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SUMMARY

Plant stem cells in the shoot apical meristem (SAM) and root apical meristem (RAM) provide for 

postembryonic development of above-ground tissues and roots, respectively, while secondary 

vascular stem cells sustain vascular development1–4. WUSCHEL (WUS), a homeodomain 

transcription factor expressed in the rib meristem of the SAM, is a key regulatory factor 

controlling stem cell populations in the Arabidopsis SAM5–6 and is thought to establish the shoot 

stem cell niche via a feedback circuit with the CLAVATA3 (CLV3) peptide signaling pathway7. 

WUSCHEL-RELATED HOMEOBOX5 (WOX5), specifically expressed in root quiescent center 

(QC), defines QC identity and functions interchangeably with WUS in control of shoot and root 

stem cell niches8. WOX4, expressed in Arabidopsis procambial cells, defines the vascular stem 

cell niche9–11. WUS/WOX family proteins are evolutionarily and functionally conserved 

throughout the plant kingdom12 and emerge as key actors in the specification and maintenance of 
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stem cells within all meristems13. However, the nature of the genetic regime in stem cell niches 

that centers on WOX gene function has been elusive, and molecular links underlying conserved 

WUS/WOX function in stem cell niches remain unknown. Here we demonstrate that the 

Arabidopsis HAIRY MERISTEM (HAM)family transcription regulators act as conserved 

interacting co-factors with WUS/WOX proteins. HAM and WUS share common targets in vivo 

and their physical interaction is important in driving downstream transcriptional programs and in 

promoting shoot stem cell proliferation. Differences in the overlapping expression patterns of 

WOX and HAM family members underlie the formation of diverse stem cell niche locations, and 

the HAM family is essential for all of these stem cell niches. These findings establish a new 

framework for the control of stem cell production during plant development.

To identify the molecular mechanism underlying WUS functions in stem cells, we screened 

for WUS-interacting transcription co-factors using yeast-two-hybrid assays with a 

transcription factor library14, and found HAIRY MERISTEM1 (HAM1) strongly and 

specifically interacting with WUS(Fig. 1a). HAM genes, encoding GRAS domain 

transcription regulators, contribute to shoot stem cell function in petunia and 

Arabidopsis15–17. Four HAM genes (HAM1-HAM4) have been identified in Arabidopsis16, 

and further yeast assays revealed that WUS also interacted with three other HAM family 

members (Extended Data Fig. 1a). WUS-HAM associations were confirmed by bimolecular 

fluorescence complementation (BiFC) assays in tobacco (Nicotiana benthamiana), where 

WUS and HAM were fused to the N- and C-terminal halves of green fluorescent protein 

(GFP), respectively. Strong GFP fluorescence in nuclei was observed when GFPn-WUS was 

co-transformed with GFPc-HAM (Fig. 1b–c, Extended Data Fig. 1b–e). WOX4 and WOX5 

also interacted with HAM protein sin BiFC assays (Fig. 1d, Extended Data Fig. 1f–q). These 

WOX-HAM interactions were further confirmed through in vitro pull-down assays, where 

glutathione S-transferase (GST)-WOX4 but not GST bound HAM4-His6, and GST-WUS 

but not GST bound HAM1-His6 (Fig. 1e). Interactions in planta were then tested using co-

immunoprecipitation assays in tobacco, where WUS-GFP bound FLAG-HAM1 (Fig. 1f) 

and FLAG-HAM2 (Fig. 1g), GFP-WOX4 bound FLAG-HAM4 (Fig. 1h), and WOX5-GFP 

boundFLAG-HAM2 (Fig. 1i). In short, with multiple approaches, our work revealed 

physical interactions between HAM and WUS/WOX family members.

We next constructed various deleted derivatives of HAM1 and WUS for yeast-two-hybrid 

assays to identify essential regions for their interactions. Deleting amino acids from 117 to 

230(D117-230) in HAM1abolished the interaction (Extended Data Fig. 2a). This N-terminal 

fragment is important for HAM1 function in stem cell maintenance, asHAM1 

(D117-230)did not complement the ham1;2;4early termination phenotype, while full-length 

HAM1 driven by the same HAM1 promoter did(Extended Data Fig. 2b–g), and it is 

conserved in HAM proteins from Arabidopsis and across different plant species (Extended 

Data Fig. 2h–j). Deletion analyses of WUS identified a C-terminal region required for 

interaction with HAM1 (Extended Data Fig. 3a), which is also required for WUS function 

(Extended Data Fig. 3b–d) and is conserved in different plant species (Extended Data Fig. 

3e).
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To dissect roles of the HAM-WUS interaction in controlling shoot stem cell niches, genetic 

interactions were analyzed between ham1;2;3 (lacking function of three of four HAM 

genes) and the weak wus allele wus-7(missense mutant) which forms a functional shoot 

apex18, similar to wild type in terms of vegetative and inflorescence meristems (Fig. 2a, b, 

e). Different fromwus-7single mutants (Fig. 2b) or ham1;2;3 triple mutants (Fig. 2c), 

wus-7;ham1;2;3 quadruple mutants display early termination of vegetative meristem 

development(Fig. 2d), thus resembling wus complete loss of function (null) mutants5. This 

effect also occurred in wus-7/wus-7;ham1/ham1;ham2/ham2;ham3/+ plants, where 41 out 

of 45 plants showed strong termination of inflorescence and floral meristems, with only 

leaves (Fig. 2h) or barren pedicels (flowers without carpels) (Fig. 2g) left at the top of the 

main shoot, a phenotype typical of wus-1 null mutants5, but never observed in wus-7 (Fig. 

2e) or ham1/ham1, ham2/ham2, ham3/+ (Fig. 2f) plants. Secondary inflorescence meristems 

initiated from axillary meristems inwus-7/wus-7;ham1/ham1;ham2/ham2;ham3/+ also 

terminated prematurely (Extended Data Fig. 4a–b). Additionally, 3 out of 4wus-7/

wus-7;ham1/ham1;ham2/ham2;ham4/+ plants displayed inflorescence meristem termination 

and lacked carpels (Extended Data Fig. 4c). A dose-dependent enhancement of stem cell 

termination was evident in wus-7;ham1/+;ham2/+;ham3/+, and wus-7; ham1/+;ham2/

ham2;ham3/ham3 backgrounds (Extended Data Fig. 4d–f), demonstrating a functional 

interdependence between WUS and HAM family members in vivo. Down regulation of 

HAM1, HAM2 and HAM3 in a ham4 shoot meristem, through activation of 

microRNA171reported to target HAM1, HAM2 and HAM3 genes19, led to terminated 

vegetative development (Extended Data Fig. 4g–h)similar to the wus-1phenotype, 

suggesting that WUS alone is not sufficient to maintain SAMs in the absence of HAM 

activity. Lastly, the wus-1;ham1;2;3 quadruple homozygote resembles a wus-1single mutant 

in several aspects including the vegetative meristem (Extended Data Fig. 4i–l), suggesting 

that WUS and HAM genes could act together at the SAM. All these genetic data are 

consistent with the hypothesis that WUS and HAM function as partners in shoot meristem 

maintenance.

In addition to genetic interactions, the molecular function of the WUS-HAM interaction was 

further investigated. First, quantitative RT-PCR results (Fig. 3i) demonstrated that HAM 

proteins regulate expression of a set of genes including JAZ5, TIP2;2, TCP9, GRP23 and 

TPL, which were reported to be directly regulated by WUS20. These WUS downstream 

targets were misregulated in wus-7 or ham1;2;3 triple mutant in similar manners, and wus-7 

and ham1;2;3 synergistically regulated their expression (Fig. 2i), consistent with functional 

physical (Fig. 1) and genetic (Fig. 2a–h) interactions between WUS and HAM. Then, dual 

luciferase assays were conducted in planta to confirm the direct effects of WUS-HAM on 

target gene expression. Compared to empty vector controls, the target genes examined were 

moderately (Fig. 2j–k) or barely (Fig. 2l–m) regulated by WUS or HAM alone, but were 

dramatically affected when WUS and HAM were combined(Fig. 2j–l), indicating a role for 

WUS-HAM interaction in regulating their transcription activities. Lastly, Chromatin 

Immunoprecipitation (ChIP) experiments demonstrated in vivo association of YFP-HAM2 

proteins with TPL (Fig. 2n) and GRP23 promoters (Fig. 2o), genomic regions similar to that 

reported to associate with WUS protein in vivo20, supporting the notion that HAM family 
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members are functional WUS cofactors in controlling the shoot stem cell niche via 

regulation of common target genes.

Consistently with physical and genetic interactions between HAM and WOX members, 

visualization of HAM and WUS/WOX fluorescent transcriptional reporters revealed that 

WOX and HAM family expression overlapped in planta. In vegetative (Extended Data Fig. 

5c–h)and inflorescence meristems (Fig. 3a–c), HAM1 and HAM2 expression overlapped 

with that of WUS in the rib meristem. HAM1is expressed in rib meristem and peripheral 

zone but not in the L1 or L2 layers of the central zone (Fig. 3a, Supplementary video. 1), 

while HAM2 expression peaks within the center of the rib meristem (Fig. 3b). Similarly to 

WUS (Extended Data Fig. 5a, b), HAM1 is negatively controlled by the CLV signaling, 

asHAM1 is expressed throughout clv3-2 meristems (Fig. 3d). We imaged the WUSandHAM1 

or HAM2 reporters in the same SAMs (Fig. 3e–l). Although expressed broadly, signals from 

HAM1 (Fig. 3f) or HAM2 (Fig. 3j) overlap with WUS signals (Fig. 3e, i) in the same rib zone 

cells (Fig. 3h, l, Extended Data Fig. 5i–p). Since WUS protein was reported to move in the 

SAM from its site of transcription in the rib domain21, the WUS and HAM1/HAM2 

interaction domain in SAMs could be broader than their transcriptional domain overlap. We 

also examined the HAM2 translational reporter, pHAM2::YPET-HAM2, in the ham1,2,4 

SAM (Fig. 3m–n, Extended Data Fig. 6), which completely complements the ham1,2,4 

triple mutant (Extended Data Fig. 6 a–c), and it showed a pattern similar to the HAM2 

transcriptional reporter: strong signal in the center starting from L3 and low or no signal in 

the L1 (Fig. 3m–n, Extended Data Fig. 6d–e). Taken together, the co-localization of WUS 

and HAM1/HAM2 in SAMs is consistent with functional WUS-HAM1/HAM2 interactions 

(Fig. 1, 2).

HAM4 and WOX4 co-express in the provascular or procambial cell types of various tissues 

(Fig. 3o–t, Extended Data Fig. 7). In stem transverse sections, HAM4 expresses specifically 

in the procambium, overlapping with WOX4expression, as well as with theHAM3 and 

HAM1 expression domains (Fig. 3s–t, Extended Data Fig. 7j–l). The tightly co-regulated 

spatial and temporalHAM4 and WOX4 expression patterns are consistent with a WOX4-

HAM4 interaction module (Fig. 1h). Both HAM2 transcriptional and translational reporters 

(Extended Data Fig. 8) are expressed in root meristem cells including the QC, overlapping 

with the QC-specific WOX5 expression domain8, consistent with the previous reports of 

cell-type specific transcriptome analyses22,23, and indicating the possibility of WOX5-

HAM2 interactions in roots. Our finding that both WUS and WOX5 interact with HAM2 

may be partially accounted for the fact that WUS and WOX5 are interchangeable in 

controlling SAMs and RAMs8. Taken together, distinct and overlapping expression patterns 

of HAM and WOX members indicate that specific HAM-WOX pairs function within 

different stem cell niches throughout the plant.

To address the importance of the entire HAM family in the control of stem cell niches, we 

generated a ham1;2;3;4 quadruply homozygous mutant. Compared to wild type, ham1;2;3;4 

plants displayed growth arrest at the early seedling stage, containing short roots and 

terminated shoots with two small leaf-like structures 26 days after germination (DAG)(Fig. 

4a–c, Extended Data Fig. 9a–d); the shoot apices exhibited valley-like shapes at 26 DAG, 

lacking functional meristems(Fig. 4d); the hypocotyl transverse sections showed clear 

Zhou et al. Page 4

Nature. Author manuscript; available in PMC 2015 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



vascular defects, and the vascular bundles had reduced numbers of xylem vessels, 

fibers(dark blue-stained) and phloem cells (red-stained), consistent with a reduction in the 

stem cell activity necessary for generating these cell types (Fig. 4e–f). Moreover, midveins 

in ham1;2;3;4 leaf-like tissues did not differentiate but instead accumulated a dark-staining 

cell mass (arrow indicated), resembling ground tissue cells (Extended Data Fig. 9e–f). This 

is similar to but much stronger than the reported WOX4 RNAi phenotype10. Root 

meristematic activity is also severely compromised in ham multiple mutants. The QC and 

columella stem cells (CSC) in ham1;2;3;4 mutants displayed enlarged and irregular shapes 

(Extended Data Fig. 9g–h), and with incomplete penetrance, the CSCs in ham1;2;3 mutant 

differentiate(Extended Data Fig. 9i–l), resembling reported defects in wox5 mutants8. 

However, the root phenotype of ham1;2;3 or ham1;2;3;4 is much more severe than that of 

wox5 mutant, suggesting that HAM regulates root meristem development through not only 

direct interaction with WOX5 but also WOX5-independent pathways. In summary, in 

diverse meristems, ham1;2;3;4 mutants display defects that share similarities with mutants 

lacking WOX activities, supporting the idea that HAM proteins are co-factors for 

WUS/WOX family-mediated stem cell niche maintenance. Given the evolutionary 

conservation of plant meristem cell niches and the WOX/HAM gene families12, 16, and the 

fact that WOX-HAM interactions exist in higher plants besides Arabidopsis(Extended Data 

Fig. 10), this work establishes new basis for studying stem cell niches in Arabidopsis, and 

provides a paradigm for meristem cell control regimes likely to be universal in higher plants.

Methods

Plant materials and growth conditions

Arabidopsis thaliana plants were grown in a sunshine soil/vermiculite/perlite mixture under 

continuous light at 20°C. The mutant lines ham1;2;3(triply homozygous for mutant alleles 

of ham1-1, ham2-1, and ham3-1), ham1;2;4(triply homozygous for mutant alleles of 

ham1-1, ham2-1, and ham4-1), wus-7, wus-1, clv3-2 were previously described5, 16, 18, 24. 

wus-7;ham1;2;3, wus-7;ham1;2;4, wus-1;ham1;2;3, and ham1;2;3;4 mutants were 

generated through genetic crosses, and identified based on PCR genotyping in the F2 

segregating population. Different mutant combinations in an er background were chosen for 

genetic and morphological analyses. All of the phenotypes were confirmed from multiple 

independent segregation lines to control for differences in ecotype background. The PCR 

genotyping was performed as previously described16, 18. Reporter lines for pWUS::DsRed-

N7 and pWOX4::YFP were previously reported11, 25.

Yeast two-hybrid assay

Yeast transformation and beta-galactosidase assays were performed following the 

manufacturer’s instructions (Clontech). Full-length cDNAs for WUS, HAM1, HAM2, HAM3, 

and HAM4 were cloned into pENTR/D/TOPOor pCR8 (Invitrogen), and then WUS cDNA 

was Gateway cloned to pDEST32, and HAM1, HAM2, HAM3, and HAM4 cDNAs were 

Gateway cloned into pDEST22 using standard LR reactions (Invitrogen). All of the deletion 

derivatives for WUS or HAM1 were generated through overlapping PCR with the primers 

listed in methods, cloned into pENTR/D-TOPO or pCR8, and cloned into pDEST32 or 

pDEST22 through LR recombination (Invitrogen). All clones were sequenced to confirm 
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they were in-frame and the corresponding deletions before being transformed into yeast. The 

bait and prey vectors were transformed into yeast strain MaV203, and three single 

transformed colonies per genotype were used as triplicate for the LacZ liquid assay in 96 

Deep well plates (Thermo) and OD reading was recorded in 96-well plate reader (Tecan). 

The LacZ activity was calculated as (OD420×1000)/(OD600 × cell volume in μl × assay 

time in minutes) following the yeast two hybrid handbook (Clontech), including a standard 

error from three biological replicates.

BiFC

For BiFC experiments, full-length Arabidopsis WUS, WOX4, WOX5, HAM1, HAM2, HAM3, 

HAM4, BARD1 and FAMA cDNA Gateway clones were recombined into vectors containing 

each half of GFP (N or C terminus) to generate the fusion proteins (GFPn-WUS, GFPn-

WOX4, GFPn-WOX5, GFPn-BARD1, GFPn-FAMA, GFPc-HAM1, GFPc-HAM2, GFPc-

HAM3, GFPc-HAM4, GFPc-BARD1, GFPc-FAMA) as previously described26. Plasmid 

pairs for testing the specific interactions (such as GFPn-WUS and GFPc-HAM1) were co-

transformed together with the P19 silencing suppressor27 into Nicotiana benthamiana leaves 

through Agrobacterium infiltration. The infiltrated tobacco leaves were stained with 

propidium iodide (PI) and imaged using a Zeiss LSM 510 Meta confocal microscope two 

days after infiltration. Green GFP signals in nuclei (which demonstrate the physical 

interaction) and red PI staining signals (which indicate tobacco cell structure) were captured 

at the same time from different detection channels. A 488nm laser line was used to stimulate 

GFP and PI. A 505–530 band pass filter was used to collect GFP signal and a 585–615 band 

pass filter was used to collect PI signal. BARD1, a nuclear-localized protein, was included 

as a negative control. FAMA, a bHLH transcription factor, which has been demonstrated to 

interact with bHLH transcription factors28, was used as an additional negative control. The 

positive signals for each pair were confirmed with four independent biological replicates, 

and representative image sareshown in the figures. The same method was also used for 

tomato (Solanum lycopersicum) proteins, including GFPn-tomato WUS, GFPn- tomato 

WOX4, and GFPc-tomato HAM.

Co-immunoprecipitation and Western Blot analysis

WUS or WOX5cDNA in pCR8 was recombined to pMDC8329 to generate a WUS-GFP or 

WOX5-GFP fusion clone. FLAG-HAM1, FLAG-HAM2 and FLAG-HAM4 were PCR 

amplified with primers 5′-

CACCATGgactacaaggacgacgatgacaagggcggtggaagtCCCTTATCCTTTGAAAGGTTTCAA

GG -3′, 5′-CTAACATTTCCAAGCAGAGACAGTAACAAGTTC-3′, and with primers 5′-

CACCATGgactacaaggacgacgatgacaagggcggtggaagtCCCCTGCCCTTTGAGCAATTT-3′, 

5′-TTAACATTTCCAAGCTGAGACAGTA-3′, and with primers 5′-

CACCATGgactacaaggacgacgatgacaagggcggtggaagtAAAATCCCTGCATCATCTCCTC -3′, 

5′-CTAAAACCGCCAAGCTGATGTGGCAACAAG-3′, respectively. GFP DNA was 

amplified and sub-cloned in front of WOX4 cDNA in frame to generate a GFP-WOX4 

fragment. FLAG-HAM1, FLAG-HAM2, FLAG-HAM4, and GFP-WOX4 were then 

recombined into pMDC3229, respectively. For co-immunoprecipitation of WUS-GFP with 

FLAG-HAM1, WUS-GFP with FLAG-HAM2, GFP-WOX4 with FLAG-HAM4, or WOX5-

GFP with FLAG-HAM2 in Nicotiana benthamiana, the constructs were introduced into 
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Nicotiana benthamiana leaves through Agrobacterium infiltration. The leaves were 

harvested two days after infiltration and frozen in liquid nitrogen. For the 

immunoprecipitation of YFP-HAM2 in Arabidopsis, the shoot apices from the transgenic 

plants pHAM2::YFP-HAM2 in ham1,2,4 were harvested. The nuclei from Arabidopsis or 

tobacco were isolated, and then lysed with RIPA buffer (50 mM Tris-HCl, pH 7.5, 150 mM 

NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 3 mM DTT, 2 mM NaF and 1 mM 

NaVO3, or 50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 

0.1% SDS for Co-IP GFP-WOX4 with FLAG-HAM4) containing protease inhibitors 

cocktail (Roche) and 200 μM PMSF by incubation on ice for 30 min followed by brief 

sonication. Clear lysates were mixed with diluting buffer containing PMSF and protease 

inhibitors cocktail (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 3 mM DTT, 2 mM NaFand 1 

mM NaVO3, or 50 mM Tris-HCl, pH 8.0, 60 mM NaCl for Co-IP GFP-WOX4 with FLAG-

HAM4) (1:5, v:v), immunoprecipitated with GFP-Trap® agarosebeads (ChromoTek), and 

the beads were washed three times with the diluting buffer in spin columns (BioRad). The 

recovered proteins were eluted from the beads by boiling in 2× SDS sample buffer, 

separated by SDS-PAGE and transferred to nitrocellulose membrane (Millipore). Proteins 

were detected using anti-GFP antibody (Roche, Cat #11814460001), anti-FLAG antibody 

(Sigma, Cat # F1804), and HRP conjugated anti-mouse antibody (Promega, Cat # W4021). 

The co-immunoprecipitation experiments were repeated twice with similar results.

Protein expression constructs and protein purification

WOX4 cDNA was amplified with primers 5′-

CATAGAATTCATGAAGGTTCATGAGTTTTCGAA -3′ and 5′-

AGTTGCGGCCGCTCATCTCCCTTCAGGATGGAGAGGA -3′(restriction enzyme sites 

are underlined), and cloned in frame in pGEX-4T-1 with Eco RI and Not I sites. WOX5 

cDNA was amplified with primers 5′-

ATTTCCCGGGTATGTCTTTCTCCGTGAAAGGTCG -3′ and 5′-

AGTTGCGGCCGCTTAAAGAAAGCTTAATCGAAGATCT -3′(restriction enzyme sites 

are underlined), and cloned in frame in pGEX-4T-1 with XmaI and Not I sites. WUS cDNA 

was amplified with primers 5′-CATAGAATTCATGGAGCCGCCACAGCATCAG -3′ and 

5′-AGTTGCGGCCGCCTAGTTCAGACGTAGCTCAAGA -3′(restriction enzyme sites are 

underlined), and cloned in frame in pGEX-4T-1 with Eco RI and Not I sites. HAM1-His6 

tag was generated from PCR with primers 5′-

CATAGAATTCATGCCCTTATCCTTTGAAAGGTTTCAAGG -3′ and 5′-

AGTTGCGGCCGCCTAGTGATGATGATGATGATGACATTTCCAAGCAGAGACAGTA

ACAAGTTCTT -3′(restriction enzyme sites are underlined, and HIS6 coding sequence is 

italic), and cloned in frame with thrombin cutting site in pGEX-4T-1 with Eco RI and Not I. 

HAM4-His6 tag was generated from PCR with primers 5′-

CATAGAATTCATGAAAATCCCTGCATCATCTCCTC -3′ and 5′-

AGTTGCGGCCGCCTAGTGATGATGATGATGATGAAACCGCCAAGCTGATGTGGCA

ACAAG -3′(restriction enzyme sites are underlined, and HIS6 coding sequence is italic), and 

cloned in frame with thrombin cutting site in pGEX-4T-1 with Eco RI and Not I. All 

proteins were expressed in Rosetta™ E. Coli (Novagen®) by inducing with 0.4 mM IPTG at 

16 °C for 2–4 hours. GST-WOX4, GST-WOX5 and GST were purified on glutathione resin. 

HAM1 was purified on glutathione resin followed by digestion with thrombin and 
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chromatography on S200 resins as described previously30–31. HAM4 was purified on 

glutathione resin followed by digestion with thrombin and removal of the GST associated 

with glutathione resin as described previously31.

In vitro pull-down assay

GST-WOX4, GST-WOX5, GST-WUS or GST were immobilized on glutathione resin and 

incubated with HAM1-His6 or HAM4-His6 for 30 min at 4 °C. The glutathione resin was 

then washed three times and processed for SDS-PAGE analysis and western blot analysis 

using antibody to His-tag (Qiagen, Cat. # 34660). The pull-down experiments were repeated 

twice with similar results.

Transactivation assay in tobacco

A 60 base pair minimal 35S fragment (the −60 minimal promoter) was amplified and cloned 

with Bam HI /Nco I sites into the pGREEN800II LUC32 to generate a 

pGREEN800II-60LUC. TPL promoter was PCR amplified from Col-0 genomic DNA with 

primers 5′-AACAGGTACCGAACGCTTCGTTTCATTAGTTTATC -3′ and 5′-

AATAGGATCCGTTTTCTCTCACTTCCTTAAAAGACT -3′ (restriction enzyme sites are 

underlined)and cloned with Kpn I /Bam HI sites into the pGREEN800II-60LUC. TIP2;2 

promoter was amplified with primers 5′-

AACAGGTACCCGAGTGAAGCAGATTGGGAGAGAA -3′ and 5′-

AATACTGCAGTTTGATCCGACAAAATAACTCTGTT -3′ and cloned with KpnI /PstI 

sites into the pGREEN800II-60LUC. GRP23 promoter was amplified with primers 5′-

AACAGGTACCCAGGTGTGATTGTCAATAGACTACG -3′ and 5′-

AACAGATATCGGTGGAGGGAAAATGATTTAGGGTT -3′ and cloned with KpnI /Eco 

RV sites into the pGREEN800II-60LUC. TCP9 promoter was amplified with primers 5′-

AACAGGTACCGTATGCTGATGGTAGGCAAAAGTT-3′ and 5′-

AATACTGCAGTAAAATATAGCTGAGAGAAAACG-3′ and cloned with KpnI /PstI sites 

into the pGREEN800II LUC. The different reporter constructs (dual-luciferase reporter with 

different gene promoters) and indicated effectors (empty effector vector or WUS or HAM2, 

or WUS together with HAM2) were introduced into Nicotiana benthamiana leaves through 

Agrobacterium infiltration. The activities from firefly luciferase (LUC) and Renilla 

luciferase (REN) were quantified two days after infiltration with a Dual Luciferase Assay kit 

(Promega), and luminescence was recorded using a 96-well dual injection luminometer 

(Tecan). The LUC activity was normalized to the REN activity (LUC/REN). The means and 

standard errors of LUC/REN were calculated from three independent biological replicates.

Plasmid constructions for the transgenic plants

It has been reported that HAM1, HAM2 and HAM3 are targeted and repressed by the 

microRNA171 family19. To generate new microRNA-sensitive fluorescence reporters for 

HAM1, HAM2 and HAM3, an approach similar to that in a previous report33 was used. 

Briefly, a 2xYPET-N7mirS fragment was generated through PCR amplification, which 

contains a 2x version of YPET with a N7 nuclear localization sequence (2xYPET-N7) 

followed by 26 base pairs of microRNA target sequence 
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(GCAAGGGATATTGGCGCGGCTCAATC) from the HAM family. These 26 base pairs 

are recognized and targeted by the microRNA171 family19, 34.

For the construction of the pHAM1::2xYPET-N7mirS reporter, a 4 kb AscI fragment 

containing the HAM1 promoter was amplified from Col-0 genomic DNA with primers 5′-

TACAGGCGCGCCTTTCCCTCACTTTTTCTTACATTGAA-3′ and 5′-

TACAGGCGCGCCACGCCTCCTCAACAACACAGAGTAA-3′(restriction enzyme sites 

are underlined), and cloned 5′ of the 2xYPET-N7mirS fragment. The fused DNA fragment 

was introduced into the pMOA34 binary vector35. For the construction of pHAM2::2xYPET-

N7mirS, 3122 bp HAM2 promoter was amplified with 5′-

TACAGTTTAAACAGCAGGACATATCTAAACCAGAAGTT-3′ and 5′-

TACAGTTTAAACGACCAATCTTACAGAGTCAGAAAGAG-3′ (restriction enzyme 

sites are underlined) and cloned in front of 2xYPET-N7mirS; and 1149 bp HAM2 3′-

untranslated sequence was PCR amplified with 5′-

TACAGGCGCGCCGACGAAAAAGGAGGATATTTTCACGGT-3′ and 5′-

TACAGGCGCGCCACTATGTTTCCATGTACTGTGGGATA-3′(restriction enzyme sites 

are underlined) and cloned 3′ of the 2xYPET-N7mirS construct, then the fused DNA 

fragment was cloned into pMOA34. For the construction of pHAM3::2xYPET-N7mirS, 3816 

bp HAM3 promoter was amplified with 5′-

TACAGTTTAAACTTTATAAGACTTGCTATGGTCGTGAG-3′ and 5′-

TACAGTTTAAACTGCAGACGATAAAAAATAGTGTATT-3′ (restriction enzyme sites 

are underlined) and cloned before 2xYPET-N7mirS; and 1755 bp HAM3 3′-untranslated 

sequence was PCR amplified with 5′-

TACAGGCGCGCCTTTCCACCGGAGTTTCAATTATTAAA -3′ and 5′-

TACAGGCGCGCCTTAGTTGAAGGACAAATAACACCAAA -3′ (restriction enzyme 

sites are underlined) and cloned 3′ of the 2xYPET-N7mirS fragment, then the fused DNA 

fragment was introduced into pMOA34. The double reporter lines including pWUS::DsRed-

N7; pHAM1::2xYPET-N7mirS line and pWUS::dsRed-N7; pHAM2::2xYPET-N7mirS line 

were generated through genetic crosses.

For the construction of pHAM4::2xYPET-N7 reporter, 6413 bp HAM4 promoter was 

amplified with primers 5′-

TACAGGCGCGCCAAATATAAAATAGAATCAAACAAAGTTGGTAAC-3′ and 5′-

CAAAGGCGCGCCGTGTTGTGTGTTAAGAAGAAAGAAAGGTGGAGCCTTT-3′

(restriction enzyme sites are underlined), and cloned 5′ of a 2xYPET-N7 fragment, then the 

fused DNA fragment was cloned into pMOA34.

For the complementation of wus-1, a full-length WUS or WUS derivative without base pairs 

encoding amino acids from 203 to 236 was cloned into pMOA36 binary vector, together 

with a 4.4 kb of WUS upstream regulatory sequence and 1.5 kb WUS 3′-untranslated 

sequence. The construct was introduced into wus-1/+ plants using the floral dip method. For 

the complementation of ham1,2,4, HAM1 or HAM1 derivative without 117–230 was cloned 

into pMOA34 binary vector, with a 3949 bp of HAM1 upstream regulatory sequence and 

1387 bp HAM1 3′-untranslated sequence. The construct was introduced into ham1,2,4 plants 

using the floral dip method.
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To generate a microRNA171 expression construct in shoot meristems, the microRNA171 

DNA was amplified with 5′-CACCTGAGCGCACTATCGGACATCAAA-3′ and 5′-

TAAACGCGTGATATTGGCAC-3′ and cloned into pMOA36 together with a 4.4 kb of 

WUS upstream regulatory sequence and 1.5 kb WUS 3′-untranslated sequence. The construct 

was introduced into the ham4 mutant through the floral dip method. Five independent 

transgenic plants (pWUS::mirRNA171 in ham4) showing terminated vegetative meristems 

were identified.

Confocal imaging of fluorescence reporters in living plants

All of the fluorescent reporters were imaged by using a Zeiss LSM 510 Meta confocal 

microscope, except for the fluorescent reporters in inflorescence meristems and HAM2 

fluorescent reporters in the roots, which were imaged by using a Zeiss LSM 780 Meta 

confocal microscope. Zeiss LSM software was used for reconstructing the Z-stacks for a 

projection view. Laser and filter settings were used as described previously36–38. To image 

HAM4 and WOX4 reporters, the cotyledons, first leaf, hypocotyls and roots from 7-d-old 

seedlings and stems from 1-cm bolting plants were used. To image dsRED, YPET and PI 

simultaneously in SAMs, the multi tracking mode in the ZEISS LSM 780 was used. dsRed 

was excited using a 561 nm laser line in conjunction with 571–589 nm collection; the YPET 

was excited using a 514 nm laser line in conjunction with a 519–549 nm collection; and PI 

was excited using a 514 nm laser with 631–673 nm collection. There is no spectral bleed-

through of DsRed into the YPET collection channel, nor YPET into the DsRed collection 

channel under these settings, and for better display, all images from dsRed channel are 

equally enhanced with the same scale and all images from the PI channel are uniformly 

enhanced to the similar intensity using Image J software.

Histology

The wild type and ham1;2;3;4 seedlings were fixed in 4% paraformaldehyde, dehydrated 

and embedded in Paraplast X-tra (Fisher). The samples in wax were sectioned at 8 microns, 

de-waxed and dehydrated, and the slides were stained with Alcian blue together with 

Safranin O (red) as previously described39, to detect non-lignified cell walls and lignified 

cell walls, respectively.

Real-time RT-PCR analysis

Total RNA was isolated from 10-day old plants with roots, hypocotyls and leaves dissected 

off, using the RN easy Kit (Qiagen). SuperScript III reverse transcriptase (Invitrogen) was 

used to synthesize the first-strand cDNA with oligo (dT) primer and 1 μg of total RNA at 

50°C for 1 h. Quantitative PCR was then performed with the Sensi Mix SYBR Hi-ROX Kit 

(Bioline) on Roche Real-Time PCR machine following the manufacturer’s instruction. The 

thermal cycling program was 95°C for 10 min, followed by 45 cycles of 95°C for 10 s, 56°C 

for 30 s, 72°C for 40s, and a one-cycle dissociation stage at 95°C for 15 s, 60°C for 1 min, 

and 97°C for 15 s. The primers used in quantitative RT-PCR were JAZ5, 5′-

GAAAGACAGAGCTGTGGCTAGG -3′ and 5′-TTGGCCTTCTTCAATCTTCATAATA 

-3′; TIP2;2, 5′-ACCAATGGCGAGAGCGTACCG -3′ and 5′-

ATGAAACCGATAGCAATTGGAG -3′; TCP9, 5′-ACCTCCTTTACAAGTTGTTCCAAG 
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-3′ and 5′-TGAAGCTCTTGTTTCTCGTATATCTC -3′; GRP23, 5′-

AGACAGCTAGCCATCAGCAGTCAC -3′ and 5′-

AGTTCCTCAACTCCACTACCTTTTT -3′; TPL, 5′-AGCTAGTCTCAGCAATTCAAA 

-3′ and 5′-AGGCTGATCAGATGCAGAGG -3′; and UBQ10, 5′-

AACAATTGGAGGATGGTCGT -3′ and 5′-TTCCAGGGAAGATGAGACG-3′. Fold 

change was calculated as 2ΔΔCt and standard error was calculated from three biological 

replicates, and each biological replicate was examined in triplicate.

Chromatin immunoprecipitation(ChIP)

For the construction of pHAM2::YFP-HAM2 (pHAM2::YPET-HAM2), the YFP variant 

YPET was amplified and cloned in front of HAM2 cDNA in frame to generate YFP-HAM2 

fragment. Then the 3122 bp HAM2 promoter was amplified with 5′-

TACAGTTTAAACAGCAGGACATATCTAAACCAGAAGTT-3′ and 5′-

TACAGTTTAAACGACCAATCTTACAGAGTCAGAAAGAG-3′ (restriction enzyme 

sites are underlined) and cloned in front of YFP-HAM2 and 1149 bp HAM2 3′-untranslated 

sequence was amplified with 5′-

TACAGGCGCGCCGACGAAAAAGGAGGATATTTTCACGGT-3′ and 5′-

TACAGGCGCGCCACTATGTTTCCATGTACTGTGGGATA-3′ and cloned 3′ of the 

YFP-HAM2. Then the whole fused DNA fragment (pHAM2-YFP-HAM2-HAM2 3′UTR) was 

cloned into the binary vector pMOA34. The construct was introduced into ham1,2,4 plants 

using the floral dip method, and the complemented ham1,2,4 [pHAM2::YFP-HAM2] line 

was selected for the western blot, GFP IP (shown in Extended Data Fig. 6f) and ChIp 

experiments. ChIP followed by a quantitative real-time PCR approach was used to 

investigate the in vivo association of HAM2 with the TPL and GRP23 promoters as 

described previously40 with some modifications. In general, 2 g of ham1,2,4 (negative 

control) or ham1,2,4 [pHAM2::YFP-HAM2] plants was harvested and fixed with 1% 

formaldehyde under vacuum. Nuclei were isolated and lysed, and chromatin was sheared to 

an average size of 500 bp by sonication 7 times for 20 seconds each with a Branson Sonifier. 

Samples were kept on ice during sonication and were cooled for 1 min between sonication 

pulses. The sonicated chromatin served as input. Immunoprecipitations (IPs) were 

performed with GFP-Trap® Agarose beads (Chromotek) at 4°C following the 

manufacturer’s procedure. The precipitated DNA was isolated and purified, and served as a 

template for PCR. Quantitative PCR was performed as described in real-time RT-PCR 

analysis. The relative enrichment for each immunoprecipitated amplicon (from TPL or 

GRP23 promoter) from GFP-TRAP is presented as ChIP/Input ratio, and TUA4 and ACT7 

(ACTIN7) amplicons are also included to serve as negative controls. The ChIp experiments 

have been conducted three times using independent biological replicates with similar results, 

and one representative data set with two technical replicates is presented. The primer pairs 

used in ChIp-PCR are as follows: TPL Amplicon1, 5′-GCAATTGGCTCTTCAATGTC -3′ 

and 5′-GGACGGAGATCTAACGGCTA -3′; TPL Amplicon2, 5′-

CCATATGACCGGGATATGAGA -3′ and 5′-GGGATATGTCGCTTTCCATT -3′; TPL 

Amplicon3, 5′-TTGAGTCAGGGCTCATCTCC -3′ and 5′-

CTTTCGCGAGAACCAACTTC-3′; GRP23 Amplicon1, 5′-

ACCATCGTCATTGGTTTCGT -3′ and 5′-GGAGGTGACTGAGAGACATGG -3′; GRP23 

Amplicon2, 5′-CAACAAATTCCTGTTTTCACGTT -3′ and 5′-
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CGAAAATGTTCGAACTGCAT -3′; GRP23 Amplicon3, 5′-

CGCCATCGCCTAAAAGTAAA -3′ and 5′-TTTGTTGGCTAGGCATAGGG -3′; GRP23 

Amplicon4, 5′-AGACAGCTAGCCATCAGCAGTCAC -3′ and 5′-

AGTTCCTCAACTCCACTACCTTTTT -3′; TUA4 Amplicon, 5′-

CTTTGGTCTTTAGCAGGTTC -3′ and 5′-CCCATCTGTATATAACGACAC -3′; ACTIN7 

Amplicon, 5′-TGCTTGTTATGTGATTCGATCC -3′ and 5′-

GATCGACAGAAGCGAGAAGAAT -3′.

Staining

mPS-PI staining and root imaging of the staining was performed as previously described 41.

SEM

For scanning electron microscopy, tissue was placed in 1.2% glutaraldehyde in 0.025M 

phosphate buffer (sodium phosphate, pH 6.8), vacuum was applied for 10 min, and tissue 

was fixed overnight at 4°C. Tissue was then rinsed twice with 0.025M phosphate buffer for 

1 h, postfixed with 0.5% osmium tetroxide in 0.025Mphosphate buffer for 24 h at room 

temperature, and moved through an increasing ethanol series (20% increments), each 

increment lasting a minimum of 1 h and ending with two exchanges of 100% ethanol. 

Ethanol was removed by critical point drying with a critical point drier (SAMDRI), and 

tissue was mounted to stubs with double-sided adhesive tape and sputter coated with gold-

palladium alloy using a Hummer Sputtering System (Anatech). Samples were examined 

with a Hitachi 4700 scanning electron microscope.

Primers used for cDNA clones and deletion constructions

HAM1c/5CACC (5′-CACCATGCCCTTATCCTTTGAAAGGTTTCAAGG-3′); HAM1c/3 

(5′-ACATTTCCAAGCAGAGACAGTAACAAG-3′); HAM1c5/231 (5′-

CCGTTTTATCACAACAACCAG-3′); HAM1c5/441 (5′-

GAAAATCTCAAAACATTCG-3′); HAM1D71-116/5 (5′-

AGTCCTCTCGCTTCTTATTCTGCTTCTTCTCCTGGTCAAGAGC-3′); 

HAM1D71-116/3 (5′-

GCTCTTGACCAGGAGAAGAAGCAGAATAAGAAGCGAGAGGACT-3′); 

HAM1c71/5CACC (5′-CACCATGTCTACCACCACCACGCTGTCTTCCTCT-3′); 

HAM1D117-230/5 (5′-

GATGATCTTGACGGTGTTCTCTCTCCGTTTTATCACAACAACCAGCAA-3′); 

HAM1D117-230/3 (5′-

TTGCTGGTTGTTGTGATAAAACGGAGAGAGAACACCGTCAAGATCATC-3′); 

HAM4c/5 (5′-ATGAAAATCCCTGCATCATCTCCTC-3′); HAM4c/3 (5′-

AAACCGCCAAGCTGATGTGGCAACA-3′); WUSc5/1 (5′-

ATGGAGCCGCCACAGCATCAG-3′); WUSc5/30 (5′-

TACACGTGTCGCCAGACCAG-3′); WUSc5/100 (5′-

AGATTCAACGGAACAAACATGAC-3′); WUSc5/171 (5′-

GCAAGCTCAGGTACTGAATGT-3′); WUSc/3stop (5′-

CTAGTTCAGACGTAGCTCAAGA-3′); WUSc3/236 (5′-

ACCTTCTAGACCAAACAGAGG-3′); WUSc3/292 (5′-
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GTTCAGACGTAGCTCAAGAGAAGC-3′); WUSD164-183/5 (5′-

TAACAAGCCATATCCCAGCTTCAATGGCTACATGAGTAGCCATG-3′); 

WUSD164-183/3 (5′-

CATGGCTACTCATGTAGCCATTGAAGCTGGGATATGGCTTGTTA-3′); 

WUSD101-163/5 (5′-

GGCTCGTGAGCGTCAGAAGAAGAGAAATAACGGGAATTTAAATCATGCAA-3′); 

WUSD101-163/3 (5′-

TTGCATGATTTAAATTCCCGTTATTTCTCTTCTTCTGACGCTCACGAGCC-3′); 

WUSD132-163/5 (5′-

TATCATCCTCTACTTCACCATCATAATAACGGGAATTTAAATCATGCAA-3′); 

WUSD132-163/3 (5′-

TTGCATGATTTAAATTCCCGTTATTATGATGGTGAAGTAGAGGATGATA-3′); 

WUSD184-236/5 (5′-

AATGTGGTGTTGTTAATGCTTCTCATCAAGAAGAAGAAGAATGTGG-3′); 

WUSD184-236/3 (5′-

CCACATTCTTCTTCTTCTTGATGAGAAGCATTAACAACACCACATT-3′); 

WUSD164-236/5 (5′-

TAACAAGCCATATCCCAGCTTCCATCAAGAAGAAGAAGAATGTG-3′); 

WUSD164-236/3 (5′-

CACATTCTTCTTCTTCTTGATGGAAGCTGGGATATGGCTTGTTA-3′); 

WUSD184-202/5 (5′-

AATGTGGTGTTGTTAATGCTTCTTACAACAACGTAGGTGGAGGAT-3′); 

WUSD184-202/3 (5′-

ATCCTCCACCTACGTTGTTGTAAGAAGCATTAACAACACCACATT-3′); 

WUSD203-236/5 (5′-

TGGAACAAGACTGTTCTATGAATCATCAAGAAGAAGAAGAATGTGG-3′); 

WUSD203-236/3 (5′-

CCACATTCTTCTTCTTCTTGATGATTCATAGAACAGTCTTGTTCCA-3′); 

WUSD218-236/5 (5′-

GGGCAAACATGGATCATCATTACCATCAAGAAGAAGAAGAATGTGG-3′); 

WUSD218-236/3 (5′-

CCACATTCTTCTTCTTCTTGATGGTAATGATGATCCATGTTTGCCC-3′) 

WUSD203-217/5 (5′-

TGGAACAAGACTGTTCTATGAATTCATCTGCACCTTACAACTTCTT-3′); 

WUSD203-217/3 (5′-

AAGAAGTTGTAAGGTGCAGATGAATTCATAGAACAGTCTTGTTCCA-3′); WOX4c/

5CACC (5′-CACCATGAAGGTTCATGAGTTTTCGAA-3′); WOX4c/3stop (5′-

TCATCTCCCTTCAGGATGGAGAGGA-3′); WOX5c/5CACC (5′-

CACCATGTCTTTCTCCGTGAAAGGTC-3′); WOX5c/3 (5′-

AAGAAAGCTTAATCGAAGATCT-3′); TomatoHAM/5CACC (5′-

CACCATGATTGTAATACCTCAAAGTAATAA-3′); TomatoHAM/3stop (5′-

TTAAAAGAAAATCTCTTCTGGCTTCAGA-3′); ToamtoWUS/5CACC (5′-

CACCATGGAACATCAACACAACATAGAAGA-3′); TomatoWUS/3stop (5′-

TTAGGGGAAAGAGTTGAGAGTAAGT-3′); TomatoWOX4/5CACC (5′-
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CACCATGTACATGGGATCATCATCAGGAAG-3′); TomatoWOX4/3stop (5′-

TCATCTCATGCCTTCTGGATGCAATG-3′)

Extended Data

Extended Data Figure 1. 
Interaction between WUS/WOX and HAM family transcriptional regulators. (a) LacZ 

activity in yeast-two-hybrid assays testing interactions between WUS and HAM2, HAM3 or 

HAM4. Error bar = mean ± sem (n=3biological replicates). **, P<0.01; ***, P<0.001(two-

tailed t-test, compared to DBD-WUS/AD). (b–o) Bimolecular fluorescence 

complementation (BiFC) analyses in tobacco transient assays with HAM and WOX family 

genes. Tobacco was co-transformed with GFPn-WUS and GFPc-HAM3 (b), or GFPn-WUS 
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and GFPc-HAM4 (c), or GFPn-WUS and GFPc-FAMA (d), or GFPn-WUS and GFPc-

BARD1 (e), or GFPn-WOX4 and GFPc-HAM1 (f), or GFPn-WOX4 and GFPc-FAMA (g), 

or GFPn-FAMA and GFPc-HAM1 (h), or GFPn-WOX5 and GFPc-HAM1 (i), or GFPn-

WOX5 and GFPc-HAM2 (j), or GFPn-WOX5 and GFPc-HAM4 (k), or GFPn-WOX5 and 

GFPc-FAMA (l), or GFPn-WOX5 and GFPc-BARD1 (m), or GFPn-BARD1 and GFPc-

HAM1 (n), or GFPn-BARD1 and GFPc-HAM2 (o), or GFPn-BARD1 and GFPc-HAM4 

(p), or GFPn-FAMA and GFPc-HAM4 (q). BARD1 and FAMA proteins are both included 

as negative controls. Left panel: GFP channel; middle panel: propidium iodide (PI) staining 

channel; right panel: merged channels. Scale bar = 20 μm.

Extended Data Figure 2. 
An N-terminal region of HAM1 is important for WUS-HAM1 interactionand is essential for 

HAM1 function in stem cell maintenance. (a) Yeast two-hybrid assay of interactions 

between WUS and various deleted derivatives of HAM1. Deleting amino acids 117 to 

230(D117-230) from HAM1 compromised the WUS-HAM1 interaction. Left panel: box 

diagrams of the HAM1 derivatives. Shaded boxes indicate the GRAS domains. Numbers 

indicate amino acid residues. Error bar = mean ± sem (n=3biological replicates). *, P<0.05; 

**, P<0.01; ***, P<0.001(two-tailed t-test, compared to AD-HAM1 full-length). (b–g) The 

complementation of the ham1;2;4 triple mutant requires amino acids 117-230. The early 

termination phenotype of ham1;2;4(b, e) was not complemented by HAM1 (D117-230) 

driven by a HAM1 promoter and 3′UTR (c, f), but was fully complemented by wild type 

HAM1(d, g). Arrows in (b, c) indicate the early-terminated inflorescences. (h–j) Amino acid 

sequence alignment of the HAM1 N-terminal domains (117–230) using Clustal Omega. (h) 
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Sequence alignment of the N-terminal domains among three Arabidopsis HAM members. (i) 
Sequence alignment of partial N-terminal domains in HAM from A.thaliana, A.lyrata, 

C.rubella, B.rapa, and Petunia. (j) Sequence alignment of partial HAM1 N-terminal 

domains in HAM from A.thaliana, A.lyrata, C.rubella, B.oleracea, B.rapa, and Petunia. 

Asterisks: same amino acids; dots: similar amino acids. The conserved regions are boxed. 

Bars = 10 mm in (b, c), and (g), 40 mm in (d), 20 mm in (e, f).

Extended Data Figure 3. 
A C-terminal region of WUS is important for WUS-HAM1 interaction and is essential for 

WUS function in stem cell maintenance. (a) Yeast-two-hybrid assay of interactions between 

HAM1 and various deleted WUS derivatives. Deleting amino acids 203 to 236 (D203-236) 

from WUS greatly compromised the WUS-HAM1 interaction. Left panel: box diagrams of 

the deleted WUS derivatives; shaded boxes: the homeodomain; three black boxes: the acidic 

domains, the WUS box and the EAR motif, respectively. Numbers indicate amino acid 

residues. Error bar = mean ± sem (n=3biological replicates).*, P<0.05; **, P<0.01; ***, 

P<0.001(two-tailed t-test, compared to DBD-WUS full-length). (b–d) WUS function 

requires the same region that is important for WUS-HAM1 interaction. The terminated shoot 

meristem phenotype of wus-1 (b) was not complemented by WUS (D203-236) driven by 

WUS promoter and 3′UTR (c), and was fully complemented by the wild type WUS (d). (e) 
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Amino acid sequence alignment of C-terminal regionsof WUS from Arabidopsis thaliana, 

A.lyrata, Capsella rubella, Brassica oleracea, B.rapa, Lepidium ruderale, L.sativum, and 

Petunia, using Clustal Omega. Asterisks: same amino acids; dots: similar amino acids. The 

conserved regions are boxed. Bars = 2 mm in (b–d).

Extended Data Figure 4. 
Genetic interaction between WUS and HAM family members. (a, b) The secondary 

inflorescence meristems initiated from axillary meristems in wus-7; ham1;2 homozygotes 

with ham3/+ terminate prematurely. (c)wus-7; ham1;2 homozygotes with ham4/+ display 

early termination of the main inflorescence meristem and lack of carpels in flowers 

(indicated by arrow). (d–f) WUS and HAM family members interact genetically in a dose-

dependent manner. wus-7 (d) formed functional shoot apices and normal stature, but wus-7; 

ham1/+; ham2/+; ham3/+ (e) enhanced the wus-7 phenotype, and wus-7; ham1/+; ham2; 

ham3 (f) showed stronger enhancement, with reduced flower numbers and plant stature, and 

elongated vegetative stage, resembling a wus strong allele. Plants are 36 days after 

germination. (g–h) Down-regulation of HAM1, HAM2 and HAM3 in ham4 shoot meristems 

leads to an early termination phenotype. Compared to wild type (Col) (g), pWUS::mir171 in 

ham4 (h) showed terminated vegetative meristems. (i–l) WUS is required for functions of 

HAM1, HAM2 and HAM3. At 11 days after germination, compared to Ler wild type (i) and 
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ham1;2;3 (k) which formed functional vegetative meristem and leaf primordia, wus-1; 

ham1;2;3 (l) displays terminated vegetative meristems similar to wus-1 (j). Bars = 2 mm.

Extended Data Figure 5. 
Expression of HAM1, HAM2 and WUS in the SAMs. (a–b) WUS expression in clv3-2. 

Orthogonal (a) andtop (b) views of pWUS::DsRed-N7 expression (red)and chlorophyll 

autofluorescence (blue) in the same clv3-2 inflorescence meristem. (c–h) Comparison 

between expression patterns of HAM1, HAM2 and WUS in vegetative meristems.(c) 
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Orthogonal view of pHAM1::2xYPET-N7mirS expression (green) in Ler vegetative 

meristem. (d) Orthogonal view of pHAM1::2xYPET-N7mirS expression (green) together 

with chlorophyll autofluorescence (red) in the same vegetative meristem shown in (c), 

indicating that HAM1 is expressed in the rib meristem. (e) Orthogonal view of 

pHAM2::2xYPET-N7mirS expression (green) in Ler vegetative meristem. (f) Orthogonal 

view of pHAM2::2xYPET-N7mirS expression (green) together with chlorophyll 

autofluorescence (red) in the same vegetative meristem shown in (e), indicating that HAM2 

is highly expressed in the rib meristem. (g) Orthogonal view of pWUS::DsRed-N7 

expression (red) in Ler vegetative meristem. (h) Orthogonal view of pWUS::DsRed-N7 

expression (red) together with chlorophyll autofluorescence (blue) in the same vegetative 

meristem shown in (g), indicating that WUS is expressed in the rib meristem. Arrows 

indicate the positions of L1 cell layer. (i–p) Control images confirming the specificity of 

confocal spectral settings for Fig. 3(e–l). The SAMs from pWUS::DsRed-N7 line (i–l) or 

pHAM1::2xYPET-N7mirS line (m–p) were imaged from the same three separated channels 

used in Fig. 3 (e–l). There is no spectral bleed-through of YPET signal into the ds Red 

channel (m), nor ds Red signal into the YPET channel (j). (i, m)ds Red channel (red); (j, n) 

YPET channel (green); (k, o) PI staining channel (gray); (l, p) merged all three channels. 

Bars = 50μm in (a–d, g–h), 20 μm in (e–f, i–p).

Zhou et al. Page 19

Nature. Author manuscript; available in PMC 2015 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 6. 
pHAM2::YFP-HAM2 (pHAM2::YPET-HAM2)complemented the ham1,2,4 mutant and was 

expressed in the center of SAMs. The early termination phenotype ofham1;2;4(a, b) was 

completely complemented by YPET-HAM2 driven by the HAM2 promoter and 3′UTR (c), 

indicating the promoter used for HAM2 transcriptional and translational reporters are 

functional and the fusion protein (YPET-HAM2) is also functional in vivo. Arrows in (a, b) 

indicate early-terminated apices. Bars = 10 mm (a–c). (d–e) Different Z sections from the 

same SAM in ham1,2,4 [pHAM2::YPET-HAM2] plant for Fig. 3 (m–n) show expression of 

pHAM2::YPET-HAM2 translationalmarker (green) in L2 (d) and L3 (e), together with PI as 

counter stain (Red). Bars = 20 μm (d–e). (f) Immunoblot with anti-GFP antibody validates 

the presence of YFP-HAM2 (YPET-HAM2) in both nuclear lysate and nuclear proteins 
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immunoprecipitated with GFP-Trap from ham1,2,4 [pHAM2::YFP-HAM2] line used in 

ChIP experiment (Fig. 2, n and o).

Extended Data Figure 7. 
Expression patterns of HAMgenesin comparison to WOX4. (a) pHAM4::2xYPET-N7 (green, 

arrow indicated) is expressed in procambium cells of the first leaf. (b) pHAM4::2xYPET-N7 

(green, arrow indicated) is expressed in vasculature in the 7-day-old hypocotyl. (c–h) 

Comparison of pHAM4::2xYPET-N7 (green, arrow indicated) and pWOX4::YFP (green, 
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arrow indicated) expression patterns in vasculature cells in the 7-d-old leaf petiole (c–d),20-

d-old leaf petiole (e–f) and 7-d-old root (g–h). (i) Orthogonal view of pHAM4::2xYPET-N7 

(green, arrow indicated) expression in flower vasculature. (j) Procambium-specific 

expression of pHAM4::2xYPET-N7 in stems from 1cm bolting plants. (k–l) Procambium-

specific expression of pHAM3::2xYPET-N7mirS (k) and pHAM1::2xYPET-N7mirS (l) in 

transverse sections of stems from 1 cm bolting plants. Red in (a–f, i–l) represents 

chlorophyll autofluorescence, and represents PI staining in (g–h). Bars = 50μm in (a, h–i, k–
l); 100μm in (b–g, j).
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Extended Data Figure 8. 
Expression patterns of HAM2 transcriptional and translational reporters in root meristems. 

(a–i) Complete stacks of confocal sections through the root tip demonstrate that 

pHAM2::2xYPET-N7mirS (green) is expressed in the QC cells (arrow indicated) and cells 

above the QC within the root meristem. (j–o) Expression patterns of HAM2 translational 

reporters in ham1,2,4 root meristems. Complete stacks of confocal sections through the root 

tip demonstrate that pHAM2:YPET-HAM2 (green) is present in the QC cells (arrow 
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indicated) and the cells above the QC within the root meristem in the ham1,2,4 mutant. In all 

figures cellular outlines were stained with PI (red). Bars = 20μm (a–i), 50μm (j–o).

Extended Data Figure 9. 
HAM family regulates various stem cell niches. (a–d) Growth arrest of ham1;2;3;4 at the 

seedling stage. Imaging of Ler wild type (WT) (a) and homozygous ham1;2;3;4 (b) 

seedlings at 7 days after germination (DAG). Imaging of WT (c) and homozygous 

ham1;2;3;4 (d) (arrow indicated) seedlings at 26 DAG. (e–f) Transverse section of leaves 
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from WT (e) and ham1;2;3;4 (f) at 7 DAG. Arrow in (f) indicates undifferentiated/

undetermined cell mass. (g–h) Confocal imaging of root meristem from WT (g) and 

ham1;2;3;4 (h) seedlings at 7 DAG. ham1;2;3;4 displayed enlarged cells with abnormal 

shapes at the QC (arrow indicated) and columella stem cell (CSC) positions. Cellular 

outlines (g–h) were visualized with PI staining (white). (i–l) mPS-PI41 stains indicate that 

HAM genes regulate root cell differentiation. Some CSCs (arrow indicated) undergo 

differentiation with starch accumulated and stained in homozygous ham1;2;3 (j, l), but none 

of them can be stained in L-er wild type (i, k). Asterisks mark the QC cells. Bars= 5mm (c–
d), 1 mm in (a–b, e–f), 20 μm in (g–l).

Extended Data Figure 10. 
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Interaction between WOX and HAM homologs from tomato (Solanum lycopersicum). 

Bimolecular fluorescence complementation (BiFC) analyses in tobacco transient assays 

demonstrated that tomato WUS (Gene ID: 543793) physically interacted with a putative 

tomato HAM homolog (LEFL2052P11) (a) identified based on its sequence homology to 

HAM from Arabidopsis and Petunia (f), and tomato WOX410 (Gene ID: 100301933) 

physically interacted with the putative tomato HAM homolog (b). BARD1 protein is 

included as a negative control (c–e). Left panel: GFP channel; middle panel: PI staining 

channel; right panel: merged channels. Scale bar = 20 μm.(f) Amino acid sequence 

alignment of a putative tomato HAM, Arabidopsis HAM1 and petunia HAM using Clustal 

Omega. Asterisks: same amino acids; dots: similar amino acids.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. WUS/WOX and HAM family proteins physically interact
(a) LacZ activity of yeast-two-hybrid assays. Error bar = mean ± sem (n=3biological 

replicates). ***, P<0.001(two-tailed t-test). (b–d) Bimolecular fluorescence 

complementation in tobacco. Panels (left to right): GFP; propidium iodide (PI) staining; 

merged channels. Scale bar = 20μm.(e) SDS-PAGE of input recombinant proteins stained by 

Coomassie Blue (left), and pull down of His6-tagged HAM proteins through GST-tagged 

WUS/WOX proteins detected by immunoblotting with anti-His antibody (right). Asterisk: 

HAM1-His6band. (f–j) Co-immunoprecipitation of WUS-GFP and FLAG-HAM1 (f), WUS-

GFP and FLAG-HAM2 (g), GFP-WOX4 and FLAG-HAM4(h), WOX5-GFP and FLAG-

HAM2(i) (see Methods).
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Figure 2. WUS and HAM family genes cooperatively control the shoot stem cell niche and co-
regulate a common gene set
Shoot apices (a–d) (arrows) and inflorescence structures(e–h)of plants in indicated 

genotypes. Bars = 2 mm in (a–h).(i) RT-PCR quantification of WUS and HAM target gene 

expression in indicated genotypes. Error bar = mean ± sem(n=3 biological replicates). (j–m) 

LUC/REN activity in tobacco cells co-transformed with different reporter constructs 

(structured above each graph) and indicated effectors(see Methods). Min35S: 60 base pair 

35S minimum element, REN: Renilla luciferase, LUC: firefly luciferase, LB/RB: T-DNA 

left or right border. Error bar = mean ± sem(n=3biological replicates). (n–o) Chromatin 
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Immunoprecipitation of HAM2 protein with TPL or GRP23 chromatin regions, with 

ampliconlocations (Bars with numbers) diagrammed above each graph. The ChIP 

experiments were repeated three times using independent biological replicates with similar 

results, and one representative data set is shown.*, P<0.05; **, P<0.01; ***, P<0.001(two-

tailed t-test) in (i–o).
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Figure 3. HAM and WUS/WOX expression domains overlap
Expression of (a) pHAM1::2xYPET-N7microRNAsensitive marker (pHAM1::2xYPET-

N7mirS) (green), (b) pHAM2::2xYPET-N7mirS (green), (c) pWUS::DsRed-N7 (red) in L-er 

inflorescence meristem (IM), and (d) pHAM1::2xYPET-N7mirS (green) marker in a clv3-2 

IM. Orthogonal (upper panels) and transverse section (lower panels) views of the same plant 

are shown. (e–l) Overlapping expression patterns of pWUS::DsRed-N7 with 

pHAM1::2xYPET-N7mirS or pHAM2::2xYPET-N7mirS in the same shoot meristems (see 

Methods). Panels (from left to right): dsRed (red); YPET (green); PI (gray); merged 

channels. (m–n) Expression of pHAM2::YPET-HAM2 translation almarker (green) in L1 

(m) and L3 (n) of the same ham1,2,4 SAM.(o–t) Overlapping expression patterns of 

pHAM4::2xYPET-N7and pWOX4::YFP (green, arrows) in the provascular and procambium 
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cells in cotyledons (o–p), seedlings (q–r), and stem transverse sections (s–t). PIcounter 

stain: red (a–b, d, m–n), green (c), gray (g–h, k–l). Chlorophyll autofluorescence: red (o–t). 
Bars = 50 μm in (d, s–t); 200 μm in (o); 100 μm in (p–r); 20 μm in (a–c, e–n).
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Figure 4. HAM family members are essential for various plant stem cell activities
Scanning electron microscopic imaging of WT (a) and ham1, ham2, ham3, ham4 (b–d) 

seedlings (26 DAG). Arrow: ham1;2;3;4lacking a functional SAM.(e–f) Transverse sections 

of WT and ham1;2;3;4hypocotyls (7 DAG). Bars = 1 mm in (a–c, e–f), 50 μm in (d).
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