
ance and peripheral resistance on blood pressure and flow waveforms (Section 3.10). Lastly, we
analyse the sensitivity of our new WIA to sampling frequency and errors in the estimate of PWV
(Section 3.11).

3.1. Predominant wave intensity waves in the aorta

At any point in the single-vessel aortic model coupled to a matched three-element Windkessel out-
let (Figure 3(b)), we identified four predominant waves in the cardiac cycle from the forward (dIf )
and backward (dIb) wave intensity profiles as follows (Figure 6(c) shows the profiles at the inlet):
(i) an initial forward compression wave (i.e. travelling towards the outlet, because dI > 0, and with
dP > 0) produced by the increase in blood flow at the inlet (inflow) in early systole; (ii) a backward
compression wave indicating reflection of the initial wave at the outlet; (iii) a forward decompres-
sion (dP < 0) wave (a ‘suction’ wave) caused by the decrease in inflow towards the end of systole;
and (iv) a forward compression wave due to the short increase in inflow at the end of systole. The
flow is accelerated by the first and fourth waves and decelerated by the second and third. These

Figure 6. (a,b) Pressure (black solid lines) and velocity (black dashed lines) with time at the root of the
(a) single-vessel aortic model and (b) in vivo aorta of Rabbit 8. (c,d) Forward (dIf ) and backward (dIb)
components of wave intensity with time (normalised by the sampling time). Shaded waves (black) accelerate
blood flow, and non-shaded waves (white) decelerate blood flow. The arrows describe the type and origin
of the four dominant waves in the cardiac cycle. (e,f) Forward and backward components of the pressure
(Pf , Pb) and velocity (Uf , Ub) waveforms. (g,h) Pressure versus velocity (PU –loop). dIf ,b, Pf ,b and Uf ,b
were calculated using the PWV given by (c,e) Equation (5) with A the mean area or (d,f) the foot-to-foot
method as described in Section 2.1. For all data contours, the apparently reflection-free period in early
systole and the decay in pressure with approximately constant blood velocity are highlighted in orange and

green, respectively.

© 2013 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley
& Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:249–279
DOI: 10.1002/cnm



262 J. ALASTRUEY, A. A. E. HUNT AND P. D. WEINBERG

four waves were also observed in the ascending aorta of the 55-artery model (Figure 3(e), results
not shown).

Furthermore, the four waves were observed in the ascending aorta of the rabbit (Figure 6(d)).
Their timing and direction of propagation suggest that the first wave is caused by the contraction
of the LV, the second is due to reflections of the initial contraction wave at downstream sites of
impedance mismatch, the third is produced by the relaxation of the LV and the fourth results from
the closure of the aortic valve. The first three waves have been extensively reported for the human
aorta [15, 16]. The fourth wave has been observed in human coronary arteries [12, 14]; the aorta of
the dog [53, 57], sheep [58] and swine [59]; and large arteries of the fetal lamb [20].

3.2. Left ventricular-contraction wave – an apparent reflection-free period in early systole

Both numerical and in vivo results in Figure 6(c,d) show that there is a period in early systole during
which dIb is almost zero. This indicates that changes in pressure and velocity are generated by the
contraction of the LV only and not affected by wavefronts reflected in the vasculature. Indeed, the
increase in pressure (Figure 6(a,b), orange dashed lines) is made up entirely of forward pressure
wavefronts (dPf ) during this apparently reflection-free period (Figure 6(e,f), orange dashed lines).
According to Equation (10), if dIb D 0 in early systole, then dP D �c dU ; that is pressure (P ) and
flow velocity (U ) are proportional and make the linear part of the PU –loop (Figure 6(g,h), orange
dashed lines).

However, Figure 6(e,f) shows clearly that the backward pressure (Pb) and velocity (Ub) wave-
forms are not constant during the apparently reflection-free period in early systole: Pb is made up
of backward pressure wavefronts (dPb) that decrease P , and Ub is made up of backward veloc-
ity wavefronts (dUb) that increase U . According to Equation (9), non-zero dPb and dUb indicate
that dP D �c dU is not satisfied. Indeed, from the slope of the PU –loops (Equation (B.1)) in
Figure 6(g,h) we have cPU D 4.7 m s�1 in the aortic model and cPU D 4.0 m s�1 in the rabbit,
which differ respectively from c D 5.2 m s�1 given by Equation (5) (with A the mean area) and
cff D 4.4 m s�1 calculated using the foot-to-foot method. At the aortic root of the 55-artery model,
cPU D 3.4 m s�1, which differs from c D 4.0 m s�1 using Equation (5) with mean area. The
mean error of cPU in our ten rabbits relative to cff is 9.5% (Table I), which is similar to the error
reported in [24] using numerical data only. Therefore, the wave intensity profile is misleading by
indicating a reflection-free period in early systole, which leads to an error in the estimate of c by the
PU –loop method.

3.3. Reflection of the left ventricular-contraction wave – pressure augmentation

Reflections of the forward wavefronts that make up the LV-contraction (compression) wave yield
a reflected wave that is made up of negative velocity wavefronts (dUref < 0) and positive pressure
wavefronts (dPref > 0), the wave labelled ‘reflection’ in Figure 6(c,d). This wave produces a Ub that
decelerates the net forward flow and a Pb that augments pressure (Figure 6(e,f)), thereby generating
the ‘shoulder’ or point of inflexion (Figure 6(a,b)) that defines the pressure augmentation index [60].

In the single-vessel aortic model, reflected wavefronts originate from the outlet, which is coupled
to a matched three-element Windkessel model (Figure 3(b)). In the more realistic 1-D distributed
model, however, the origin of the reflected wave is more complex. Several studies [38–41] have
identified multiple reflection sites that reflect wavefronts towards the aorta, where they arrive at dif-
ferent times with a magnitude that decreases exponentially with time [39]. The net effect of multiple
reflection sites on the TT and Rapp

f given by Equation (16) along the aorta is an apparent reflection
site that appears to move away as the measurement location approaches it [40].

3.4. Left ventricular-relaxation wave – flow deceleration

The LV-relaxation (forward) wave drops pressure and flow during the deceleration phase towards
the end of systole (Figure 6(a,b)). Flow velocity is reduced by both forward (Uf ) and backward
(Ub) velocities and becomes negative at the end of systole, whereas pressure (P ) is reduced
by only the forward pressure (Pf ); Pb continues increasing P (Figure 6(e,f)). Thus, during the
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Figure 7. (a) Pressure and (b) wave intensity with time in the thoracic aorta of the 55-artery model (mid-
point of Segment 27 in Figure 3(e)) using the visco-elastic (Equation (2)) or purely-elastic (� D 0) tube

law.

LV-relaxation phase, wavefronts originating at the aortic root decrease both pressure and velocity,
whereas wavefronts reflected in peripheral locations increase pressure and decelerate the flow.

Two mechanisms have been suggested to describe the origin of the LV-relaxation wave, active
myocardial relaxation and flow inertia, which are discussed in [61, p. 95].

3.5. Valve wave – dicrotic notch

The closure of the aortic valve produces a forward compression wave that augments pressure, creat-
ing the dicrotic notch, and accelerates the flow, from negative to zero at the root (Figure 6(a,b,c,d)).
The dicrotic notch is shaped by the forward pressure component (Pf ) (Figure 6(e,f)), that is by
wavefronts travelling from the aortic root, and progressively vanishes in the aorta with increasing
distance from the heart (Figure 1(a,b)). In the thoracic aorta of the 55-artery model (Figure 3(e)),
the dicrotic notch is absent if wall viscosity is modelled and is present if wall viscosity is neglected
(Figure 7(a)). Therefore, wall viscosity dissipates the dicrotic notch. Wall viscosity also dissipates
all predominant waves in the wave intensity profile as they travel towards distal locations, almost
abolishing the valve wave (Figure 7(b)). In vivo measurements in humans show that the valve wave
is small or absent in the brachial, radial and femoral arteries [7, 11].

3.6. Why does wave intensity vanish during diastole? The importance of peripheral wave
reflections from previous cardiac cycles

Numerical and in vivo wave intensity profiles in the aorta during diastole do not show any reflection
of the four predominant waves discussed previously (Figure 6(c,d)). Here, we show that WIA fails
to identify the important contribution to the pressure waveform of peripheral reflections, using our
single-vessel (Section 3.6.1) and distributed (Section 3.6.2) models.

3.6.1. Single-vessel aortic model. According to this model, wave intensity vanishes during dias-
tole because reflected wavefronts are spread in time by peripheral compliance. To illustrate this,
at the inlet of the vessel we prescribed a narrow Gaussian-shaped flow (Figure 8(a)) that approxi-
mates a compression wavefront immediately followed by a decompression wavefront. At the outlet,
we first coupled a single-resistance with a zero outflow pressure, so that peripheral compliance is
absent. This model generates multiple Gaussian-shaped pulse waves (Figure 8(b)). As predicted by
Equation (13), both outlet and inlet change the direction of the blood flow; the outlet yields reflected
waves travelling towards the inlet with 83% (Rf D .R1 �Z0/=.R1 CZ0/ D 0.83) of the pressure
and flow amplitudes of the incident wave, and the inlet behaves as a closed end (Rf D 1, because
Qin D 0 by the time the first pulse wave is reflected) producing reflected waves with the same
amplitude as the incident wave.

The wave intensity profile is able to identify the timing, direction and magnitude of the multiple
waves reflected in the model (Figure 8(d)). Equation (16) applied to the wave intensity profile in
the midpoint yields errors in the Rapp

f estimates smaller than 2% using peak values and 4% using
area-average values (Equation (15)), both relative to the theoretical Rf D 0.83. Furthermore, the
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Figure 8. (b,c) Pressure (solid lines) and velocity (dashed lines) with time in the midpoint of the single-
vessel aortic model coupled to an outflow made of a (b) single-resistance or (c) RCR Windkessel
(with R1 D Z0 to minimise wave reflections [42]) model. In both models, Pout D 0. The inflow (Qin)
is a Gaussian-shaped wave with a peak flow rate of 1 ml s�1 (a). (d,e) Forward (dIf ) and backward (dIb)
components of wave intensity with time (normalised by the sampling time). Shaded waves (black) accelerate

blood flow and non-shaded waves (white) decelerate blood flow.

errors in the estimates of TT in this model are smaller than 1% using foot, peak and area-average
values, which shows the ability of Equation (16) to estimate accurately TT and Rf in the presence
of a single peripheral reflection site without peripheral compliance.

Adding peripheral compliance using, for example, a matched RCR Windkessel outflow model
(i.e. with R1 D Z0 to minimise wave reflections [42], Figure 3(b)) has the effect of smoothing
reflected waves (Figure 8(c)), which is necessary for obtaining physiological-like waveforms
(e.g. those in Figure 6(a,c)). Although reflected waves alter the pressure and flow waveforms after
t D 0.1 s (Figure 8(c)), the wave intensity profile does not reveal them (Figure 8(e)), because the
initial pulse wave has a wave energy several orders of magnitude greater than its reflections.

3.6.2. Distributed 1-D model. We can study the role of peripheral reflections in shaping the pres-
sure waveform using the following methodology. Neglecting nonlinear effects, we can separate the
pressure and flow waveforms at an arbitrary point in a given distributed model into a conduit (or
arterial) waveform, which is made up of pulse wavefronts propagating from the aortic root and being
reflected at the arterial junctions, aortic root and tapered vessels, and a peripheral waveform, which
is made up of wavefronts originating from reflections at terminal branches. As detailed in [39], the
conduit waveform is obtained by running the simulation with each terminal branch coupled to a
single resistance equal to the characteristic impedance of the branch, so that any wavefront leaving
the vessel is completely absorbed by the boundary condition; that is Rj1 D Z

j
0 so that Rjf D 0

in Equation (13), j D 2, : : : ,M . The peripheral waveform is the difference between the total and
conduit waveforms.

In the aorta and main branches, most of the pressure waveform at the start of systolic ejection is
made up of peripheral reflections, as Figure 9(a) shows for the left common carotid artery. These
reflections originated in previous cardiac cycles, because they are present before the start of cardiac
ejection in the current cardiac cycle. The maximum contribution of peripheral reflections to the pres-
sure waveform occurs in early diastole, when these reflections produce a concave shape in the prox-
imal arteries of our 55-artery model (Figures 3(d) and 9(a)). This feature of the pressure waveform
is sometimes present in vivo in the aorta of the human [3, 60, 62], rabbit (e.g. Figure 6(b)) and dog
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Figure 9. Total, conduit and peripheral (a) pressures, (b) flows and (c) wave intensities with time in the
midpoint of the left common carotid artery of the visco-elastic 55-artery model (Segment 15 in Figure 3(e)).

[5, 55] and in the human carotid, brachial and radial arteries [6–9, 11]. Furthermore, in the carotid
artery, peripheral reflections provide a pressure gradient that drives less than 50% of the mean blood
flow in systole, but more than 90% of the mean flow in diastole (Figure 9(b)). All wavefronts that
did not originate as peripheral reflections and which make up the conduit waveform are responsible
for the features of the pressure and flow waveforms in systole (e.g. pulse pressure and dicrotic notch,
Figure 9(a); flow amplitude, Figure 9(b)). In diastole, these wavefronts produce a conduit waveform
that decreases exponentially and contributes little to the pressure and flow waveforms in the next
cardiac cycle.

Although the diastolic pressure and flow waveforms in our distributed 1-D model are mainly made
up of peripheral reflections, WIA fails to identify them. The wave intensity profile only reveals the
waves that shape the conduit waveform, as Figure 9(c) shows: the conduit pressure and flow wave-
forms produce a profile similar in shape and magnitude to the ‘total’ profile, whereas the ‘peripheral’
wave intensity profile has a considerably smaller magnitude than the ‘total’ profile, because changes
in pressure and velocity across the wavefronts that make the peripheral waveform are smaller
than those that make the conduit waveform. As a result, the apparent reflection coefficient given
by Equation (16) accounts little for peripheral reflections. Indeed, calculation of reflection
coefficients using forward and backward pressures produces smaller errors than using wave intensity
profiles [18].

We can use Equation (23) to quantify the reduction in wave intensity in the aorta from systole
(dIs) to diastole (dIw) because of net peripheral resistance (RT) and total compliance (CT) acting
on the blood flow through the Windkessel effect. Taking x D 20 cm, c D 5 m s�1 and RTCT =
1.8 s as representative values for the thoracic aorta and dpw D dPs, then dIw is 2% of dIs. How-
ever, dpw � dPs because the magnitude of pulse wavefronts decreases as they get reflected and
attenuated in the arterial network. Therefore, dIw is several orders of magnitude smaller than dIs
(Figure 7(b)).

Next, we discuss the validity of the Windkessel model to study haemodynamics during diastole.

3.7. Using the Windkessel model to study haemodynamics during diastole

Our rabbit in vivo data show that the space-independent pressure pw.t/ given by Equation (19) is
able to describe pressure towards the end of diastole. Fitting Equation (19) to the decline in pressure
during asystole measured along the aorta and iliac artery at 5 cm increments (at least five measure-
ments were taken for each rabbit) produced a small variability of the time constant (RTCT) and
asymptotic pressure (Pout); for example, RTCT D 318˙ 10 ms and Pout D 4.5˙ 0.2 kPa in rabbit
8 (Figure 2(c,d) and Table I).

Despite the rabbit having about four times the human heart rate, human and rabbit pressure wave-
forms are similar in shape when normalised in time (compare Figures 1(a,b)). Therefore, pressure
in diastole falls at a faster rate with time in the rabbit, as indicated by the average time constant
RTCT in the rabbit (0.29 ˙ 0.02 s; Table I) being one order of magnitude smaller than in the
human (1.79˙ 0.13 s [46]). This is due to a smaller total systemic compliance (CT) in the rabbit
(0.21˙ 0.05 mm3 Pa�1) than in the human (17.0˙ 1.0 mm3 Pa�1 [46]); vessels are less compliant
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(i.e. C0D D A0l=.�c
2/ is smaller) for the shorter and thinner rabbit vessels, despite having similar

PWV to the human vessels.
In agreement with Equation (20), the flow in the last part of diastole increases linearly from the

inlet to the outlet of the single-vessel aortic model (Figure 3(c)) and from the aortic root to the tho-
racic aorta of the 55-artery model (Figure 3(g)). For a given point x in the aorta, the flow towards the
end of diastole decays exponentially (Figure 3(c,g,h)). Furthermore, the PU –loop is approximately
linear in the last part of diastole (Figure 6(g,h), green dashed lines), which is in agreement with pw

and qiw being proportional in the last part of diastole, according to Equation (20).
These results provide further evidence to support the conclusions in [35, 55] that the Windkessel

model has application for study of haemodynamics in diastole. Application of this model enables
us to account for wave reflections originating from previous cardiac cycles and thereby modify the
PU –loop method (Section 3.8) and WIA (Section 3.9).

3.8. Modified OPU –loop method

Figure 10(c,d) shows pressure cleared of contributions of waves reflected in previous cardiac cycles�
OP
�

versus flow velocity (U ) at the root of the single-vessel aortic model and in vivo rabbit aorta.

In the numerical model, these contributions were obtained by prolonging the decaying pw given by
Equation (19) from the previous cardiac cycle into the current cycle, with the time constant (RTCT)
and asymptotic pressure (Pout) given by the theoretical parameters of the model. In the rabbit,RTCT

and Pout were calculated by fitting an exponential function of the form given by Equation (19) to
the decline in pressure during several asystole generated along the aorta and iliac artery at 5 cm
increments (Figure 2(b,e)). The values of RTCT and Pout were taken to be the corresponding mean
values for each rabbit (Figure 2(c,d)). Figure 10(a,b) shows pw prolonged from the previous cardiac
cycle and the pressure waveform OP D P �pw, which is cleared of contributions of reflected waves
originating from previous cardiac cycles, for the numerical and in vivo data. We did not clear U
of contributions of reflected waves originating from previous cycles, because U approximates zero
at the aortic root. In more distal locations, these contributions could be obtained by prolonging the
decaying U from the previous cardiac cycle into the current cycle. Theoretically, the decaying U
should be approximated by qw=Ad given by Equation (20), with Ad the diastolic area.

The backward pressure
�
d OPb

�
and velocity

�
d OUb

�
wavefronts calculated by applying

Equation (9) to OP and U are zero in early systole (i.e. OPb and OUb are constant, as shown in
Figure 10(e,f), orange dashed lines) and, hence, d OP D �c dU is satisfied in early systole (unlike
dP D �c dU ). As a result, the slope of OP versus U in Figure 10(c,d) (orange dashed lines) yields
OcPU D 5.2 m s�1 in the aortic model, in agreement with the theoretical value calculated using Equa-
tion (5) with A the mean area, and OcPU D 4.4 m s�1 in the rabbit aorta, in agreement with the
value calculated using the foot-to-foot method (Table I). In all ten rabbits, the modified OPU –loop
method provided smaller errors than the traditional PU –loop method in the estimates of PWV in
the ascending aorta, relative to the foot-to-foot estimates (three last columns of Table I). The mean
relative errors for the ten rabbits were 1.3% using the modified OPU –loop method and 9.5% using
the traditional PU –loop method, which are comparable to the errors reported in [24] obtained from
numerical data.

Our results support the use of the modified OPU –loop method when an exponential fit to the
decline in pressure during diastole is possible. An exponential fit may be challenging when using
in vivo data without asystole and when the pressure decay does not develop into an exponential
(e.g. see Figure 6(b)) [63]. Tapering and energy losses are other potential sources of error when
using the PU –loop, because they are not accounted for in the derivation of Equation (B.1) (see
Appendices A and B).

Lastly, we note that it is not necessary to eliminate the pressure contribution from previous car-
diac cycles in order to estimate accurately the local PWV from simultaneous P and luminal area (A)
measurements at an arbitrary location in the arterial network. This is because pressure and luminal
area wavefronts are reflected with the same reflection coefficient (Rf ), whereas velocity wavefronts
are reflected with �Rf and, hence, reflections from previous cardiac cycles have a similar effect on
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Figure 10. (a,b) Pressure (P ) (black solid lines), Windkessel pressure decay (pw) prolonged from the pre-
vious cardiac cycle (blue lines) and OP D P � pw (black dashed lines) with time at the root of the (a)
single-vessel aortic model and (b) in vivo aorta of Rabbit 8. Contributions to P from the second (II), third
(III), fourth (IV) and fifth (V) previous cycles are shown in blue dashed lines. Modified (c,d) OPU –loop, (e,f)

forward and backward components of the pressure
�
OPf , OPb

�
and velocity

�
OUf , OUb

�
waveforms, and (g,h)

forward
�
d OIf

�
and backward

�
d OIb

�
components of wave intensity with time (normalised by the sampling

time). The arrows describe the origin of the four dominant waves in the cardiac cycle. d OIf ,b, OPf ,b and OUf ,b
were calculated using the PWV given by (e,g) Equation (5) with A the mean area or (f,h) the foot-to-foot
method as described in Section 2.1. For all data contours, the reflection-free period in early systole and the

decay in pressure with approximately constant velocity are highlighted in orange and green, respectively.

P and A, unlike on P and U (see Appendix C). Applying Equation (B.3) from Appendix B to P
and A at any point of the visco-elastic 55-artery model (Figure 3(e)) yields errors in the estimates of
PWV smaller than 2%, relative to the theoretical PWV obtained using Equation (5) with A the mean
area over the cardiac cycle. Such a small error, however, remains to be verified using in vivo P and
A data.

3.9. Novel wave intensity analysis

We propose a modified WIA that consists of (i) the new wave intensity d OI D d OIf C

d OIb D d OPf d OUf C d OPb d OUb calculated using OP and U to study haemodynamics during systole
(Section 3.9.1); (ii) the Windkessel model given by Equation (19) to study haemodynamics during
diastole (as we showed in Section 3.7) and quantify the contribution to the pressure waveform of
wave reflections originating from previous cardiac cycles (Section 3.9.2); and (iii) the Windkessel
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model given by Equation (17) (with qjout D 0, j D 2, : : : ,M , when analysing in vivo data) to
analyse the effect on the pressure waveform during both systole and diastole of vessel compliances,
peripheral resistances, outflow pressures and the flow at the root (Qin.t/) (Section 3.10).

3.9.1. Haemodynamics during systole. The modified d OIf ,b profiles are not influenced by wave
reflections originating from previous cardiac cycles and, hence, allow us to do WIA starting from
a ‘true’ reflection-free period in early systole. In normal conditions, they are very similar to the
traditional dIf ,b profiles (e.g. compare Figure 6(c,d) with Figure 10(g,h), and ‘visco-elastic’ in
Figure 7(b) with ‘M1’ in Figure 11(d)) and contain the four predominant waves described in
Sections 3.1–3.5. However, using foot values of d OIf and d OIb decreases the error of the TT estimate
provided by Equation (16) in the single-vessel aortic model coupled to a matched RCR Windkessel
model (Figure 3(b)). From the profiles dIf and dIb in the midpoint of the vessel, calculated with c
at diastolic pressure, we obtained TT D 67 ms using peak values, TT D 102 ms using area-average
values (Equation (15)) and TTD 65ms using foot values. Their errors are, respectively, 31%, 100%
and 27%, relative to the theoretical 51 ms calculated as l=.2.cCUinc//Cl=.2.c�Uref//, according to
the characteristics analysis (see Figure 4(b)), where l D 24.1 cm is the vessel length, c D 5.0 m s�1

is the theoretical PWV at diastolic pressure given by Equation (5), Uinc D 0.04 m s�1 is the average
flow velocity during the propagation towards the outlet of the wavefront that forms the foot of the

Figure 11. (left) Total (a), Windkessel (c), conduit (e) and peripheral (g) pressures with time in the thoracic
aorta (midpoint of Segment 27 in Figure 3(e)) of the normal young (M1), normal old (M2), hypertensive
young (M3) and hypertensive old (M4) models described in Section 3.10. (right) Total (b), conduit (f) and

peripheral (h) flow rates and modified wave intensity (d) with time at the same location and models.
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Table IV. Contribution from the current cardiac cycle, the first (I), second (II),
third (III), fourth (IV) and fifth (V) previous cycles, and the outflow pressure
(Pout) to the pressure waveform (P ) at the aortic root of the single-vessel aortic

model (Figure 10(a)) and in vivo Rabbit 8 (Figure 10(b)).

Cardiac cycle Single-vessel aorta Rabbit in vivo

Current 41.9 27.0
I 25.7 17.4
II 14.3 7.3
III 8.4 3.0
IV 4.0 1.3
V 2.5 0.5
Pout 0 43.0

Each contribution is quantified using pw, as described in Section 3.9.2, and is
expressed in % relative to the area under P .

incident wave, and Uref D 0.5 m s�1 is the average flow velocity during the propagation towards the
inlet of the wavefront that forms the foot of the reflected wave. Similar relative errors were obtained
at any point in the vessel, suggesting that foot values should be used for the calculation of TT. The
relative error given by foot values of d OIf and d OIb was reduced to 10%.

Conceptually, the new wave intensity profile should be used to study haemodynamics during sys-
tole. In practice, however, the new and traditional wave intensity profiles may be very similar due to
measurement errors.

3.9.2. Contributions of wave reflections from previous cardiac cycles. The contribution of wave
reflections from several previously occurring cardiac cycles to the pressure waveform (P ) can be
studied by prolonging the decay of pw given by Equation (19) at the end of each previous cycle.
Figure 10(a,b) shows the contribution to P at the aortic root in the numerical model and rabbit in
vivo of the second (II), third (III), fourth (IV) and fifth (V) previous cycles, and Table IV quantifies
them. In the rabbit, the pressure at which flow to the microcirculation ceases (Pout) contributes 4.5
kPa to P . In the numerical model, Pout was set to zero and does not play a role in shaping P . In
both the numerical model and the rabbit, the current cycle contributes to P more than any previous
cycle, providing the systolic features of pressure that can be studied using d OI , and, in the rabbit, the
diastolic concave shape. Pressure contributions from previous cycles decrease exponentially, with
earlier cycles generating a smaller percentage of P than later cycles.

Because conduit pressures vanish almost completely by the end of diastole (Figure 9(a)), pressure
contributions from previous cardiac cycles are mostly made up of reflected waves originating from
peripheral reflection sites. These reflected waves persist for several cardiac cycles, because they
become trapped within the arterial network between the aortic valve and peripheral vessels [39]. In
diastole, the valve is closed and so reflects backward wavefronts with a reflection coefficient close
to one [39, 56]. As a result, forward and backward pressures (Pf ,b and OPf ,b) are equal and forward
and backward velocities (Uf ,b and OUf ,b) are opposite, as Figures 6(e,f) and 10(e,f) show.

3.10. Effect of vessel compliance and peripheral resistance

We use our modified WIA to study the effects of changes in vessel compliance and peripheral resis-
tance on the pressure and flow waveforms in the thoracic aorta of the visco-elastic 55-artery model
(Figure 3(e)), with the parameter values described in Table III (hereinafter referred to as Model M1,
normal young) and the following three variations:

� Model M2, normal old: The elastic modulus E is increased three-fold in all the arterial seg-
ments (except for the terminal branches) to decrease the total conduit compliance (Cc) and
model the increase in the stiffness of the arterial wall with ageing [64].
� Model M3, hypertensive young: The total resistance R1CR2 at the outflow of each 1-D model

terminal branch (Figure 3(b)) is increased by 40% to raise blood pressure.
� Model M4, hypertensive old: The changes introduced in M2 and M3 are combined.
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Table V. Contribution from the current cardiac cycle, the first (I), second (II),
third (III), fourth (IV) and fifth (V) previous cycles, and the outflow pressure
(Pout) to the pressure waveform in the thoracic aorta (midpoint of Segment 27
in Figure 3(e)) of the normal young (M1), normal old (M2), hypertensive young

(M3) and hypertensive old (M4) models.

Cardiac cycle M1 M2 M3 M4

Current 38.6 58.9 30.8 48.7
I 24.6 21.4 23.2 24.5
II 12.8 6.6 14.5 10.7
III 6.7 2.0 9.0 4.7
IV 3.5 0.6 5.6 2.1
V 1.8 0.2 3.5 0.9
Pout 10.2 10.2 7.7 7.7

Using the Windkessel pressure (pw) as a zero-order approximation to the pressure waveform (P )
provides relevant information on the effects of vessel compliance and resistance. First, we note that
the total compliance (CT) and peripheral resistance (RT) appear in the term et

0=RTCT of the inte-
grand of Equation (17). This term increases the contribution to P of the decaying flow out of the
heart (Qin; Figure 3(g), ‘Root’) in the last part of systole; the greater CT and RT are, the more
they spread the shape of Qin (and hence pw) in time. Furthermore, the magnitude of P produced
by Qin in systole decreases with increasing CT through the term e�t=RTCT=CT multiplying the
integral. Thus, the pulse pressure decreases with increasing CT. According to Equation (18), CT

increases with the increasing compliance of each segment in the arterial network (C0D), which is
greater in young models (M1 and M3) than in old models (M2 and M4). As a result, the pulse
pressure of both pw and P at the thoracic aorta is less in young than old models (Figure 11(a,c)).
In vivo measurements in humans show an increase in pulse pressure with age [62] and disease
(such as atherosclerosis and diabetes) [65], which can be explained by a decrease in vessel com-
pliance. Lastly, both P and pw decay in diastole at a greater rate in old than in young models
(Figure 11(a,c)), because the time constant (RTCT) is less in old than young models, in agreement
with Equation (19).

Using pw to quantify the portion of P at the thoracic aorta originating from previous cardiac
cycles reveals similar contributions to P from the first previous cycle in the four models studied
(Table V). However, in old models a smaller portion of P is made up of reflected waves originating
from earlier cycles because pw falls at a faster rate with decreasing CT, and in hypertensive models
a greater portion of P comes from earlier cycles (compare M1 with M3 and M2 with M4 in Table V)
because pw falls at a slower rate with increasing RT.

We can study how CT and RT affect systolic haemodynamics using the wave intensity profile
d OI . The peak values of d OI are greater with decreasing CT and, hence, the energy carried by pulse
wavefronts in old models (M2 and M4) is greater than in young models (M1 and M3) (Figure 11(d)).
This result suggests that the LV must produce more energy to propel the same amount of blood flow
throughout the vasculature of old models. On the other hand, normal and hypertensive models of the
same age (i.e. M1 and M3 or M2 and M4) have similar contours of d OI ; that is, changes in RT have
little effect on d OI . Therefore, peripheral reflections have a minor effect on the flux of energy in the
thoracic aorta in systole. This result provides further evidence to support our result in Section 3.6 on
the inability of the wave intensity profile to identify peripheral reflections. Furthermore, this result
suggests that changes in RT have little effect on aortic augmentation index, in agreement with [41].

The foot of the incident wave in the d OIf profile occurs earlier in old models (Figure 11(d)), which
feature greater PWV in proximal vessels, but the TT between the incident and reflected waves
calculated using Equation (16) with foot values changes by less than 2 ms in all four models. Fur-
thermore, the apparent reflection coefficient

�
R

app
f

�
is not affected by changes inRT, but it increases

with decreasing CT;Rapp
f is 7% greater in M2 than in M1. Different results are obtained, however, in

the single-vessel aortic model; TT decreases with decreasing CT and increasing RT, in agreement
with theoretical predictions, and Rapp

f increases with increasing CT and RT (see supplementary
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material for further details). Therefore, varying CT and RT has a different effect on TT and Rapp
f in

the presence of one or multiple peripheral reflection sites.
We can further investigate the effects of CT andRT on the pulse waveform by calculating conduit

and peripheral waveforms as described in Section 3.6.2. Decreasing CT increases the amplitude of
both the conduit and peripheral pressure waveforms, but increasingRT only increases the magnitude
(and not the shape) of the peripheral waveform (Figure 11(e,g)). These results indicate that vessel
compliance has a similar effect on reflections originating from internal junctions, aortic root and
tapered vessels to those originating from the periphery, whereas peripheral resistances only affect
reflections originating from the periphery. Thus, ‘conduit’ and ‘peripheral’ mechanisms underlie
changes in pulse pressure, whereas only ‘peripheral’ mechanisms underlie changes in mean pres-
sure. Changes in CT affect both the conduit and peripheral flow waveforms (Figure 11(f,h)). In
particular, the amplitude of the conduit waveform increases in old models, which leads to greater
peak flows and less flow damping (Figure 11(b)). Changes in RT have little effect on total, conduit
and peripheral flow waveforms (Figure 11(b,f,h)).

We cannot measure conduit and peripheral pressures in vivo, but we can approximate them
through the reservoir and excess pressures, respectively [56], which can be calculated from a pres-
sure waveform measured at an arbitrary location in arteries [66]. This approximation improves with
the reflection coefficients for forward-travelling waves at junctions

�
R
p
f

�
given by Equation (12)

approaching zero [56]. Thus, reservoir and excess pressures in normal conditions and under the
effect of pharmacological drugs affecting vessel compliance and resistance could be used for an in
vivo verification of the numerical results presented in this section.

3.11. Sensitivity of the modified wave intensity profile to sampling frequency and errors in pulse
wave velocity estimate

We analyse the sensitivity of the modified forward and backward wave intensity profiles (d OIf ,b),
transit time (TT) and apparent reflection coefficient (Rapp

f ) in the midpoint of the single-vessel aor-
tic model to decreasing sampling frequency (Section 3.11.1) and increasing errors in the estimate of
PWV (Section 3.11.2).

3.11.1. Sampling frequency. The forward
�
d OIf

�
and backward

�
d OIb

�
wave intensity profiles

change with decreasing sampling frequency of pressure and flow velocity (Figure 12(a)). From 1
to 0.2 kHz, the peak values of d OIf and �d OIb change by less than 15%, the errors in the TT estimates
given by foot values remain below 10% relative to the theoretical TTD 51 ms (Figure 12(b)), and
the calculated Rapp

f using peak and area-average values change by less than 6% relative to the corre-
sponding values at 1 kHz (Figure 12(c)). We observed greater differences in d OIf and d OIb at 0.1 kHz
(Figure 12(a)) and below, which lead to greater relative errors in TT and Rapp

f (Figure 12(b,c)).
Furthermore, we observed a drop in the peak of the valve wave (described in Section 3.5) with

decreasing sampling frequency; this wave is small at 0.2 kHz and absent at 0.1 kHz (Figure 12(a)).
This result is in agreement with aortic in vivo data showing that the valve wave is small or absent in
the traditional wave intensity profile for sampling frequencies below 0.2 kHz [2, 4, 15] and present
for greater frequencies [21, 57–59].

Our results suggest a small sensitivity of the wave intensity profile to pressure and velocity data
sampled at 0.2 kHz or above, assuming data free of any other error, and support the use of foot
values of d OIf and d OIb to estimate the TT to a dominant reflection site. However, sampling fre-
quencies greater than 0.2 kHz may be necessary at higher heart rates and under strong myocardial
contractions.

3.11.2. Pulse wave velocity error. Introducing an error in the PWV given by Equation (5) at dias-
tolic area when calculating d OIf ,b results in a backward compression wave developing at the same
time as the (incident) LV-contraction wave (Figure 12(d)). The amplitude of this fictitious wave
increases with increasing PWV error, which leads to increasingly greater changes in the estimated
TT (Figure 12(e)) and Rapp

f (Figure 12(f)) with respect to their values free of PWV error. A PWV
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Figure 12. (a,d) Forward
�
d OIf

�
and backward

�
d OIb

�
components of modified wave intensity with time

in the midpoint of the single-vessel aortic model coupled to a matched RCR Windkessel outflow model
(Figure 3(b)). They were calculated using the original model (black solid lines), with c at diastolic pressure,
and changing the (a) sampling frequency (SF in kHz) or (d) error in the PWV relative to the theoretical PWV
(c error in %), as indicated by the labels (red and blue dashed lines). In the original model, we have SFD1
kHz and c error D 0%. Note the different scaling of d OIf and d OIb. Effect of (b,c) SF and (e,f) PWV error on
the transit time (TT) and apparent reflection coefficient

�
R

app
f

�
calculated using foot (circles), peak (squares)

or area-average (stars) values, as illustrated in Figure 5.

error of 20% changes the estimates of TT and Rapp
f by less than 7% using peak values and 16%

using area-average values, relative to the corresponding values free of error. Greater PWV errors
yield dramatic changes in the calculated TT and Rapp

f using peak values, because the peak value of
�d OIb is attained in the fictitious wave instead of the genuine reflected wave (Figure 12(d)). Lastly,
using the local minimum between the fictitious and genuine reflected waves to determine the foot of
the reflected wave, the TT estimates given by foot values are more sensitive to PWV errors within
˙20% than those given by peak values (Figure 12(e)).

Our results suggest a small variability of d OIf ,b in the aorta using estimates of PWV with errors
up to ˙20%, in agreement with results reported for traditional dIf ,b using in vivo measurements in
human coronary arteries [67]. In Section 3.8, we showed that estimates of local PWV at the ascend-
ing aorta with errors smaller than 20% are feasible from simultaneous pressure and flow velocity
measurements using the modified OPU –loop method.

4. CONCLUSIONS

We have presented a novel analysis of arterial pulse wave propagation that combines traditional WIA
with identification of Windkessel pressures to account for the effect on the pressure waveform of
peripheral wave reflections. Our modified wave intensity profiles allow us to study the predominant
waves that shape pressure and flow waveforms during systole, starting from a ‘true’ reflection-free
period in early systole. The Windkessel pressure allows us to (i) quantify the contribution to the
pressure waveform over the whole cardiac cycle of reflected waves originating in previous cardiac
cycles and (ii) study the buffering effect of the vasculature, which depends on vessel compliances,
peripheral resistances, outflow pressures and the flow at the root (Section 3.9).

We have shown that traditional WIA identifies the timing, direction and magnitude of the pre-
dominant waves that shape aortic pressure and flow waveforms in systole (Section 3.1 to 3.5) but
fails to identify the important contribution to the pressure waveform of peripheral reflections. These
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reflections persist for several cardiac cycles and make up most of the pressure waveform, especially
in diastole and at the start of cardiac contraction (Section 3.6). Ignoring the contribution of periph-
eral reflections to the pressure waveform leads to an erroneous indication of a reflection-free period
in early systole and additional error in the estimates of (i) PWV at the ascending aorta given by the
PU –loop method (9.5% error using rabbit in vivo data) and (ii) TT to a dominant reflection site cal-
culated from the wave intensity profile (27% error using numerical data). These errors decreased to
1.3% and 10%, respectively, when peripheral reflections were considered in the calculations using
the Windkessel pressure (Sections 3.8 and 3.9.1).

We have used our new analysis of wave propagation to study the effects of vessel compliance
and peripheral resistance on numerically-generated aortic pressure (P ) and flow (Q) waveforms
(Section 3.10). With decreasing compliance, the pulse pressure increases, a smaller portion of P is
made up of reflected waves originating from earlier cycles, there is less damping of Q, and pulse
wave energy increases, suggesting that the LV must produce more energy to propel the same amount
of blood flow throughout a stiffer vasculature. With increasing resistance, the mean pressure raises
(but not the pulse pressure), a greater portion of P is made up of reflected waves originating from
earlier cycles, and there is little change inQ and wave energy. We have also shown that vessel com-
pliance has a similar effect on reflected waves originating from internal junctions, aortic root and
tapered vessels to those originating from the periphery, whereas peripheral resistances only affect
reflected waves originating from the periphery.

Lastly, our results suggest a small sensitivity of the forward and backward wave intensity profiles
to pressure and velocity data sampled at 0.2 kHz or above or to errors in the estimate of PWV within
˙20%, assuming data free of any other error.

It is important to note that our modified WIA differs from the reservoir-wave hypothesis
[55, 56, 66], which has been shown not to be beneficial for WIA [21]. In this hypothesis, all the
Windkessel pressure is separated from the measured pressure waveform, whereas our new method
separates only the Windkessel pressure from previous cardiac cycles. The latter allows us to do WIA
on all components of the pressure waveform generated in the current cardiac cycle, starting from a
‘true’ reflection-free period.

APPENDIX A: DERIVATION OF THE WATER HAMMER EQUATIONS

Following [15], we consider the area (A), velocity (U ) and pressure (P ) waveforms to be made
of successive wavefronts, which travel through the arterial network propagating changes in A, U
and P . Across an individual wavefront, we define the changes in area, velocity and pressure as dA,
dU and dP , respectively. We take the linear assumption that these changes can be separated into
changes across the forward-travelling (dAf , dUf , dPf ) and backward-travelling (dAb, dUb, dPb)

Figure A.1. Changes in area (dA), flow velocity (dU ) and pressure (dP ) across a pulse wavefront travelling
(a,c) forward (in the positive x direction) and (b,d) backward with speeds of cCU and c �U , respectively,
where c is the local pulse wave velocity. They are measured from a frame of reference fixed to the vessel
(a,b) and moving with the wavefront (c,d). The dashed rectangles indicate the control volume used to derive

Equations (A.2)–(A.7).
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wavefronts (Figure A.1), that is

dAD dAf C dAb, dU D dUf C dUb, dP D dPf C dPb. (A.1)

We define the forward direction as the direction of mean blood flow, in which x increases.
Applying conservation of mass in the control volume for the frame moving with the forward-

travelling wavefront (Figure A.1(c)) yields �.�cCdUf/.ACdAf/D��cA, where � is the density
of blood assumed to be constant and c is the local PWV. This expression reduces to

c dAf D AdUf , (A.2)

ignoring the term � dUfdAf . Applying conservation of momentum to the same moving frame yields
.P C dPf/.AC dAf/�P.AC dAf/D �c

2A� �.�cC dUf/
2.AC dAf/, which reduces to

AdPf D 2�cA dUf � �c
2dAf , (A.3)

ignoring terms with products of dAf , dUf and dPf . Replacing c dAf in (A.3) with A dUf from
(A.2) yields the water hammer equation dPf D �c dUf . Replacing A dUf in (A.3) with c dAf from
(A.2) yields

AdPf D �c
2 dAf . (A.4)

Similarly, conservation of mass and momentum in the control volume for the frame moving
with the backward-travelling wavefront (Figure A.1(d)) yields the other water hammer equation
dPb D��c dUb,

� c dAb D A dUb, (A.5)

AdPb D �c
2 dAb. (A.6)

Combining Equations (A.4) and (A.6), using dAD dAf C dAb and dP D dPf C dPb, yields

AdP D �c2 dA, c D

s
A

�

dP

dA
. (A.7)

APPENDIX B: CALCULATION OF THE PULSE WAVE VELOCITY

Equations (8), (A.2) and (A.7) allow us to calculate the local PWV (c) at an arbitrary location in the
arteries from simultaneous measurements of P and U , A and U , and P and A, respectively, using
the methods described in the following two subsections. In all these methods, c is assumed to be
constant; that is c D c.x/, and dA, dU and dP are calculated as the change in the measured A, U
and P , respectively, in a sampling period dt (e.g. dA.t/D A.tCdt /�A.t/) using a Savitzky–Golay
filter [16, 51] [52, p. 650].

From simultaneous measurements of P (or A) and U using ‘loop’ methods

The ‘loop’ methods rely on the existence of a period within the cardiac cycle in which the plots of
P versus U (PU –loop) and lnA versus U (lnAU –loop) are approximately linear. In normal phys-
iological conditions, this linearity has been observed in early systole in the PU –loop of the human
aorta and main pulmonary artery [16, 53] and lnAU –loop of the human carotid artery [68], which
suggests that dA, dU and dP in early systole are predominantly made of wavefronts propagating
towards distal locations. Thus, dA D dAf , dU D dUf and dP D dPf are reasonable assumptions
and Equations (8) and (A.2) yield, respectively,

cPU D
1

�

dP

dU
, (B.1)
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cAU D
AdU

dA
D

dU

d.lnA/
. (B.2)

They allow us to calculate c from the slope of the (approximately) linear part in the PU – and
lnAU –loops; this slope is �c and 1=c, respectively. In the case of the PU –loop, we need to know
the density of blood (�).

In Section 3.8, we showed that elimination of the Windkessel pressure generated in previous car-
diac cycles from P improves the accuracy of the value of c given by the PU –loop method in the
ascending aorta.

From simultaneous measurements of P and A using a new analytical expression

According to Equation (A.7), .dP /2 D �2c4 .d.lnA//2. Adding the terms on the left and right of
this equation over a cardiac cycle, assuming � and c to be constant, yields

cPA D
1
p
�

� P
.dP /2P

.d.lnA//2

�1=4
. (B.3)

This equation is similar in form to the so-called ‘single-point’ method [16, 69] for simultane-
ous P and U measurements, though Equation (B.3) follows directly from conservation of mass
and momentum and does not require minimising wave energy over the cardiac cycle as does the
‘single-point’ method.

APPENDIX C: WAVEFRONT REFLECTIONS AT JUNCTIONS

Consider three arterial segments �j , j D p, d1, d2, joining in a splitting or merging flow junction
(Figure C.1). Three perturbations .�aj ,�pje ,�qj / of the initial states .Aj ,P je ,Qj /D .A

j
0 , 0, 0/,

j D p, d1, d2, of luminal cross-sectional area, elastic component of pressure and flow rate, respec-
tively, propagating towards the junction (along each corresponding segment�j ) will produce a new
wave in each segment, denoted by .Aj0Cıa

j , ıpje , ıqj /, j D p, d1, d2, which will propagate away
from the junction. This appendix shows how these three new waves can be calculated using the
linearised 1-D equations, 8̂̂̂

ˆ̂<
ˆ̂̂̂̂
:

C1D
@pe

@t
C
@q

@x
D 0,

L1D
@q

@t
C
@pe

@x
D�R1Dq,

pe D
a

C1D
,

(C.1)

where a, pe and q are the perturbation variables for area, elastic component of pressure and flow
rate, respectively, that is .A,Pe,Q/D .A0C a,pe, q/, and

C1D D
2A

3=2
0

ˇ
, L1D D

�

A0
, R1D D

22��

A20
(C.2)

Figure C.1. Nomenclature for the two types of junctions considered, splitting (left) and merging (right)
flows. The arrows indicate the positive direction of the axial coordinate x.
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are the elastic wall compliance, fluid inertia and viscous fluid resistance, respectively, per unit
length of vessel. Equations (C.1) follow from linearising (1) and (2) about the reference state
.A,P ,Pe,Q/D .A0, 0, 0, 0/, with � D 0 and ˇ and A0 constant along x [39, 54].

Conservation of mass and continuity of the total pressure at the junction yield

ıqp D ıqd1C ıqd2, (C.3)

ıppe D ıp
d1
e D ıp

d2
e � ıpe. (C.4)

In addition, the linear characteristic variables||, wf ,b D q ˙ pe

Z0
, propagating towards the junction

remain unchanged after the reflection. Thus, for a splitting flow junction (Figure C.1, left) we have

ıqp C
ıppe

Z
p
0

D�qp C
�ppe

Z
p
0

, ıqd1 �
ıpd1e

Zd10
D�qd1 �

�pd1e

Zd10
, ıqd2 �

ıpd2e

Zd20
D�qd2 �

�pd2e

Zd20
,

(C.5)
where Zj0 D �c

j
0=A

j
0 , j D p, d1, d2, is the characteristic impedance of segment �j and

c0 D
p
1=.C1DL1D/ is the pulse wave velocity at zero blood pressure. Moreover,

�qp D
�ppe

Z
p
0

, �qd1 D�
�pd1e

Zd10
, �qd2 D�

�pd2e

Zd20
, (C.6)

because the initial characteristic variables moving away from the junction are all zero. Combination
of Equations (C.5) and (C.6) yields

ıqp D 2
�ppe

Z
p
0

�
ıppe

Z
p
0

, ıqd1 D�2
�pd1e

Zd10
C
ıpd1e

Zd10
, ıqd2 D�2

�pd2e

Zd20
C
ıpd2e

Zd20
. (C.7)

Substitution of these expressions into Equation (C.3) and using Equation (C.4) leads to

ıpe D ıp
p
e D ıp

d1
e D ıp

d2
e D

2
�
Y
p
0 �p

p
e C Y

d1
0 �pd1e C Y

d2
0 �pd2e

�
Y
p
0 C Y

d1
0 C Y

d2
0

, (C.8)

where Y j0 D 1=Z
j
0 , j D p, d1, d2, is the characteristic admittance of segment �j .

If we perturb one segment at a time with .�aj ,�pje ,�qj /, j D p, d1, d2, so that �pie D 0 for
i ¤ j , then from Equation (C.8) we have

ıpje D
2Y

j
0 �p

j
e

Y
p
0 C Y

d1
0 C Y

d2
0

, j D p, d1, d2. (C.9)

Defining the reflection coefficient Rjf , j D p, d1, d2, as the ratio of the change of pressure across
the reflected wave to the change of pressure in the incident wave; that is Rjf �

�
ıpje ��p

j
e

�
=�pje ,

j D p, d1, d2, and using Equation (C.9) to write ıpje as a function of �pje yields Equation (12).
For a merging flow junction (Figure C.1, right), Equations (C.3) and (C.4) are also valid, whereas

Equations (C.5) and (C.6), respectively, become

ıqp �
ıppe

Z
p
0

D�qp �
�ppe

Z
p
0

, ıqd1C
ıpd1e

Zd10
D�qd1C

�pd1e

Zd10
, ıqd2C

ıpd2e

Zd20
D�qd2C

�pd2e

Zd20
,

(C.10)

�qp D�
�ppe

Z
p
0

, �qd1 D
�pd1e

Zd10
, �qd2 D

�pd2e

Zd20
. (C.11)

Combining Equations (C.3), (C.4), (C.10) and (C.11) as described previously for the splitting flow
case also yields Equation (12).

Note that from pe D
a
C1D

in (C.1), we have �pje D �aj =C
j
1D and ıpje D ıaj =C

j
1D,

j D p, d1, d2. Thus, Rjf D
�
ıaj ��aj

�
=�aj , j D p, d1, d2, is satisfied, which shows that the

||The expressions given for wf ,b follow from applying the method of characteristics to the system of equations (C.1).
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reflection coefficients also give the ratio of the change of area across the reflected wave to the
change of area in the incident wave. However, in terms of changes in the flow rates, we have
R
j
f D �

�
ıqj ��qj

�
=�qj , j D p, d1, d2, which follows from transforming ıqj and �qj into

pressures using Equations (C.6) and (C.7) for the splitting flow case and Equations (C.10) and
(C.11) for the merging flow case. Defining the changes in flow velocity as ıuj D ıqj =A

j
0 and

�uj D�qj =A
j
0 , we have Rjf D�

�
ıuj ��uj

�
=�uj , j D p, d1, d2.
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