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Abstract

The accuracy of measuring voxel intensity changes between stimulus and rest images in fMRI 

echo-planar imaging (EPI) data is severely degraded in the presence of head motion. In addition, 

EPI is sensitive to susceptibility-induced geometric distortions. Head motion causes image shifts 

and associated field map changes that induce different geometric distortion at different time 

points. Conventionally, geometric distortion is “corrected” with a static field map independently 

of image registration. That approach ignores all field map changes induced by head motion. This 

work evaluates the improved motion correction capability of mapping slice to volume (MSV) 

registration with concurrent iterative field corrected reconstruction using updated field maps 

derived from an initial static field map that has been spatially transformed and resampled. It 

accounts for motion-induced field map changes for translational and in-plane rotation motion. The 

results from simulated EPI time series data, in which motion, image intensity and activation 

ground truths are available, show improved accuracy in image registration, field corrected image 

reconstruction and activation detection.
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1. Introduction

In functional MRI (fMRI) studies, activation maps are generated by statistical analyses of 

voxel intensity changes between stimulus and rest images of echo-planar imaging (EPI) time 

series data. The accuracy of measuring these intensity changes, which are typically in the 
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range of 1% to 4%, is severely degraded in the presence of head motion. To compensate for 

head motion, some studies employ in-plane and volumetric image registration techniques on 

EPI time series data [1-4]. Single-shot EPI data is also sensitive to magnetic 

susceptibility(χ)-induced geometric distortions, especially for the mid to lower brain regions 

near air-tissue and bone-tissue interfaces. Subject motion causes image shifts as well as 

field-map changes which result in time-varying local changes in geometric distortion [5,6]. 

Consequently, inconsistencies in voxel positions across the time series images degrade 

statistical testing of the signal changes in response to the given tasks in activation studies.

In fMRI, geometric distortion correction typically is performed with a static field-map 

independently of motion correction [6,7], thus ignoring field-map changes caused by head 

motion. A prospective approach to this problem is to acquire field-maps simultaneously with 

EPI data during an fMRI experiment to track temporal field-inhomogeneity changes by 

collecting additional k-space data [8,9]. However, acquisition of extra k-space data within 

reasonable time may pose some limitations in field-map resolution since, to reduce scan 

time, the extra data acquired is typically constrained to a low-pass filtered or truncated 

version of a full set of EPI image k-space data. Also, modifying pulse sequences may not be 

an available option in many clinical scanners. In addition, some of the algorithms for image 

reconstruction and post-processing are computationally intensive [9]. A correction strategy 

[10] based on the work done by Chang and Fitzpatrick [11] is of notable interest since no 

field-maps are required a priori. Instead, pairs of EPI images are acquired with opposing 

blipped phase encode gradient polarity, thus yielding image pairs with identical geometric 

distortion but in opposite directions along the phase encoding axis. The deformation field 

between each pair of images, from which the dynamic field-map is computed, is estimated 

from the images’ intensity values. However, to acquire the pairs of EPI images, pulse 

sequence modification is required, and motion-induced field-map changes may occur 

between the acquisitions. This may lead to local differences in geometric distortion in each 

pair of images, especially in regions with susceptibility-induced field-inhomogeneity, which 

may yield inaccurate field-map estimates. Another retrospective correction method [5] 

adopts a least squares approach and models the temporal change in B0 using a Taylor series 

expansion with respect to motion parameters. Qualitative results indicate good correlation 

between estimated and measured parameters. This model was designed for registration and 

geometric distortion correction of mono-modality EPI time series images with a preselected 

EPI volume as a reference volume. An anatomically correct structural volume was not used 

for registration.

Previously, in our group, a realistic motion-correction approach by mapping a slice-to-

volume (MSV) for multi-slice EPI time series was developed [12]. This technique, which 

uses negated mutual information as the similarity cost metric, allows individual slices in the 

time series to be mapped to an anatomically correct reference volume, and can accurately 

correct image shifts due to 3D rigid head motion. Compared to the widely used volumetric 

registration of EPI volumes, which ignore inter-slice motion, the MSV approach improved 

sensitivity and specificity in localizing activated regions [12]. Moreover, receiver operating 

curve (ROC) analyses of detected activation from MSV-corrected simulated datasets and 

datasets processed by SPM suggest that MSV improves activation detection results [13]. 
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Although rigid-body transformations may suffice for activation localization in the 

sensorimotor cortex, geometric distortions in conventionally reconstructed EPI slices 

acquired from the mid to lower brain regions cause difficulty in localizing activations, which 

makes language studies with fMRI difficult. Consequently, MSV was expanded to include a 

non-linear warping function for studies involving mid brain regions [14,15]. This 

improvement increases computation due to the longer optimization process associated with 

higher degrees of freedom in registration.

This work evaluates an extension of MSV with concurrent field-inhomogeneity correction 

for EPI time series images and was introduced previously using a small test dataset with 

known motion parameters [16]. The concurrent field-map MSV (CFMMSV) method 

employs iterative field-corrected quadratic penalized least squares (QPLS) image 

reconstruction [17] followed by a field-map update to enhance the MSV rigid body motion-

correction scheme, therefore accounting for field-inhomogeneity changes with inter-slice 

head motion. The proposed method consists of iterative correction cycles, each with a pair 

of QPLS image reconstruction and MSV motion correction stages. In each cycle, dynamic 

field-map slices are re-sampled from a high resolution 3D static field-map that has been 

spatially transformed by a rigid body transformation function determined by MSV for the 

respective EPI slices. Since geometric distortion is corrected incrementally in the QPLS 

stage after each field-map update, a rigid body MSV motion model should suffice and 

requires less computation than non-linear MSV registration. For two sets of realistically 

simulated EPI time series with different ground truths for rigid body motion, image 

intensities and activation regions, results show that the CFMMSV method improves the 

accuracy of the estimated motion parameters and reconstructed images when compared to a 

strategy that performs geometric distortion and motion correction independently using just a 

static field-map. Non-parametric random permutation tests were also performed on all 

datasets at various stages in the CFMMSV correction process to compute activation 

detection (ROC) curves. The areas under these ROC curves show that the CFMMSV 

method improves the activation detection accuracy.

2. Background

2.1 EPI Geometric Distortion

In brain EPI data that is reconstructed without field-inhomogeneity correction, geometric 

distortion is observed in regions where the local magnetic field is inhomogeneous, especially 

at the boundaries of tissues with significant magnetic susceptibility differences. Head 

motion that changes the orientation of the inter-tissue boundary with B0 (out-of-plane 

rotations) may induce significant field-inhomogeneity changes in the region around the 

boundary. The effects of this type of motion, which include two out-of-plane rotations, are 

not modeled in this work. Translations and in-plane rotation are less likely to cause such 

local changes in the susceptibility-induced component of the field-map, and mainly induces 

shifts and in-plane rotation of the entire field-map. In EPI, due to the long readout time, 

field-inhomogeneity causes pixel shifts, mainly in the phase encoding direction [18,19]. 

These shifts depend on the EPI slice readout time Treadout and the point field-

inhomogeneity ΔB(xi,yj). The space-variant pixel shift in the phase encoding direction 
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causes geometric distortion and intensity accumulation or spread, which adversely affect 

fMRI activation detection.

2.2 Iterative Field-Corrected Reconstruction

To perform geometric distortion correction, we use an iterative field-corrected 

reconstruction method that, unlike many non-iterative image reconstruction methods, does 

not assume a smooth field-map [17]. The continuous object f and field-map Δωstatic are 

parameterized into a sum of weighted rect functions Φ(r–rn) where r is the vector of spatial 

coordinates. Ignoring spin relaxation and assuming uniform receiver coil sensitivity, the 

observed MR raw data of slice frame l is

(1)

and the parameterized MR signal equation of slice l is

(2)

where  is the baseband MR signal sample at time tm during readout,  denotes 

white Gaussian noise [20], Φ(k(tm)) denotes the Fourier transform of Φ(r), N is the number 

of pixels in a slice, L is the total number of slice frames in the EPI time series and  and 

 are the object intensity and field-inhomogeneity values, respectively, at rn. The matrix-

vector form of Eq. (1) can be written as follows:

(3)

where  and elements of the M × N system-object matrix Al are

(4)

To estimate the unknown object slice fl from the observed k-space data, the iterative 

conjugate gradient algorithm is used to minimize the QPLS cost function

(5)

where C is a first-order difference matrix, and β is a parameter that controls the tradeoff 

between obtaining a data-consistent estimate and a smoothed, regularized estimate. The 

QPLS estimate of fl is

(6)

where an asterisk denotes a matrix complex conjugate transpose operation. However, we 

minimize Eq. (5) using the conjugate gradient algorithm instead of evaluating Eq. (6) 

directly.

Yeo et al. Page 4

Magn Reson Imaging. Author manuscript; available in PMC 2015 January 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



To accurately perform field-corrected reconstruction in the presence of head motion, every 

slice of observed data ul should be paired with a dynamic field-map slice Δωl that describes 

the field-inhomogeneity at frame l of the fMRI experiment. Typically, however, only a static 

field-map Δωstatic is available. This field-map is usually acquired before or after the 

experiment and does not track field-inhomogeneity changes during the acquisition of the 

fMRI time series images. Each volume in the EPI time series typically has a lower spatial 

resolution and larger slice thickness than Δωstatic. A simple approach to obtain field-

corrected fMRI images is to register each time series volume to the image intensity volume 

acquired in the same coordinate space as the static field-map volume, and then use re-

sampled slices of Δωstatic in place of Δωl in minimizing Eq. (5). This correction method 

ignores inter-slice motion and field-inhomogeneity changes due to head motion and thus 

yields potentially significant image reconstruction errors.

2.3 Map Slice-To-Volume (MSV) Registration

The MSV motion correction technique [12] models the 3D motion of multislice EPI data by 

allowing each slice to have its own six degrees of freedom motion. In MSV, each 

reconstructed EPI slice fl is registered with a 3D reference volume gref using the six degrees 

of freedom rigid body transform denoted by Tαl . The vector αl consists of the six MSV 

motion parameters tx, ty, tz, θx, θy, θz for slice l. This is performed by minimizing a function 

Ψ2(αl) that measures the dissimilarity between fl and gref. In the implementation of MSV, 

the negated mutual information (MI) is used, which performs well for multi-modality 

datasets, i.e. -weighted EPI slices registered with a T1-weighted reference volume. The 

motion parameters αl are estimated by minimizing the following cost function over αl using 

the Nelder-Mead downhill simplex optimization algorithm

(7)

Each set of optimized motion parameters is then used to transform and interpolate (trilinear) 

its respective slice fl into a volume with the same spatial coordinates as the reference 

volume. In the original MSV method, the motion of each slice is computed independent of 

other slices and allows six degrees of freedom between each slice acquisition. For single 

shot acquisition, intra-slice motion is negligible. Given that head motion is typically 

correlated in time and that MSV may generate outlier estimates, especially for top slices 

where the information content is reduced, we apply temporal median filtering on the 

recovered MSV motion parameters before use. A median filter was chosen because the 

MSV motion estimates obtained from data with simulated smooth motion were observed to 

track the ground truth except for intermittent outlier estimates. It is noted that median 

filtered MSV motion parameters are used to compute field map updates in the concurrent 

field-map MSV (CFMMSV) method and not for repositioning EPI slices into the anatomical 

reference volume, i.e. EPI motion correction. The latter is done with raw unfiltered MSV 

motion parameters.
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3. Materials and Methods

All experiments were performed on Intel Pentium 4 Xeon 3.0GHz CPUs using MATLAB 

(The Mathworks Inc., Natick, MA, USA) and Advanced Visual Systems (Advanced Visual 

Systems Inc., Waltham, MA, USA).

3.1 Concurrent Field-inhomogeneity Correction with MSV

To design a concurrent correction technique that involves Eqs. [5] and [7] with a rigid body 

transformation function, the main challenge is the approximation of the dynamic field-map 

from the initial static field-map. To partially account for field-map changes due to 3D head 

motion during the fMRI experiment, we propose and evaluate the following “concurrent” 

correction approach. The concurrent field-map and MSV motion correction framework 

(CFMMSV) loops through several correction cycles, each of which consists of a field-

corrected reconstruction stage followed by MSV registration. The changing field-map is 

approximated using the recovered MSV motion estimates and the static field-map. As the 

number of correction cycles increases, the geometric distortion is incrementally corrected in 

the image reconstruction stage. Thus, a rigid body transformation function in MSV is 

expected to be sufficient to correct for head motion. This leads to a faster image registration 

process compared to the use of 3D non-linear warping functions.

Since the true dynamic field-map Δωl in Eq. (4) is unavailable, the EPI time series image 

reconstruction in the initial cycle (κ = 0) of the concurrent correction algorithm is performed 

with the static field-map volume Δωstatic. The elements of the system matrix Al,κ=0 can be 

written as

(8)

where κ denotes the correction cycle number. The first field-corrected estimate of slice 

frame l, , is then obtained by minimizing Eq. (5) with Al.= Al,κ=0. The reconstructed 

slices are then registered via MSV to the reference volume gref by minimizing Eq. (7). Each 

set of median filtered motion parameters , l = 0,..,L-1, is applied to the original static 

field-map volume and the respective slice within the transformed field-map volume is re-

sampled and stacked into a new field-map volume

(9)

where Hl{U} denotes an operator which re-samples slice l from a volume U. This updated 

field-map is then used in the next cycle to reconstruct field-corrected images again from the 

original k-space data.

Since geometric distortion in EPI is predominantly in the phase encoding direction, the 

recovered MSV motion parameters in the phase encoding direction are not used to transform 

the static field-map in the initial field-map update when κ = 0. This is because the EPI image 

shifts in the phase encoding direction may be largely influenced by field-inhomogeneity 

induced geometric distortion rather than object motion. This is illustrated in the MSV 
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estimates of translations in the phase encoding direction (Fig. 1) for a simulated EPI time 

series (Dataset A) with applied motion in three translational directions and in-plane rotation 

about the z axis. In Fig. 1, field-inhomogeneity induced geometric distortion in the phase 

encoding direction cause significant MSV errors for the distorted EPI data as well as the 

field-corrected EPI data in cycle 0 (κ=0). Correction cycles 1 to 3 yield estimates of ty that 

are close to the ground truth. In addition to translation in the phase encoding direction, the 

field-map may change significantly with out-of-plane rotations which would render these 

motion parameters unreliable for the initial field-map update. Thus, for κ = 0, the motion 

parameters ty (translation in phase encoding direction), θx and θy (out-of-plane rotations) are 

omitted when applying the transformation  to the static field-map. For the following 

cycles, κ ≥ 1, all six degrees of freedom are used when applying  to update the field-

map. The original raw data u and static field-map Δωstatic are used in each cycle to 

approximate the dynamic field-map and field-corrected EPI images to avoid error 

propagation due to intermediate processing steps as the number of cycles increases. The 

CFMMSV method is summarized as follows:

Algorithm. Concurrent QPLS-MSV for EPI Motion and Field-Inhomogeneity Correction

Initial data: Δω̂l ,κ=0
 (slice l of static field-map Δωstatic), ul (k-space data), l=0...L-1

for κ=0...K (correction cycles)

Step 1: f̂ l ,κ = arg min
f

u l − A(Δω̂l ,κ) f
2

+ β Cf 2 do for l=0...L-1 (QPLS)

Step 2: α^ l ,κ = arg min
α

{ − MI (gref
(r), f̂ l ,κ(Tα(r))} do for l=0...L-1 (MSV)

Step 3: Median filter α^κ to obtain α^ filt
κ

.

Step 4: Δω̂l ,κ+1 = H l

{Δωstatic(Tα^ filt
κ (r))}

do for l=0...L-1 (resample slice l)

end

The computation times for field corrected iterative reconstruction and MSV is 1.5 mins/ 

slice and 3 mins/ slice, respectively.

3.2 Motion, Functional Activation and Geometric Distortion Simulation in EPI Time Series

To evaluate the effectiveness of the CFMMSV method in recovering accurate motion 

parameters, forming accurate field-corrected intensity images and detecting functional 

activation regions, two time series datasets, labeled A and B, were simulated with different 

applied motion. The ground truths available for head motion, activation regions and non-

distorted image intensities enable quantitative evaluation of the correction method. We 

started with two perfectly registered T1- and T2-weighted image datasets (matrix size: 

256×256×124, voxel size: 0.8mm×0.8mm×1.5mm) derived from International Consortium 

of Brain Mapping (ICBM) data. The T1 volume served as the anatomical reference for MSV 

registration and the T2 volume was the “baseline” volume from which the time series 

datasets were simulated. The spatial coordinates x, y and z for each volume denote in-plane 
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image column (sagittal planes), in-plane image row (coronal planes) and through-plane slice 

(axial planes) directions, respectively. A rotation about a given axis denotes a rotation about 

the center of the volume perpendicular to that axis. To simulate functional activation, an 

“activated” T2 volume was created by increasing the T2 ICBM dataset intensity by 5% in 

pre-defined ellipsoidal regions as shown in Figs. 8E and 8J. Six baseline-activation cycles, 

each of which was formed by concatenating ten baseline and ten activated T2 volumes, were 

assembled to form a 120-volume time series. In addition, a simulated brain static field-map 

was created by adding three 3D Gaussian blobs located at the inferior frontal and temporal 

lobes to a 3D third-order polynomial (Fig. 2). This field-map was scaled such that the off-

resonance values range from -64 Hz to +320 Hz to simulate a maximum field-

inhomogeneity of 5 ppm at 1.5 T.

Dataset A is a geometrically distorted EPI time series with simulated motion in tx, ty, tz and 

θz (translations and in-plane rotation) while dataset B is a geometrically distorted EPI time 

series with simulated motion in θx, θy and θz (rotations). To generate dataset A, temporally 

smooth translational and in-plane rotational motion (tx, ty, tz and θz) were applied to both the 

T2-weighted baseline-activation time series and simulated field-map volumes. Sequential 

5.6 mm thick slices were then re-sampled to form 120-volume intensity and field-map time 

series datasets (volume matrix size: 128×128×14). Each re-sampled slice has its own set of 

motion parameters. The applied motion has maximum values of 7.20 mm, 8.00 mm, 3.51 

mm and 4.70° for tx, ty, tz and θz, respectively. The T2-weighted volumes obtained are 

henceforth referred to as the time series image intensity ground truth without geometric 

distortion. These were used to compute the image normalized root mean square error 

(RMSE) values at various correction cycles to measure the accuracy of the field-corrected 

reconstructed images. The applied motion did not change the orientation of the air-tissue 

interface with respect to B0 and thus is unlikely to change the field-map significantly except 

for the respective translation or in-plane rotation. Thus, forward distorting the T2 volume 

with the rotated-translated field-map is reasonable as long as out-of-plane rotations θx and θy 

are not applied. However, to test the effectiveness of the CFMMSV framework in the 

presence of out-of-plane motion while assuming the field-map moves with a rigid body 

transformation function together with the head, a second pair of 120-volume time series 

intensity and field-map datasets (dataset B) were simulated with temporally smooth motion 

in three rotation parameters θx, θy and θz. The assumption that the static field map moves 

with the head, while simplistic in the presence of large out-of-plane motion, provides a way 

to generate an otherwise realistic time series dataset with out-of-plane motion and 

subsequent field-inhomogeneity induced geometric distortion. Datasets A and B are not 

meant to be compared with each other. They illustrate the performance of the algorithm for 

different types of applied motion, not for different types of motion-induced field map 

changes. The simulated rotational motion has maximum values of 5.0°, 8.6° and 8.1° for θx, 

θy and θz respectively. Slice acquisition interleaving was incorporated when generating both 

time series datasets.

To forward distort the T2 time series images from both datasets, simulated blipped EPI 

Cartesian k-space data of the distorted images were generated in conjunction with the 

respective field-map time series with motion using Eq. (1). The distorted images (Fig. 3B) 
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were then reconstructed from this k-space data using a system model with a field-map set to 

zero [16]. The simulated readout time was 43.8 ms and the pixel bandwidth in the phase 

encoding direction was 22.8 Hz. In subsequent sections, datasets A and B will refer to the 

final geometrically distorted time series with the respective applied motion.

3.3 Activation Detection with Random Permutation Test

After re-positioning all the EPI time series slices into volumes, MSV yields time series 

volumes that may have empty voxels. This results in variable sample sizes for different 

voxels for statistical analysis. The non-parametric statistical method of voxel-wise random 

permutation, using the averaged difference between activation and rest images as the test 

statistic, was used for significance testing of differences in voxel intensities in the simulated 

datasets [12,21]. This statistical technique is simple, robust and independent of sample size 

variability [22]. Random draws of 2000 permutations of activated and rest periods were used 

to form a permutation distribution for each voxel from which activated regions are identified 

by testing the null hypothesis of no activation at a fixed threshold of P = 0.001. To obtain 

ROC curves, we vary the threshold α values from 10−4 to 1.0 to obtain a set of activation 

maps and, together with the ground truth activation map, compute the true positive and false 

alarm rates. The area under each ROC curve (AUC) is used to measure how accurately the 

activation regions have been detected.

4. Results

In our experiments, the concurrent correction scheme was evaluated on both simulated EPI 

time series datasets. Both datasets have known ground truths for the applied slice-wise 

motion parameters, enabling quantitative evaluation of MSV registration performance. In 

addition, the non-distorted time series intensity images with applied motion serve as image 

intensity ground truths to evaluate the performance of the field-corrected image 

reconstruction process.

We investigated three performances indices. The first two indices, MSV RMSE (Table 1) 

and image normalized RMSE (Fig. 4), evaluate MSV motion correction and field-corrected 

reconstruction performance respectively. A final performance index, area under the 

activation detection ROC curve (Table 3 and Fig. 5), evaluates activation detection 

accuracy. In Table 1, the MSV RMSE for correction cycle κ for each motion parameter, e.g., 

translation in y, is computed with

(10)

where  and  are the estimated and true translation parameters for slice l. In Table 2, 

using translation in y as an example again, the standard deviation of the error 

 across all slices in the time series is computed with
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(11)

where  is the mean registration error of ty across all slices.

Tables 1 and 2 list the MSV RMSE and error standard deviation values of the estimated 

MSV motion parameters. With median filtering of the estimated MSV parameters, the errors 

decrease as κ increases and empirically converge to relatively small values. This implies that 

registration accuracy has improved with the concurrent correction method compared to a 

single-cycle correction method where a static field-map is used for geometric distortion 

correction prior to MSV (cycle 0). The observed empirical convergence strongly suggests 

that the algorithm is relatively stable as κ increases.

In fMRI, the accuracy of the reconstructed images’ intensity values is of key importance 

since brain activation maps are computed from the change in image intensity values in the 

time-series. To measure image quality, the normalized root mean square error values 

between corrected EPI slices and their corresponding T2-weighted ground truth images were 

computed and averaged over the 120 volumes. Fig. 4 shows that the average normalized 

RMSE of each slice in the 14-slice T2-weighted volume decreases as κ increases. Empirical 

truth images were computed by correcting the simulated EPI time series images with the 

exact same dynamic field-map that was used to distort them. The empirical truth images 

contain errors inherent to the image reconstruction and MSV processes and represent the 

best images that can be obtained using these correction methods if the simulated dynamic 

field-map were known exactly. These empirical ground truth images are not the known 

ground truth intensity images that subsequently corrected datasets are compared to in 

computing the image intensity normalized RMSE values. It is observed that when κ ≥ 2, the 

corresponding normalized RMSE values converge to the normalized RMSE values of the 

empirical truth images which implies that the CFMMSV method yielded updated field-maps 

that are very close to the ground truth dynamic field-maps. Fig. 6 shows reconstructed EPI 

slices from the same position in the head and their corresponding absolute error images 

when compared to corresponding T2-weighted ground truth images as κ increases. The field-

corrected image errors are greatly reduced when κ ≥ 3.

As κ increases, the field-corrected EPI images become more similar to the ground truth T2 

images. However, it is possible to reduce image normalized RMSE without improving 

activation detection because the simulated intensity increase is only 5% and applied to a 

relatively small subset of activated voxels. Thus, we applied the statistical random 

permutation test on datasets A and B at all stages of the CFMMSV correction process and 

computed ROC curves and respective AUC values to verify that activation detection 

performance improves as κ increases. Figs. 5A-B show the ROC curves for both datasets at 

several stages of the CFMMSV correction process and Table 3 shows the corresponding 

AUC values. For both datasets, the AUC values increase significantly between cycle 0, 

which are the results one would obtain if the same static field-map was used to correct all 

the time series data, and cycle 3, which are the final results after applying the CFMMSV 
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method. The improvement in activation detection is even more significant upon considering 

that fMRI statistics are often computed directly from EPI datasets without geometric 

distortion correction, i.e., compare the AUC values between the distorted dataset and cycle 

3. Fig. 7 shows the activation maps obtained (P = 0.001) for two slices from datasets A and 

B at several stages in the CFMMSV correction process. Comparing the activation maps for 

cycle 0 (second row) and cycle 3 datasets (third row), we see that the latter has more true 

positives and fewer false positives. The ground truth activation regions for the two slices are 

shown in Figs. 7E and 7J. Activation maps obtained by applying the random permutation 

test on the ground truth time series images for both datasets are also shown (fourth row) to 

illustrate the best performance obtainable with the statistical analysis method used.

5. Discussion

The proposed CMFMSV framework is a retrospective correction framework that 

incorporates slice-to-volume registration, field-map updating and geometric distortion 

correction for the purpose of improving activation detection performance in fMRI. In this 

work, we performed iterative field-corrected reconstruction to remove geometric distortion 

and employed a field-map updating scheme that applies rigid body MSV motion parameters 

to a high resolution static field-map of the object. Our results on two simulated EPI time 

series datasets show that as the number of correction cycles increases, the field-corrected 

image quality and the accuracy of recovered MSV motion parameters improve and 

empirically converge to the ground truths. This is evident in the decreasing MSV RMSE, 

MSV error standard deviation and image normalized RMSE values as κ increases (Tables 1 

and 2 and Fig. 4). Improved activation detection performance, as inferred from the 

increasing AUC values in Table 3, is also observed as κ increases. These results demonstrate 

that, under the simulated conditions, the CFMMSV method can provide effective correction 

of motion artifacts that are complicated by the field effects induced by rigid head motion. It 

is interesting to note that for dataset A, the AUC value for cycle 0 actually decreased when 

compared to the AUC value for the distorted dataset. The AUC values increased 

subsequently in cycles 1 through 3. This illustrates that in the presence of significant motion, 

using a static field-map to correct an entire time series can lead to degraded activation 

detection performance, even after applying motion correction to the time series data. This is 

because all motion-induced field-map changes were ignored in cycle 0.

Some outlier MSV motion estimates in the time series may result from local minimum 

solutions obtained by the Nelder-Mead implementation of the mutual information-based 

registration algorithm. This occurs infrequently and is likely due to the inherent reduced 

information content of slice-to-volume registration. Using a median filter on the motion 

estimates for the purpose of updating the field map is akin to throwing out wrong estimates 

and “interpolating” a value to replace them, given the prior assumption that head motion is 

correlated in time. Since the goal in fMRI is activation detection accuracy and not 

necessarily perfect motion correction accuracy, it is conceivable that an alternative, and 

perhaps conventional, approach to handle outlier estimates in slice-wise registration, e.g., 

topmost slices of the brain where information content is greatly reduced, is to just exclude 

those slices from statistical analysis for activation detection. That is a common statistical 

data analysis approach when outliers are present (data cleaning). However, this would mean 
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fewer temporal samples available for statistical analysis for each voxel. Temporal filtering 

(median filter in our case) attempts to retain these outlier slices for statistical analysis for 

activation detection. In all likelihood, a better approach to remove such outliers exists, and is 

a subject for future work.

In the first concurrent correction cycle, i.e., κ=0, the estimated translations in y were not 

used to update the field map since ty includes geometric distortion effects in addition to 

spatial motion in y by the object. It might be argued that rotations in z should also be ignored 

since they give rise to in-plane translation components. However, θz does not need to be 

omitted in the field map update process when κ=0 because after the registration is done in 

MSV, rotations are computed (relatively accurately) from the final control points before the 

translations are estimated. If estimates of θz are omitted in the zeroth iteration, the algorithm 

is unnecessarily deprived of a piece of relatively accurate information for improving the next 

field map estimate.

Dataset A was simulated with relatively realistic assumptions of how the susceptibility-

induced field-map changes with translations and in-plane rotation. Thus, the results obtained 

from that dataset are a reasonable indication of the performance of the concurrent correction 

method on well-shimmed real MR data with such motion. For real MR data, the field-map 

may include other contributions like post-shim system-induced field-inhomogeneity that 

remain stationary with respect to the head. Since the focus of the simulation study is on 

susceptibility-induced artifacts, we have assumed that these additional field-map 

contributions are less dominant and can be characterized separately, if necessary. This is a 

reasonable assumption for data collected from a well-shimmed magnet. Dataset B was 

simulated with similar assumptions as dataset A except that local field-map changes that 

may arise due to out-of-plane rotations are not modeled exactly. Thus, the results from 

dataset B are less indicative of the CFMMSV method's performance on real MR data in the 

presence of larger out-of-plane rotation. However, for small out-of-plane motion, the local 

field-map changes may be small enough [6] to justify the assumption that the dynamic field-

map can be approximated with a rigid-body transformation of the static field-map.

For time series datasets that do not have ground truths, an appropriate stopping criterion is 

necessary to terminate the CFMMSV correction process automatically. In Table 1 and Fig. 

4, respectively, the MSV RMSE and image normalized RMSE values remain relatively 

constant for κ ≥ 2 for both datasets A and B which suggests that the procedure could be 

terminated earlier, thus reducing computation time. However, the increasing AUC values in 

Table 3 indicate that activation detection performance continues to improve for κ ≥ 2. Thus, 

there is a computation time versus activation detection performance tradeoff that may 

influence the choice for the stopping criterion. To obtain minimal computation time at the 

expense of activation detection performance, the CFMMSV process can be automatically 

terminated when the time series’ average normalized RMSE difference for the previous two 

cycles are below a threshold value. For maximal activation detection performance, the 

number of non-overlapping activated voxels for the previous two cycles can be used as a 

dissimilarity measure to automatically stop the CFMMSV process.
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The iterative field-corrected reconstruction technique corrects for geometric distortion in 

both the phase encoding and read-out directions if the field map is accurate. Initially, the 

field map is not accurate as it does not track head motion. In the field-map update process in 

cycle 0 (κ=0), we use the prior knowledge that the phase encoding distortion is larger than 

the read-out distortion to avoid using the phase encoding direction MSV motion parameter 

(ty) to update the field-map. Subsequently, as the updated field maps become more aligned 

to the true field map (i.e., more accurate field map is obtained), the iterative field-corrected 

reconstruction algorithm corrects for both phase encoding and read-out geometric distortions 

more accurately.

The CFMMSV framework was formulated to jointly correct for motion and geometric 

distortions arising from susceptibility-induced field-inhomogeneity without the explicit 

acquisition of dynamic field-maps. The framework can be further improved by using field-

map update techniques that account for susceptibility-induced field-map changes with out-

of-plane rotation. For example, a conceivable modification would be to apply MSV motion 

parameters to a high resolution 3D volume of a brain that has been segmented into air, bone 

and soft tissue regions. The susceptibility-induced component of the dynamic field-map can 

then be re-estimated from the transformed 3D structural volume using numerical techniques 

to approximate solutions to the magnetostatic scalar potential based on Maxwell's equations 

[23,24]. This will increase the computational cost but may yield improved performance. 

Future work includes a susceptibility phantom study of the robustness of CFMMSV with 

out-of-plane rotations.

We have focused this study as a validation work using truths available in the simulation 

data. While it is the ultimate goal of the continued investigation, studies dealing with human 

fMRI data would pose additional problems that may complicate the validation process. The 

lack of known truths would be the primary cause of difficulty in the evaluation. Other 

intricacies involving human data analyses would be brief real motion, such as jerking or 

swallowing and the extent of motion that can be corrected. In real subject motion, transient 

motion spikes are often present due to brief motions followed by return to baseline (e.g., 

swallowing). Modeling of such spikes was not included in this study. However, 

characterization and implementation of better matching filtering would be more practical 

with the future studies with human data. The extent of motion that can be corrected by 

CFMMSV can be explored with real MR data using a susceptibility phantom.

6. Conclusions

A proposed technique to perform concurrent susceptibility-induced geometric distortion 

correction with slice-to-volume motion correction for EPI fMRI data has been evaluated on 

two 120-volume simulated time series with different applied motion. Under the simulated 

conditions, the CFMMSV method improved the accuracy in recovering both the MSV 

motion parameters and the field-corrected reconstructed images compared to the simpler 

method of performing motion and geometric distortion correction independently. Activation 

detection performance, quantified using the AUC values at various stages in the CFMMSV 

correction process, also improved with the CFMMSV method. Although the CFMMSV 

method may currently be limited to small out-of-plane rotations, it presents a correction 
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framework that addresses geometric distortion and slice-wise head motion as a joint problem 

and has the potential to perform better than methods that ignore the relationship between 

these two problems.
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Fig. 1. 
Median filtered MSV motion parameter ty recovered at various correction cycles for dataset 

A. Field-inhomogeneity induced geometric distortion in the phase encoding direction y 

cause significant MSV errors for the distorted EPI data as well as the corrected data in cycle 

0 (κ=0). Correction cycles 1 to 3 yield estimates of ty that are close to the ground truth as 

shown in Tables 1 and 2. The above plot shows 130 simulated volumes instead of the 120 

volumes used for subsequent activation analyses.
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Fig. 2. 
Simulated field-map slices from a single volume with significant field-inhomogeneity near 

frontal lobe and inferior temporal lobe regions. Field-map values range from −64 Hz to 

+320 Hz to simulate a maximum field-inhomogeneity of 5 ppm at 1.5 T.
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Fig. 3. 
(A) T2 ICBM slice before simulated geometric distortion. (B) T2 ICBM slice after simulated 

geometric distortion with a peak field-inhomogeneity of 5 ppm at 1.5 T.
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Fig. 4. 
Normalized RMSE values for each EPI slice in the same position in the head averaged over 

120 volumes for various correction cycles for (A) dataset A with applied tx, ty, tz and θz 

motion, and (B) dataset B with applied θx, θy, θz motion.
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Fig. 5. 
ROC curves showing activation detection performance for (A) dataset A and (B) dataset B 

at several stages in the CFMMSV correction process.
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Fig. 6. 
(A-E, K-O) Intensity and (F-J, P-T) absolute difference images with respect to ground truth 

images for two sample slices from dataset A at various stages in the CFMMSV correction 

process. (Top row) Geometrically distorted dataset, (second row) cycle 0, (third row) cycle 

1, (fourth row) cycle 2, (fifth row) cycle 3. All images are displayed on the same normalized 

intensity scale ranging from 0 to 1.
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Fig. 7. 
Activation detection maps (P=0.001) overlaid on anatomical data of two sample slices from 

(A-D, F-I) dataset A and (K-R) dataset B at several stages in the CFMMSV correction 

process. Each row of activation maps corresponds to a specific correction stage consisting of 

(top row) geometrically distorted, (second row) cycle 0, (third row) cycle 3 and (fourth row) 

ground truth time series images. The simulated activation maps applied to the two slices are 

shown in (E) and (J).
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Table 3

Area under ROC curve (AUC) values for activation detection of datasets A and B at various stages in 

CFMMSV correction.

Correction cycle Area under ROC Curve (AUC)

Dataset A Dataset B

Distorted 0.8880 0.9043

Cycle 0 (κ=0) 0.8664 0.9295

Cycle 1 (κ=1) 0.8990 0.9382

Cycle 2 (κ=2) 0.9053 0.9519

Cycle 3 (κ=3) 0.9208 0.9521

Ground truth T2 0.9209 0.9659
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