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Abstract

Background—Children exposed to gestational diabetes mellitus (GDM) during pregnancy are at 

increased risk of obesity, diabetes, and hypertension. Our goal was to identify metabolic and 

hematopoietic alterations after intrauterine exposure to maternal hyperglycemia that may 

contribute to the pathogenesis of chronic morbidities.

Methods—Streptozotocin treatment induced maternal hyperglycemia during the last third of 

gestation in rat dams. Offspring of control mothers (OCM) and diabetic mothers (ODM) were 

evaluated for weight, glucose tolerance, insulin tolerance, and hematopoiesis defects. The effects 
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of aging were examined in normal and high fat diet (HFD)-fed young (8-week-old) and aged (11-

month-old) OCM and ODM rats.

Results—Young adult ODM males on a normal diet, but not females, displayed improved 

glucose tolerance due to increased insulin levels. Aged ODM males and females gained more 

weight than OCM on a HFD and had worse glucose tolerance. Aged ODM males fed a HFD were 

also neutrophilic. Increases in bone marrow cellularity and myeloid progenitors preceded 

neutrophilia in ODM males fed a HFD.

Conclusion—When combined with other risk factors like HFD and aging, changes in glucose 

metabolism and hematopoiesis may contribute to the increased risk of obesity, type 2 diabetes, and 

hypertension observed in children of GDM mothers.

INTRODUCTION

Gestational diabetes mellitus (GDM) most often occurs during the third trimester of 

pregnancy when maternal insulin resistance increases and insulin secretion is inadequate, 

leading to hyperglycemia (1). Between 5–10% of pregnancies in the United States are 

affected by GDM (2), which doubled from 1994 to 2000 (1,3). GDM is linked to many 

health complications in both the mother and fetus, including preeclampsia, fetal 

macrosomia, and fetal death (4). In addition to these acute complications, GDM exposure in 

utero increases the child’s risk of disease later in life. Children of mothers with GDM are 

more susceptible to obesity, type 2 diabetes, hypertension, and the metabolic syndrome (5–

8). However, the cellular and molecular mechanisms that underlie the link between prenatal 

exposure to diabetes and disease later in life are not well understood.

Since glucose freely crosses the placenta to the fetal circulation, manipulation of maternal 

glycemia is a strategy commonly used to model diabetes in pregnancy in animals. The 

majority of previous studies focused on pre-gestational diabetic models. These studies 

demonstrate that intrauterine exposure to hyperglycemia leads to altered glucose tolerance 

(9,10), bone development (11,12), renal function (11,13), and vascular function (9,14). 

However, few studies have been conducted that replicate the pathologic effects of GDM 

with onset of hyperglycemia during late pregnancy (15–19).

There are a variety of environmental factors such as diet, exercise, and aging that may 

influence the development of obesity, type 2 diabetes, and hypertension. In addition to 

intrauterine exposure to GDM, consumption of a high fat diet (HFD) is a risk factor for these 

chronic morbidities. Moreover, these diseases are common in older populations, leading to 

the supposition that aging also promotes disease pathogenesis (20,21). Furthermore, many 

inflammatory cell types, including macrophages and neutrophils, contribute to obesity-

linked systemic inflammation (22–24). We hypothesize that the combination of prenatal 

exposure to hyperglycemia, postnatal consumption of a HFD, and aging synergistically 

increase risk of obesity and diabetes, partly due to the contributions of changes in beta cell 

function and in hematopoiesis. To test this hypothesis, we used an established rat model of 

GDM in which hyperglycemia occurs during the last third of gestation. Previous studies 

using this model demonstrated sex differences in metabolic and vascular phenotypes (16–

18). Therefore, we prospectively examined males and females for all phenotypes tested. 
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Young and aged offspring from these pregnancies were challenged with a HFD. In addition 

to evaluating for effects on weight gain and glucose tolerance, studies were conducted to 

examine whether alterations in circulating inflammatory cell levels and hematopoiesis 

existed.

RESULTS

STZ induces necrotic death of rat pancreatic beta cells resulting in insulin deficiency and 

subsequent hyperglycemia (25). To induce hyperglycemia in late gestation to model human 

GDM, pregnant rat dams were injected with either citrate buffer (control mothers) or 

streptozotocin (GDM mothers, 45 mg/kg STZ) on day 12 of gestation, similar to previous 

studies (16–19). Injection of STZ induced a rapid increase in maternal blood glucose levels 

by gestational day 15 (Figure 1a). To confirm a loss of functional beta cells in GDM dams, 

pancreata were evaluated for insulin expressing beta cells. As expected, STZ-treated dams 

had reduced beta cell area (Figure 1b, control dams and Figure 1c, GDM dams). To assess 

for potential direct effects of STZ on fetal beta cells, quantitation of pancreatic beta cell area 

was performed. In contrast to data in the mothers, no differences were observed in beta cell 

mass between OCM and ODM neonates (Figures 1d,e). Quantitative analysis of the insulin-

positive beta cell areas revealed similar beta cell islet areas for OCM and ODM (3.4 +/− 

2.0% for OCM and 3.0 +/− 2.1% for ODM; p=0.82). Dam weight gain was lower in GDM 

mothers compared to controls (Table 1). There were no differences in litter size, but an 

increase in maternal deaths during labor was observed in the GDM mothers (p=0.009, Table 

1). On postnatal day 1, pups from citrate- and STZ-injected dams were cross-fostered to 

mothers who had not been subjected to STZ or citrate injection during pregnancy. The 

offspring of control mothers (OCM) and offspring of diabetic mothers (ODM) were 

evaluated for weight gain, glucose tolerance, insulin tolerance, and hematopoiesis.

Maternal hyperglycemia causes hypoglycemia in male ODM

Exposure to maternal hyperglycemia did not alter the birth weights of surviving males 

(OCM 7.1 +/− 0.7g, n=63; ODM 6.9 +/− 0.9g, n=54) or females (OCM 6.7 +/− 0.7g, n=64; 

ODM 6.6 +/− 0.8g, n=54). To evaluate for neonatal hypoglycemia and hyperinsulinemia, 

blood glucose and plasma insulin levels were measured in OCM and ODM on postnatal day 

1 in random-fed neonates. Male ODM had significantly decreased blood glucose levels 

compared to male OCM (75 +/− 10 mg/dl, n=9 vs. 87 +/− 15 mg/dl, n=8; p=0.016). Plasma 

insulin levels in males did not reach statistical significance, but trended higher in male ODM 

(male OCM 0.6 +/− 0.2 ng/ml, n=8; ODM 0.9 +/− 0.4 ng/ml, n=10; p=0.09). Blood glucose 

levels were also lower in female ODM compared to OCM (69 +/− 9 mg/dl, n=12 vs. 75 +/− 

6 mg/dl, n=9; p=0.049). Insulin levels in female ODM were not statistically different from 

female OCM (0.8 +/− 0.7 ng/ml, n=9 vs. 0.5 +/− 0.3 ng/ml, n=9; p=0.33).

Young male ODM, but not female ODM, have increased glucose tolerance

In humans, children of mothers with GDM have an increased risk of obesity, insulin 

resistance, and the metabolic syndrome at young ages (5–8). To determine if hyperglycemia 

during late gestation in rats led to any of these metabolic changes, weekly weight checks and 

monthly glucose tolerance tests were conducted in young (3–13 week old) OCM and ODM. 
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No differences in weight were detected in OCM and ODM rats during this time. 

Interestingly, a small but significant increase in glucose tolerance was seen in young male 

ODM compared to male OCM (Figure 2a and 2c). In contrast, there were no differences in 

glucose tolerance between OCM and ODM females (Figure 2b and 2c). Similar results for 

glucose tolerance were observed at 4 and 13 weeks of age (data not shown).

Enhanced glucose tolerance can be attributed to either increased insulin secretion or 

improved insulin sensitivity of peripheral tissues. To examine for evidence of increased 

insulin secretion, insulin levels were measured following glucose injection during a glucose 

tolerance test. These studies showed that ODM males have increased plasma insulin levels 

in response to glucose injection compared to OCM males (Figure 2d). Consistent with the 

findings for glucose tolerance, insulin levels in female OCM and ODM were similar (Figure 

2e). To evaluate males for changes in insulin sensitivity, insulin tolerance tests were 

performed. OCM and ODM males had similar insulin sensitivity (Figure 2f). Collectively, 

these data suggest that the improved glucose tolerance observed in the young male ODM is 

likely due to an aberrant increase in insulin secretion following glucose administration.

Consumption of a high fat diet diminishes differences in glucose tolerance in young male 
ODM

Unexpectedly, young male ODM displayed increased glucose tolerance (Figure 2a). These 

rats were fed a normal diet with low fat content (14% kcal from fat). Since increased caloric 

intake is linked to weight gain, obesity, and risk of type 2 diabetes, we hypothesized that the 

dietary stress of a HFD would lead to increased weight and impaired glucose tolerance, 

especially in the ODM rats. To test this hypothesis, a cohort of OCM and ODM were 

weaned from their mothers to either the normal diet or a HFD (60% kcal from fat). Rats 

were weighed weekly to track weight changes (Figure 3a and 3b). Consumption of a HFD 

over the 23-week feeding period resulted in a significant weight gain in males (519 +/− 34 

vs. 441 +/− 31 g, p<0.0001) and females (258 +/− 32 g vs. 231 +/− 19 g, p=0.004), revealing 

significant effects of HFD on weight gain (p<0.0001 by two-way ANOVA). However, no 

differences were detected between OCM and ODM.

Glucose tolerance tests were performed on 8-week old rats to determine if ODM rats on a 

HFD had impaired glucose tolerance. Similar to data illustrated in Figure 2a, the ODM 

males fed a normal diet showed slightly improved glucose tolerance compared to OCM 

controls (Figure 3c). Interestingly, consumption of a HFD led to reduced glucose tolerance 

in both OCM and ODM males, eliminating the improvement in glucose tolerance observed 

in the ODM males on a normal diet (Figure 3c). In contrast, HFD did not impact glucose 

tolerance in young females (Figures 3d). Thus, HFD consumption eliminated improvements 

in glucose tolerance of young ODM males. However, HFD induced similar glucose 

intolerance in young OCM and ODM males.

Aged ODM have increased susceptibility to metabolic derangements of HFD

We hypothesized that postnatal exposure to the combination of environmental stresses seen 

clinically (i.e. aging and HFD) would lead to profound impairments in the glucose tolerance 

of offspring exposed to intrauterine hyperglycemia. To test this hypothesis, 9-month-old 
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OCM and ODM were fed either a normal diet or a HFD for 2 months. This approach was 

chosen so that adult rats were fed a HFD for a similar length of time as studies in younger 

rats and to avoid potential developmental consequences of HFD consumption from the time 

of weaning. Consumption of a HFD for 2 months by older males led to increased weight 

gain in both OCM and ODM males (Table 2). However, the male ODM HFD group gained 

significantly more weight compared to the OCM fed a HFD. For female rats, only the ODM 

on a HFD for 2 months exhibited significant weight gain (Table 2). Thus, in both males and 

females, the combination of intrauterine exposure to hyperglycemia, HFD consumption, and 

aging induced the greatest weight gains.

We next examined the effect of the postnatal stress on glucose tolerance of aged OCM and 

ODM rats. Even on a normal diet, 11-month-old ODM males exhibited impaired glucose 

tolerance when compared with OCM males (Figure 4a,c). While HFD consumption 

impaired glucose tolerance in both OCM and ODM males, ODM HFD-fed males displayed 

the worst glucose tolerance. For the females, impaired glucose tolerance was only detected 

in the 11-month-old aged ODM HFD-fed group (Figure 4b,d). Thus, in both males and 

females, the experimental group with the worst glucose tolerance was the 11-month-old, 

HFD-fed ODM. Insulin measurements from male and female rats showed elevated insulin in 

ODM HFD-fed males and females (Figure 4e,f). These data indicate that prenatal and 

postnatal factors contribute to the development of insulin resistance and glucose intolerance.

HFD-fed ODM males exhibit neutrophilia and increased bone marrow myeloid progenitors

To determine if there were differences in circulating leukocytes in OCM and ODM rats fed a 

HFD, complete blood cell counts were performed. No differences in circulating leukocytes 

were detected in 6-month-old rats (Figure 5a). However, an increase in circulating 

neutrophils was observed in 11-month-old ODM males fed a HFD (Figure 5b). No 

difference in neutrophils was observed in females at any age evaluated (data for 11-month-

old females are shown in Figure 5c). Neutrophils are short-lived leukocytes that are 

replenished continually by myeloid progenitor cells that reside in the bone marrow (26). To 

determine if ODM males fed a HFD have altered myeloid progenitor cells in the bone 

marrow, the cells from the femurs of OCM and ODM males were collected and quantified 

using standard clonogenic progenitor assays. At 6 months of age, myeloid progenitors and 

total bone marrow cells were significantly increased in the ODM males fed a HFD (Figure 

5d and 5g). In 11-month-old males, consumption of a HFD increased myeloid progenitor 

cells and bone marrow cellularity for both OCM and ODM groups compared to rats fed a 

normal diet (Figure 5e and 5h). However, the most dramatic increases in myeloid 

progenitors and total bone marrow cells were detected in the aged ODM males fed a HFD 

(Figure 5e and 5h). In females, alterations in myeloid progenitors and total bone marrow 

cells were only observed in 11-month-old ODM females fed a HFD (Figure 5f and 5i).

Previous reports demonstrate that fat-derived hormones like adiponectin and leptin regulate 

the growth of hematopoietic progenitors and stem cells (27–31). We assessed adiponectin 

and leptin levels in the serum of 11-month-old rats. Adiponectin levels were not 

significantly different between OCM and ODM for males or females (Table 3). More 

striking were the changes in leptin concentrations. Eleven-month-old, HFD-fed ODM males 
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had significantly increased leptin levels, consistent with the increased body weights of these 

rats (Table 3). In addition, 11-month-old, HFD-fed ODM females had a modest increase in 

leptin concentrations compared to controls (Table 3). Collectively, these data link 

intrauterine hyperglycemia, aging, and HFD consumption to increases in leptin 

concentrations and altered hematopoiesis.

DISCUSSION

Our data indicate that young males exposed to hyperglycemia during the last trimester of 

gestation have altered insulin secretion in response to glycemic challenge. Neonatal male 

ODM were hypoglycemic and trended toward hyperinsulinemia, in a manner similar to 

human neonates exposed to GDM (4). Glucose tolerance tests in young ODM males 

displayed a counter-intuitive increase in glucose tolerance, similar to a prior report in 

rodents (18). However in contrast to the previous study, we show that the early 

improvements in glucose tolerance were associated with an inappropriate increase in insulin 

secretion compared to controls. This apparent discrepancy in findings is likely due to the 

timing of insulin measurement after glucose challenge. Our data demonstrate increased 

insulin secretion at very early timepoints (5 minutes) while no differences in insulin levels 

were observed at later times (30 minutes) (18). Moreover, our findings are consistent with 

emerging clinical data that suggest that young children of mothers with GDM exhibit 

improved glucose tolerance due to increased insulin secretion (32,33). Additional subtle 

differences that exist between our data and others (18) may be due to variability in maternal 

hyperglycemia as tight glycemic control is challenging in the rat GDM model. Furthermore, 

a number of hyperglycemic dams in our study died during labor, which could have masked 

potential birth weight alterations detected previously. Another important point is the distinct 

processes for selection of offspring for cross-fostering, which included only the largest pups 

in the prior report and was random in our study. In general, however, the findings between 

studies are comparable. Together these observations, in humans and rodents, support early 

beta cell dysfunction in offspring of diabetic mothers. While in utero, a hyperreponsive fetal 

beta cell would be beneficial to combat a hyperglycemic environment. However, continued 

insulin hypersecretion by the beta cell would be predicted to have detrimental effects, 

promoting increased adiposity and insulin resistance (34–36). In addition, prolonged 

hypersecretion of insulin may contribute to endoplasmic reticulum stress, resulting in beta 

cell exhaustion and/or apoptosis (37,38).

To test whether external postnatal stresses potentiate the risk for ODM to develop insulin 

resistance, rats were fed a HFD and allowed to age. While HFD reduced glucose tolerance 

slightly in young (2-month-old) OCM and ODM males, a synergistic effect of being a male 

ODM, aging, and consumption of a HFD yielded the highest plasma insulin levels and the 

most severe impairments in glucose tolerance. Increased insulin levels in the context of 

impaired glucose tolerance infer that the HFD-fed, aged ODM males were insulin resistant. 

While increased adiposity from consumption of a HFD is a well-appreciated contributor to 

insulin resistance (23), quantitative measurements of adiposity were not conducted in the 

current study so direct correlations with detected metabolic perturbations are not possible 

and would be interesting to pursue in future studies.
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Presumably, early beta cell dysfunction together with increased insulin resistance in male 

ODM enhances the lifetime risk to develop type 2 diabetes. Given these observations, it is 

interesting to speculate that the mechanism responsible for the early, sustained alterations in 

insulin secretion may be due to aberrant epigenetic regulation of key molecules involved in 

beta cell function and/or development. Previous studies in an intrauterine growth restriction 

(IUGR) rat model demonstrated that IUGR offspring had impaired epigenetic regulation of a 

key transcription factor, pancreatic and duodenal homeobox 1 (Pdx1), that regulates 

pancreatic development and maintains beta cell function (39). Furthermore, alterations in the 

regulation of Pdx1 expression were linked to a decreased insulin secretory response to 

glucose and the development of type 2 diabetes. Whether a similar mechanism occurs in 

ODM is unknown, however our data suggesting early beta cell dysfunction in rat ODM prior 

to insulin resistance support the future interrogation of this question.

A limitation of our studies involves the possibility that STZ may cross the placenta and 

directly affect the fetal pancreas. Although this rat model of GDM has been used in several 

previous studies (16–19), direct assessment of this point has not been reported. STZ, a 

glucose analog, is imported by beta cells via the GLUT2 transporter (40) followed by 

induction of beta cell necrosis (25). Experimental rationale for use of STZ to model late 

gestational hyperglycemia without directly affecting the fetus includes the short half life of 

STZ (40) and reduced fetal levels of GLUT2 compared to adults (41,42). While a possibility 

exists that STZ crosses the placenta, we detected no evidence of beta cell loss or reduced 

insulin production in neonatal ODM pups.

Significant alterations in hematopoiesis were detected in ODM males on a HFD as early as 6 

months of age (i.e. increased bone marrow cellularity and myeloid progenitors). These 

abnormalities intensified with age and preceded the development of neutrophilia in HFD-

fed, aged ODM males. A similar, albeit delayed, pathological progression was observed in 

females. Neutrophilia is extremely relevant in the context of obesity-associated 

inflammation. Several studies establish an important role for neutrophils in the initiation and 

propagation of obesity-associated inflammation (22,43,44). Neutrophils are mobilized from 

the bone marrow to initiate an inflammatory response in an acute setting or for a sustained 

inflammatory response in chronic diseases (45). This is achieved by neutrophils secreting 

cytokines, proteases, and chemokines that recruit other immune cells, especially 

macrophages. Adipose-associated macrophages are well appreciated as contributors to 

obesity-related inflammation (24,46). The expansion of bone marrow myeloid progenitors 

and cellularity may have been facilitated by high leptin concentrations. Leptin is known to 

regulate hematopoiesis, and leptin receptor positive cells are important components of the 

bone marrow microenvironment (29–31). Future studies that examine the interplay between 

alterations in adipokines, metabolism, and inflammation will promote our current 

understanding of the predisposition of ODM to develop components of the metabolic 

syndrome.

Interestingly, ODM rat females were relatively protected from the changes in glucose 

tolerance, insulin secretion, and hematopoiesis observed in the ODM males. Our data are 

consistent with previous studies in Sprague-Dawley rats that showed that females are 

resistant to diet-induced obesity (47). Some modest changes in weight and glucose tolerance 
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were documented in the ODM females, especially with aging and HFD. While increased 

bone marrow cellularity and myeloid progenitors were observed in aged, HFD-fed females, 

neutrophilia was not detected up to 11 months of age. We speculate that further aging, 

additional stressors, or other genetic backgrounds may be required for significant 

perturbations in metabolism and hematopoiesis to occur in female ODM.

In sum, these studies demonstrate metabolic and hematopoietic alterations in offspring 

exposed to late gestation hyperglycemia combined with aging and postnatal HFD 

consumption. Future studies to elucidate the molecular mechanisms involved in the 

evolution of these pathologic phenotypes are warranted. Given limited animal data on the 

effects of GDM on offspring, our data enhance current knowledge and provide the 

foundation for those future studies.

METHODS

In vivo GDM model

All animal studies followed the guidelines for care of animals at Indiana University and 

were approved by Indiana University Institutional Animal Care and Use Committee. A 

schematic of the GDM model and postnatal exposures is shown in Figure 6. Timed pregnant 

Sprague-Dawley rats were obtained at gestational day 9 (Harlan, Indianapolis, IN). On day 

12 of gestation, while under isoflurane anesthesia, animals were injected in the tail vein with 

either citrate buffer (control mothers) or 45 mg/kg streptozotocin (GDM mothers) (Sigma, 

St. Louis, MO). Glucose levels were checked every morning from gestational day 15 until 

parturition using an Accu-Check Aviva glucose monitor (Roche, Indianapolis, IN). An 

average morning blood glucose level of 8.9 mM (160 mg/dl) was set as the minimum for 

inclusion in the study. Ten percent of STZ-injected dams (3/30) had glucose values that 

ranged from 4.5–8 mM (81–148 mg/dl) and were excluded from the study since they were 

not sufficiently hyperglycemic (1). Ninety percent of STZ-injected dams (27/30) had mean 

glucose levels greater than 11 mM (200 mg/dl). Sixty percent of dams (18/30) received at 

least one injection of insulin glargine (1U, Lantus, Sanofi-Aventis, Bridgewater, NJ) or 

Humulin (1U, Eli Lilly, Indianapolis, IN) subcutaneously when glucose levels were above 

28 mM (500 mg/dl). Pups were born spontaneously, and cross-fostered to non-injected 

mothers in litters of 10 pups (5 male and 5 female) at postnatal day 1. At 3 weeks of age, 

animals were weaned and fed either a normal diet (14% kcal from fat, Teklad 7001, Harlan 

Laboratories, Madison, WI) or a HFD (60% kcal from fat, TD.06414, Teklad, Harlan 

Laboratories, Madison, WI) ad libitum. Animals were weighed weekly and were group 

housed until they reached weights of 500g. One cohort of animals was euthanized at 6 

months of age, at which time complete blood cell counts were performed, and plasma and 

bone marrow were collected (Figure 6). A separate cohort of rat offspring were allowed to 

consume normal diet until the age of 9 months, when they were started on the HFD for 2 

months (Figure 6). Aged animals were euthanized at 11 months of age at which time 

complete blood cell counts were performed, and plasma and bone marrow were collected.
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Quantitation of pancreatic beta cell area

Pancreata were isolated from control and STZ-treated dams after delivery of pups, and from 

neonatal male and female rats on postnatal day 1. Specimens were fixed in formalin 

overnight, embedded in paraffin and sectioned by the Histology Core of the Department of 

Anatomy and Cell Biology at the Indiana University School of Medicine. Staining for 

insulin was performed (sc-9168, 1:500, Santa Cruz Biotechnology, Dallas, TX), with 

detection using Impress anti-rabbit HRP and Novared substrate (Vector Laboratories, 

Burlingame, CA). A Zeiss Axio Observer Z1 inverted microscope (Zeiss, Thornwood, NY) 

equipped with an Orca ER CCD camera (Hamamatsu Photonics, Hamamatsu City, Japan) 

was used to acquire digital images of the entire stained longitudinal pancreatic section. The 

beta cell area of at least 5 sections, each separated by at least 75 μm, from at least 3 animals 

in each group was calculated using Axio-Vision Software (Zeiss, Thornwood, NY) as 

previously described (48).

Glucose tolerance test

After a 16-hour fast, animals were injected with glucose (2g/kg ip) at the ages of 4, 8, and 13 

weeks. Glucose levels were monitored from the tail vein using an Accu-Check Aviva 

glucose monitor (Roche, Indianapolis, IN). Plasma samples were obtained for insulin 

measurements in a separate cohort of animals at earlier time points. Plasma was isolated and 

stored at -80°C until used for radioimmunoassays. Since 11-month-old rats on a HFD had a 

qualitative increase in abdominal adiposity, intravenous GTT were conducted under 

anesthesia to enhance reliability of glucose administration and decrease procedural stress for 

these animals. In the 11-month-old animals, the rats were fasted and anesthetized with 

isoflurane before tail vein injection of glucose (0.5g/kg). Glucose levels were monitored 

from the tail vein using an Accu-Check Aviva glucose monitor.

Insulin tolerance test

After a 2-hour fast, 8-week-old animals were injected with insulin (0.75 U/kg ip, Humulin, 

Eli Lilly & Co., Indianapolis, IN) and tail vein blood glucose levels were measured using an 

Accu-Check Aviva glucose monitor (Roche, Indianapolis, IN).

Plasma insulin and adipokine measurements

Trunk blood was collected from neonatal rats for glucose and insulin measurements. Frozen 

plasma samples were thawed and assayed for insulin (from GTT in 8-week-old and from 

random-fed 11-month-old rats measured using a radioimmunoassay (RIA) kit), leptin (from 

random-fed 11-month-old rats using a RIA kit) and for adiponectin (from random-fed 11-

month-old rats using an ELISA kit). All assay kits were obtained from EMD Millipore, 

Billerica, CA. Assays were performed in duplicate, and standard curves were performed 

with each assay. The limit of detection (LOD) for the insulin RIA was 0.01 ng/ml for a 100 

μl sample. Several baseline (time 0) values for insulin levels in the GTT were below the 

LOD. In order to complete repeated measures ANOVA, values of LOD/2 were used to 

replace the missing values for repeated measures ANOVA.
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Complete blood cell count

Blood was sampled from 6-month and 11-month-old OCM and ODM in EDTA-coated tubes 

(Sarstedt, Newton, NC), and leukocytes quantitated using a Hemavet (Drew Scientific, 

Waterbury, CT).

Bone marrow progenitor colony assays

To obtain bone marrow, femurs from 6- and 11-month-old rats were flushed with Iscove’s 

Modified Dulbecco’s Medium (IMDM; Life Technologies, Grand Island, NY) containing 

20% fetal bovine serum (FBS; Atlanta Biologicals, Flowery Branch, GA). Cells were 

washed and counted using a Coulter counter (Beckman Coulter, Inc., Brea, CA) to 

determine total femur cellularity. Cells (50,000 per 35-mm dish) were plated in triplicate in 

40% methylcellulose media (M3134, Stem Cell Technologies, Vancouver, Canada), 45% 

FBS, 0.69 nM granulocyte macrophage colony-stimulating factor (10 ng/ml mouse GM-

CSF, Peprotech, Rocky Hill, NJ) and 2.7 nM stem cell factor (50 ng/ml SCF; Peprotech), 2 

U/ml erythropoietin (Epogen, Amgen, Thousand Oaks, CA), 78 μM beta-mercaptoethanol 

(Fisher Scientific, Pittsburgh, PA), and penicillin-streptomycin (Mediatech, Manassas, VA). 

After 7 days of incubation at 37°C, total colonies were counted to determine the frequency 

of progenitors. Total progenitors per femur were calculated as the product of the progenitor 

frequency and the total cells per femur as previously described (49).

Data analysis

sStatistical analyses and graphs were created using GraphPad Prism 6 software (GraphPad 

Software, San Diego, CA). Data reported in the text are mean +/- standard deviation. 

Statistical analyses were performed within a specific sex group as indicated in the Figure 

Legends and Tables, not between males and females. Statistical significance was determined 

by unpaired t test, or by one-way, two-way, or repeated measures ANOVA with Tukey’s or 

Sidak’s multiple comparison tests as specified in the figure legends and tables. A chi 

squared test was used to analyze frequency of maternal deaths during labor.
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Figure 1. 
STZ induced elevated glucose levels during the last third of gestation, due to beta cell death. 

(a) After either injection of citrate (control, circles) or streptozotocin (GDM, squares) at 

gestational day 12, morning blood glucose levels were tracked in the timed pregnant 

mothers. Graph shows mean and SEM glucose levels. (b-e) Immunohistochemical 

measurement of pancreatic beta cells by insulin staining reveals loss of beta cells in dams, 

but not for neonatal pups. Representative images are shown for (b) control dams, (c) GDM 

dams, (d) OCM neonates, and (e) ODM neonates. Line denotes scale for 200 μm.
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Figure 2. 
Eight-week-old male ODM have improved glucose tolerance due to increased insulin 

response to hyperglycemia. For all graphs, OCM is shown in white, and ODM is in black. 

(a,b) A GTT was administered to fasted 8-week old (a) male and (b) female rats. *p<0.05 

by repeated measures ANOVA followed by Sidak’s multiple comparisons. (c) Area under 

the curve (AUC) measurements for GTT are shown. Significant effects of ODM were 

observed by two-way ANOVA. *p<0.05 by Tukey’s multiple comparisons. OCM: open 

bars; ODM: closed bars. For panels (a,b,c) n=8 males and n=7 females. (d, e) Insulin levels 

were quantified in a separate cohort of OCM and ODM within 5 minutes after glucose 

injection. Graphs show plasma insulin levels before and after glucose injection for (d) males 

(OCM n=8, ODM n=8) and (e) females (OCM n=7, ODM n=9). *p<0.05 by repeated 

measures ANOVA followed by Sidak’s multiple comparisons. (f) ITTs were performed on 

8-week old male OCM and ODM. Graph shows glucose levels at various times after 

injection of insulin (n=4 OCM and ODM). No significant differences in insulin tolerance 

were detected using repeated measures ANOVA. Graphs show mean and SEM values.
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Figure 3. HFD induces weight gain in OCM and ODM males and diminishes differences in 
glucose tolerance in young males
After weaning, young males were fed either a normal diet or a HFD. For (a-d), OCM is 

shown in white symbols, ODM shown in black symbols, normal diet shown in squares, and 

HFD shown in triangles. (a,b) Weights are shown for OCM and ODM (a) males and (b) 

females. Both OCM and ODM males and females fed a HFD show increased body weight 

compared to those fed a normal diet starting at age 10 weeks for males and 11 weeks for 

females (p<0.05 by repeated measures two-way ANOVA followed by Tukey’s multiple 

comparisons). However, there was no significant difference in weight at these ages between 

OCM and ODM on either diet for either males or females. For males, OCM normal n=9, 

ODM normal n=9, OCM HFD n=8, ODM HFD n=8. For females, OCM normal n=9, ODM 

normal n=9, OCM HFD n=9, ODM HFD n=10. (c,d) GTT results for fasted 8-week old 

OCM and ODM (c) males and (d) females. Males fed a HFD show impaired glucose 

tolerance (*p<0.05 for HFD effect by repeated measures two-way ANOVA with Tukey’s 
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multiple comparisons). Females showed no effect of HFD on glucose tolerance. There was 

no significant difference in glucose tolerance between 8-week-old OCM and ODM on a 

HFD. For males, OCM normal n=5, ODM normal n=5, OCM HFD n=5, ODM HFD n=4. 

For females, n=5 for all groups. Graphs show mean and SEM values.
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Figure 4. HFD increases weight gain in ODM males and females and impairs glucose tolerance
Nine-month-old OCM and ODM males and females were fed either normal diet or HFD for 

2 months until the age of 11 months. OCM: open bars; ODM: closed bars. (a,b) GTT results 

from (a) male and (b) female 11-month-old OCM and ODM rats. OCM are shown in white 

symbols, ODM shown in black symbols, normal diet shown in squares, and HFD in 

triangles. †p<0.05 for significant effect of ODM and *p<0.05 for significant effect of HFD 

by repeated measures ANOVA with Tukey’s multiple comparisons. (c,d) Area under the 

curve (AUC) measurements also showed significant effects of both ODM and HFD for the 

males and ODM and the interaction between ODM and HFD for the females. For (a,c) 
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males, OCM normal n=4, ODM normal n=5, OCM HFD n=6, ODM HFD n=5. For (b,d) 

females, OCM normal n=6, ODM normal n=5, OCM HFD n=5, ODM HFD n=6. (e,f) 
Random-fed insulin measurements are shown for 11-month-old (e) males and (f) females. 

*p<0.05 by two-way ANOVA with Tukey’s multiple comparisons. For (e) males, OCM 

normal n=3, ODM normal n=5, OCM HFD n=5, ODM HFD n=5. For (f) females, OCM 

normal n=5, ODM normal n=5, OCM HFD n=6, ODM HFD n=6. Graphs show mean and 

SEM values.
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Figure 5. Male ODM fed a HFD have neutrophilia and increased bone marrow progenitor cells
Neutrophil counts, bone marrow myeloid progenitors and total bone marrow cellularity 

measurements were performed on the same animals at each age. OCM: open bars; ODM: 

closed bars. (a-c) Neutrophils (K/_l) were quantified by complete blood cell count (a) in 

males at 6 months, (b) in males at 11 months, and (c) in females at 11 months of age. 

Eleven-month-old ODM males fed a HFD exhibited neutrophilia (b), while all other 

experimental groups had normal neutrophil levels. For (a) males at 6 months, n=8 for all 

groups. For (b) males at 11 months, OCM normal n=3, ODM normal n=5, OCM HFD n=5, 

ODM HFD n=5. For (c) females at 11 months, OCM normal n=5, ODM normal n=5, OCM 

HFD n=6, ODM HFD n=6. (d-f) Myeloid progenitors were quantified per femur in (d) 6-

month-old males, (e) 11-month-old males, and (f) 11-month-old females. All HFD-fed 

ODM males, and 11-month-old HFD-fed ODM females had increased myeloid progenitors. 

For (d) males at 6 months, OCM normal n=8, ODM normal n=8, OCM HFD n=7, ODM 

HFD n=7. For (e) males at 11 months, n=5 for all four groups. For (f) females at 11 months, 

OCM normal n=5, ODM normal n=5, OCM HFD n=5, ODM HFD n=4. (g–i) Total bone 

marrow cellularity was measured in (g) 6-month-old males, (h) 11-month-old males, and (i) 
11-month-old females. Bone marrow cellularity was increased in HFD-fed ODM males and 

females. *p<0.05 by two-way ANOVA with Tukey’s multiple comparisons. For (g) males at 

6 months, OCM normal n=8, ODM normal n=8, OCM HFD n=6, ODM HFD n=6. For (h) 

males and (i) females at 11 months, n=5 for each group. Graphs show mean and SEM 

values.
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Figure 6. 
Schematic of the rat GDM model and experimental procedures.
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