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Abstract

Although an anatomical connection from CA1 to CA3 via the Entorhinal Cortex (EC) and through 

backprojecting interneurons has long been known it exist, it has never been examined 

quantitatively on the single neuron level, in the in-vivo nonpatholgical, nonperturbed brain. Here, 

single spike activity was recorded using a multi-electrode array from the CA3 and CA1 areas of 

the rodent hippocampus (N=7) during a behavioral task. The predictive power from CA3→CA1 

and CA1→CA3 was examined by constructing Multivariate Autoregressive (MVAR) models 

from recorded neurons in both directions. All nonsignificant inputs and models were identified 

and removed by means of Monte Carlo simulation methods. It was found that 121/166 (73%) 

CA3→CA1 models and 96/145 (66%) CA1→CA3 models had significant predictive power, thus 

confirming a predictive ‘Granger’ causal relationship from CA1 to CA3. This relationship is 

thought to be caused by a combination of truly causal connections such as the CA1→EC→CA3 

pathway and common inputs such as those from the Septum. All MVAR models were then 

examined in the frequency domain and it was found that CA3 kernels had significantly more 

power in the theta and beta range than those of CA1, confirming CA3’s role as an endogenous 

hippocampal pacemaker.
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1 Introduction

Information flow through the hippocampus has long been viewed in the context of the 

trisynaptic pathway, a series of feedforward synapses from the entorhinal Cortex (EC) 

through the Dentate Gyrus and area CA3 to area CA1. However, there has long been 

evidence to support the notion that CA1 may also causally influence CA3 (see Fig. 1). 

Deadwyler et al. (1975) showed that population spikes from the hippocampus can reenter 

the hippocampus via the EC, thus giving the first evidence of a Hippocampal-entorhinal 

loop through which the CA1→CA3 causal influence may occur. It was later found that 

hippocampal reentrance was facilitated by the connections between CA1, the Subiculum, 

and the EC (Finch et al., 1986). Also, it was shown that the topology between the EC and 

the hippocampus is preserved, i.e. information which leaves the hippocampus returns to the 

same hippocampal neurons via the EC (Buzsáki, 1989; Tamamaki and Nojyo, 1995). 

Additionally, interneurons have been found in CA1 which directly backproject to CA3 (Sik 

et al., 1994).

Much work has been done to associate the Hippocampal-entorhinal loop with sustaining and 

spreading seizures. Pare et al. (1992) showed in Guinea Pig slice preparations that seizures 

will only occur once interictal activity is able to reenter the hippocampus through the 

Dentate Gyrus. The reverberation of ictal activity through the entorhinal-Hippocampal loop 

was later corroborated in rats using various in-vitro epilepsy models (Stringer and Lothman, 

1992; Nagao et al., 1996; Barbarosie and Avoli, 1997). Bragin et al. (1997) showed that ictal 

activity in-vivo did not simply reverberate around the hippocampal-entorhinal loop in fixed 

cycles, but was probably sustained by multiple nested oscillators, many of which may 

independently initiate ictal population spikes.

Although much work has been done to study the causal connection from CA1 to CA3 in the 

context of epilepsy, its function in the working nonpathologic brain remains largely 

unknown. Buzsáki (1989) showed that the ability of population spikes to reenter the 

hippocampus depends on the behavioral state of the animal. Furthermore, it has been shown 

that the CA1→EC pathway is able to undergo long-term potentiation, suggesting a role for 

this pathway in learning and memory (Craig and Commins, 2005). Furthermore, much 

experimental and computational research has implicated reverberatory neural activity 

between bidirectionally connected regions in sustaining working (short-term) memory 

(Fuster, 2000; Wang, 2001). In particular, this reverberatory activity can lead to 

rhythmogenesis which has been widely and successfully linked to performance in different 

memory tasks across several animals (Winson, 1978; Berry and Thompson, 1978; Wiebe 

and Stäubli, 2001; Staubli and Xu, 1995). Thus, given the central role of the hippocampus in 

consolidating working memories to the cortex, it seems reasonable to hypothesize that 

bidirectional causal connections between hippocampal regions play an important role in this 

process.
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Although several studies have explored the causal connection from CA1 to CA3 on a 

network level, using local field potentials, and usually in the context of epilepsy, no studies 

have yet explored this connection on a single neuron level in the nonpathologic, 

nonperturbed brain. In the past, our group has developed several multiple-input 

nonparametric predictive models characterizing the dynamics from CA3 to CA1 for point-

process data recorded in rodents during a behavioral task (Song et al., 2007; Zanos et al., 

2008; Marmarelis et al., 2012; Sandler et al., 2014). These models have been validated both 

analytically and in-vivo, in the context of hippocampal prosthesis (Berger et al., 2012; 

Hampson et al., 2012a). In the present study, we use similar models to show that a ‘Granger-

like’ causal relationship exists from CA1→CA3. Furthermore, we show that the predictive 

power of this relationship is as strong as that from CA3→CA1. Lastly, we show how the 

bidirectional dynamics between CA3 and CA1 can be used to shed light on the emergence 

and propagation of the hippocampal theta and gamma rhythms.

2 Methods

2.1 Experimental Protocols and Data Preprocessing

Male Long-Evans rats were trained to criterion on a two lever, spatial Delayed-NonMatch-

to-Sample (DNMS) task. Spike trains were recorded in-vivo during performance of the task 

with multi-electrode arrays implanted in the CA3 and CA1 regions of the hippocampus. 

These experiments were conducted in the labs of Dr. Deadwyler and Dr. Hampson at Wake-

Forest University and have been described in detail in our previous publications (Hampson 

et al., 2012a). Only neural activity from trials where the rat successfully completed the 

DNMS task was used. Spikes were sorted, time-stamped, and discretized using a 2ms bin. 

Spike train data from 1s before to 5s after the sample presentation phase of the DNMS task 

was extracted and concatenated into one time series. In total, 74 CA3 cells and 84 CA1 cells 

were recorded during 9 sessions in 7 different animals (table 1). As previous studies have 

shown that the cell dynamics vary depending whether the trial involved the left or right lever 

(Hampson et al., 2012a), separate MIMO models were constructed for both types of trials 

for a total of 166 CA3→CA1 and 145 CA1→CA3 models. Time series lengths varied due to 

the number of trials in the session and ranged from 30 seconds to 5 minutes. As the 

motivation behind our modeling is to quantify predictive power between the CA3 and CA1 

regions, no attempt was made to separate principal cells and interneurons.

2.2 Model Configuration and Estimation

Nonparametric multiple-input linear autoregressive models were used to model the 

dynamical transformation between input and output spike trains (see Fig. 2). Thus, each 

model consisted of a feedforward component, reflecting the effect of the N input cells on the 

output cell and a feedback/autoregressive component reflecting the subthreshold and 

suprathreshold effects the output cell has on itself. Thus, the output y is calculated as:

(1)
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where kn reflects the feedforward kernel of input n, and kAR reflects the autoregressive/

feedback kernel. In order to reduce the amount of parameters in the model, we applied the 

Laguerre expansion technique to expand the feedforward and feedback kernels over L 

Laguerre basis functions (Marmarelis and Orme, 1993). This technique has also been shown 

to dramatically reduce the amount of data needed to estimate accurate dynamic input-output 

time-series models (Marmarelis, 2004). Thus, the input and output data records were first 

convolved with the Laguerre functions:

(2)

(3)

where bl is the lth Laguerre basis function. By first convolving with the La-guerre basis 

functions, the dynamical effects of the past input epochs are removed and we are left with a 

simple regression of contemporaneous data. Substituting equations (2) and (3) into equation 

(1) we have:

(4)

where cl,xi and cl,y are the feedforward and feedback Laguerre expansion coefficients. All 

model parameters were estimated using minimum mean square error (MMSE) estimation. 

The memory of our system was fixed at 300ms, in accordance with previous studies (Song 

et al., 2007; Lu et al., 2011). The Laguerre parameter was fixed at 0.84 to reflect this system 

memory (Marmarelis, 2004).

2.3 Model Selection

In theory, the most predictive model would include all recorded inputs. However, such a 

model would be susceptible to overfitting, and would not reveal which neurons are causally 

connected to each other. To overcome this issue a forward step-wise selection procedure 

was used to minimize overfitting and prune out all inputs which are not causally related to 

the output (Song et al., 2009a). Given an output cell and M potential input cells recorded 

during the same session, the following steps were used to select the N input cells which are 

causally connected to the output cell. First, the data was divided into training (in-sample) 

and testing (out-of-sample) sets. Then, M single-input single-output (SISO) models were 

constructed with each of the potential inputs. The model whose predicted output had the 

highest correlation, as measured by the Pearson correlation-coefficient, ρ, with the actual 

output was selected. Afterwards, N-1 two input models were constructed using the 

previously selected input and one of the remaining potential inputs. If any of the inputs were 

able to raise ρ, the input which raised ρ the most was selected; otherwise, the procedure was 

ended, and only 1 input was selected. This procedure was repeated until either none of the 
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inputs were able to raise ρ, or all M potential neurons were selected. The N selected neurons 

were then used as the model input.

2.4 Model Validation

To avoid overfitting, Monte Carlo style simulations were used to select those models which 

represent significant causal connections between input and output neurons and do not just fit 

noise (Zanos et al., 2008). The following procedure was used: in each run the real input was 

replaced with a surrogate Poisson input having the same mean firing rate (MFR) as the real 

input. A model was then generated between the surrogate input and the real output, and the 

Pearson correlation coefficient, ρi, was obtained as a metric of performance. T=40 such 

simulations were conducted for each output and a set of performance metrics, , was 

obtained. Then, using Fischer’s transformation, we tested the hypothesis, H0, that ρ was 

within the population of {ρi}. If this hypothesis could be rejected at the 95% significance 

level, the model was deemed significant.

2.5 Kernel Analysis

In order to gain understanding of the underlying CA3→CA1 and CA1→CA3 dynamics, 

several features of the estimated kernels were analyzed. The total area, both positive and 

negative, of a kernel reflects the influence the associated input has on the output, and thus 

can be used as a measure of the predictive power the given input has on the output. The 

excitatory index, defined as the ratio of positive area to total area, was used to quantify 

whether a given input cell has an excitatory or inhibitory influence on the output cell. Thus, 

an excitatory index of 1 corresponds to an entirely excitatory input, while an excitatory 

index of 0 corresponds to an entirely inhibitory input.

To quantify how the kernels contribute to neuronal oscillations, the power within the kernels 

in the given frequency band was calculated. In order to compare the power in a given 

frequency band between two kernels, the power in the given band was normalized by the 

total kernel power. These metrics are summarized in table 2.

2.6 Principal Dynamic Mode Analysis

A major issue of data based system identification is how to extract features of the underlying 

system from subject to subject variability. This issue is particulary pertinent when dealing 

with large datasets such as those in this study. One approach developed by our group to deal 

with this issue is to extract the global Principal Dynamic Modes (PDMs) of the system 

(Marmarelis, 2004; Marmarelis et al., 2013, 2014). Essentially, the PDMs are an efficient 

system-specific set of basis functions which parsimoniously describe the linear dynamics of 

each input-output transformation. The global PDMs were obtained in a two step process: 

first, all kernels of each input from every animal were concatenated in a rectangular matrix. 

Then singular value decomposition (SVD) was performed on the rectangular matrix to 

obtain all the significant singular vectors, which are the global PDMs. Here, two sets of 

PDMs were obtained for both the CA3→CA1 and CA1→CA3 feedforward transformation. 

It was found that 3 global PDMs were sufficient to describe the linear dynamics of each 

transformation.
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2.7 Statistical Analysis

Unless otherwise noted, the unpaired Mann-Whitney U test was used to access whether 

significant differences exist between two samples. This test was used since it does not 

assume a normal distribution, and much of our data was found to be skewed/nonnormal. 

Shift estimates (Hodges-Lehman) and confidence intervals were estimated as prescribed by 

Higgins (2003). In order to estimate the scale estimate, or the ratio between two samples, the 

data was first log-transformed and then scale estimate was taken to be the antilog of the shift 

estimate.

In addition to the Pearson correlation coefficient, ρ, Receiver Operating Characteristic 

(ROC) curves were used to visualize model performance. ROC curves plot the true positive 

rate against the false positive rate over the putative range of threshold values for the 

continuous output, y (Zanos et al., 2008). The area under the curve (AUC) of ROC plots are 

used as a performance metric of the model, and have been shown to be equivalent to the 

Mann-Whitney two sample statistic (Hanley and McNeil, 1982). The AUC ranges from 0 to 

1, with 0.5 indicating a random predictor and higher values indicating better model 

performance. The ρ and AUC metrics were chosen as they measure the similarity between a 

continuous ‘prethreshold’ signal and a spike train. The continuous ‘prethreshold’ signal was 

chosen over adding a threshold trigger and comparing true output spike train with an output 

‘postthreshold’ spike train for two reasons. First, this allows us to avoid specifying the 

threshold trigger value, which relies on the somewhat arbitrary tradeoff between true-

positive and false-negative spikes (Marmarelis et al., 2013). Also, similarity metrics between 

two spike trains often require the specification of a ‘binning parameter’ to determine the 

temporal resolution of the metric (van Rossum, 2001; Victor and Purpura, 1997).

3 Results

3.1 Estimated Models

166 CA3→CA1 and 145 CA1→CA3 multiple-input single-output (MISO) models, spanning 

7 animals (table 1), were examined to determine whether a predictive relationship exists 

going from CA1→CA3 and how this relationship compares with the established predictive 

relationship from CA3→CA1. A representative CA1→CA3 model is shown in Fig. 3. 

Monte Carlo style simulations were performed for every estimated model in order to 

establish significance (see methods). Fig. 4A shows the results of these simulations for the 

model shown in Fig. 3, which was deemed significant. Fig. 4B shows an example of a model 

deemed insignificant. To see whether the Pearson correlation coefficient was a valid metric 

to use to compare continuous signals and spike trains, the absolute ρ values were plotted 

against their estimated significance level (p-value) in Fig. 4C. The green line shows the 

chance that a model of a given ρ value or higher will be deemed significant. It is clear that 

higher ρ values mean that a model is more likely to be deemed significant. Furthermore, if 

the model’s ρ value is greater than 0.2, there is a >95% chance it will be deemed significant; 

thus, although low ρ values are inconclusive, a ρ value >0.2, can be used to deem the model 

significant without undergoing full Monte Carlo simulations. These facts justify the use of ρ 

to assess the quality of our models. The feedforward and feedback kernels of all the 

significant models are shown in Fig. 5.

Sandler et al. Page 6

J Comput Neurosci. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



3.2 General Trends

The predictive power of feedforward and feedback kernels was compared (Fig. 6A). 

Feedback kernels were found to have significantly more predictive power than feed-forward 

kernels. This is not surprising given that hippocampal principal cells have an estimated 

380,000 synapses (wes), thus severely limiting the ability of any single input cell to 

determine the output cell’s behavior. The ability of a cell’s past activity to influence its 

current behavior, however, is well known. Pyramidal cells not only have absolute refractory 

periods lasting a few milliseconds but afterhyperpolarization lasting upto several seconds 

(Spruston and McBain, 2007). Furthermore, the feedback kernels incorporate the well-

known intraregional recurrent connections between pyramidal cells and interneurons within 

the hippocampal CA3 and CA1 regions (Li et al., 1994; Goutagny et al., 2009).

In Fig. 6B, the total area of each kernel was plotted against the MFR of its associated inputs 

to see whether there was any relationship between input MFR and predictive power. It was 

found that the most predictive cells were those with a MFR below 6 Hz. It is reasonable to 

assume that these cells correspond to principal cells. This is not surprising given that the 

primary output of both regions is provided by principal cells. In fact, the set of highly 

predictive principal cells may correspond to the so-called functional cell types which 

selectively fire in response to a specific type of stimulus in the DNMS task (ie left-

nonmatch) (Hampson et al., 1999, 2012a,b; Goonawardena et al., 2010). Given that these 

cells are found both in CA3 and CA1 it is clear that these cells would have predictive power 

over each other.

3.3 Bidirectional Predictive Power & Dynamics

The predictive power, as measured by ρ values, between CA3→CA1 and CA1→CA3 

models was compared (Fig. 7). As shown in Fig. 7A, 121/166 (73%) CA3→CA1 and 

96/145 (66%) CA1→CA3 models were found to be significant. Although a higher 

proportion of CA3→CA1 models were significant, this difference was not itself deemed 

significant (2-sample z test, P=.2). The ρ values of all the significant models in both 

directions were then compared (Fig. 7B). Once again, no significant differences were found 

in the predictive power of the models (P=.27).

To better visualize these results in a single animal, bidirectional connectivity grids were 

constructed between CA3 and CA1 cells recorded in the same session (Fig. 8A) (Kim et al., 

2011). Each square in the connectivity grid shows the bidirectional connectivity between 

two cells. As can be seen, many pairs of cells have bidirectional connectivity (ie between 

CA3 cell #2 and CA1 cell #3), while other pairs of cells only have unidirectional 

connectivity (ie CA3 cell #2 influences CA1 cell #4, but not vice-versa). Other pairs of cells 

had no influence on each other (ie CA3 cell #2 and CA1 cell #9). It was found that cells 

which had a causal connection in one direction were 16% more likely to have a connection 

in the other direction (Fig. 8B. 2 proportion z-test, p<.001, CI=5%). This suggests that not 

only are the CA3 and CA1 regions bidirectionally connected, but specific cells within those 

regions are bidirectionally connected. Such topographical preservation of connectivity 

between individual CA3 and CA1 cells has been previously shown in physiological and 

labeling studies (Buzsáki, 1989; Tamamaki and Nojyo, 1995).
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Finally, the relationship between excitatory levels from CA3→CA1 and CA1→CA3 in 

bidirectionally connected cells was examined. A positive trend was found between the 

excitatory levels in both directions (Fig. 8C. Spearman’s ρ=.44. p<.001). From a control 

theory standpoint, this suggests that CA3 and CA1 cells are prone to be wired in a positive 

feedback loop. Such a structure is particularly prone to the unstable oscillations which 

characterize epilepsy. Indeed, in-vitro experiments have shown such uncontrolled 

oscillations in hippocampal-entorhinal epilepsy slices (Pare et al., 1992; Barbarosie and 

Avoli, 1997).

Although the predictive power of both pathways was found to be roughly equal, the 

dynamics of the two pathways were, as to be expected, asymmetrical. In particular, a 

difference in the timecourse of the dynamics was seen in the estimated kernels. The mean 

normalized RMS power of each set of feedforward kernels can be seen in Fig. 9. It was 

found that the CA3→CA1 kernels had significantly more power in the first 10ms (Δ=

+13.5%, P=.026, see Fig. 9), while the CA1→CA3 kernels had more power from 20–40ms 

(Δ=+14.5%, P=.005). The slower timecourse of the CA1→CA3 pathway is to be expected 

giver the much longer anatomical path that information from CA1 takes through the EC to 

reenter CA3 (although as noted, information from CA1 may reenter CA3 directly through 

backprojecting interneurons, this pathway is presumed to be more sparse than the EC 

pathway).

3.4 Bidirectional PDM Analysis

The global PDMs for each pathway were calculated as discussed in methods and are shown 

in Fig. 10. The PDMs can be seen as a system-specific basis of functions which efficiently 

describe the linear dynamics of each pathway. The 1st PDM of both pathways is almost 

identical and has its peak in the 0th time bin, indicating concurrent firing in both 

populations. Such concurrent firing presumably arises through common inputs such as those 

from the EC and has the effect of coding common representations of the environment in 

both regions. The 2nd and 3rd PDMs are different in both pathways and presumably 

represent direct causal influences from one region onto the next, The 2nd PDM in both 

pathways has a delayed excitatory effect, which peaks at 10ms in the CA3→CA1 pathway 

and at 20ms in the CA1→CA3 pathway. The slower timecouse of the 2nd PDM from 

CA1→CA3 corroborates what was seen in the RMS power timecourse analysis in Fig. 9. It 

should be noted that several groups have shown that electrical volleys induced by 

stimulation in CA1 take roughly 20ms to reach CA3 (Deadwyler et al., 1975; Buzsáki, 1989; 

Wu et al., 1998). The 3rd PDM in both pathways oscillated in the theta range at 5Hz. 

However, although both PDMs oscillated at the same frequency, they were 180° out of 

phase, with the CA3→CA1 PDM having an initial excitatory component and the 

CA1→CA3 PDM having an initial inhibitory component. This PDM phase difference may 

provide a mechanism for the finding that CA3 and CA1 principal cells fire 180° out of phase 

during the theta cycle (Mizuseki et al., 2009). Namely, the theta phase difference in cell 

firing may emerge through a theta phase difference in the dynamical transformations 

between the regions, which can be observed in the 3rd PDM.
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3.5 Theta and Gamma Power

Hippocampal theta and gamma rhythms have long been shown to be relevant for normal 

animal behavior (Winson, 1978; Chrobak et al., 1989; Axmacher et al., 2006), and 

pathological phenomena such as epilepsy (Pacia and Ebersole, 1997; Doose and Baier, 

1988; Medvedev, 2001). However the mechanism by which brain rhythms emerge is still not 

fully understood. Several mechanisms have been suggested to contribute to rhythmogenesis 

in the hippocampus, including intrinsic neuronal resonance properties (Leung and Yu, 1998; 

Hutcheon and Yarom, 2000), intraregional recurrent networks of interneurons and pyramidal 

cells (Goutagny et al., 2009; Buzsáki and Wang, 2012), and external inputs (Buzsáki, 2002; 

Colom, 2006). In our model, feedback kernels incorporate both intrinsic neuronal resonant 

properties and intraregional recurrent connections (Kim et al., 2011). The feedforward 

kernels, on the other hand, represent the ability of the input region to elicit rhythms in the 

output region.

The mean band power of CA3→CA1 and CA1→CA3 feedforward and feedback kernels 

was calculated and compared (Fig. 11A,C). These mean band powers were found to be 

surprisingly similar in both directions. This may be because of common inputs to both 

regions which modulate the rhythmic properties of the region. For every frequency, a two 

sample Mann-Whitney test was used to check for significant differences. Amongst the 

feedforward kernels, the CA3→CA1 direction was found to have a stronger beta/low 

gamma rhythm (20–40Hz, +13.9%, P<.01. CI=[5.7,22]%; Fig. 11B). Amongst the feedback 

kernels, the CA3 cells were found to have stronger feedback theta components (4–6Hz, 

+23.5%, P<.01. CI=[6.4,39]%; Fig. 11D). No other significant differences were found.

4 Discussion

4.1 CA1→CA3 Influence

In this report we have shown that the model predictive power in the in-vivo rodent 

hippocampus from CA1 cells to CA3 cells is just as significant as the model predictive 

power from CA3 cells to CA1 cells. Although the predictive power of the connections was 

not shown to be significantly different, our analysis revealed several differences in the 

dynamical nature of the two pathways. On the simplest level, the CA1→CA3 pathway had 

slower dynamics than the CA3→CA1 pathway, which is to be expected given the longer 

anatomical route information takes to return from CA1 to CA3 (see Fig. 9). Further 

differences were revealed with PDM and frequency analysis (Fig. 10 & 11). PDM analysis 

in particular proved useful in seperating concurrent firing presumably caused by common 

inputs (PDM #1) and slower dynamics presumably caused by direct causal connections 

(PDMs #2 & 3).

The finding that both pathways had no significant difference in predictive power is very 

surprising given the tenuous anatomical connections from CA1 to CA3. This predictive 

capability presumably arises from the combination of direct anatomical connections from 

CA1 to CA3 and from common inputs into both regions (Fig. 1,12). What is clear, however, 

is that the classical view of hippocampal information processing, in the form of the 
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trisynaptic pathway, may have to be revised to include return pathways that allow the 

possibility of CA1 having predictive power on CA3.

There exist several direct anatomical pathways by which CA1 may casually influence CA3. 

These connections are summarized in Fig. 1B. Interneurons which backproject directly from 

CA1 to CA3 have been reported (Sik et al., 1994). Furthermore, there are several routes 

through the entorhinal Cortex (EC) which connect CA1 to CA3. Information from CA1 may 

reach the EC either directly, or through the subiculum (Finch et al., 1986). From the EC, 

information may go back to CA3 either through the Dentate Gyrus, as in the classical 

trisynaptic pathway (Naylor, 2002), or directly via the temporoammonic pathway (Jones, 

1993; Kloosterman et al., 2004; Ahmed and Mehta, 2009). There is evidence that multiple 

paths operate simultaneously (Finch et al., 1986). It should be noted that the hippocampal-

entorhinal loop has been shown be fundamental for seizures in in-vitro epilepsy models 

(Pare et al., 1992; Stringer and Lothman, 1992; Barbarosie and Avoli, 1997; Avoli et al., 

2002). In particular, ictal activity has been shown to continually oscillate through this loop, 

thus maintaining seizures (Pare et al., 1992). The exact role this loop plays in the in-vivo 

nonepileptic brain, however, remains unclear (Bragin et al., 1997).

Furthermore unobserved variables may contribute to the predictive relationship between two 

regions. In our case, these would take the form of common inputs to both CA3 and CA1 

(although there are other possibilities, such as physical perturbation or temperature). 

Candidates for common inputs include the EC and the medial septum. In the case of the EC, 

it should be noted that EC layer II projects to CA3 while EC layer III projects to CA1. There 

is strong evidence to believe that there is a predictive relationship between these two layers 

(Kloosterman et al., 2004), which is enough to insure a predictive relationship between CA1 

and CA3. The medial septum may have a particularly important role in contributing to the 

CA1, CA3 predictive relationship given its purported role as the ‘hippocampal pacemaker’ 

(Colom, 2006). It has been shown that hippocampal regions have distinct phase preferences 

with regards to the theta rhythm (Mizuseki et al., 2009). Although there is evidence that 

hippocampal subregions can generate theta rhythms in isolation (Kocsis et al., 1999; 

Goutagny et al., 2009), an external pacemaker input, such as the septum, may be responsible 

for maintaining the distinct theta phase preferences. These phase preferences can lead to a 

bidirectional predictive relationship between the regions.

It is likely that both direct anatomical connections and common inputs contribute to the 

CA1→CA3 predictive relationship; however the relative influence of each remains 

unknown and cannot, in principle, be inferred by simply observing (recording) the regions. 

The advantage of the data-driven/nonparametric modeling approach used in this study is that 

the kernels express the dynamics between two regions even when the underlying 

mechanisms responsible for the dynamics are unknown. This is because the kernels are 

derived directly from the data without any a priori assumptions about the dynamics. 

Furthermore, the kernels will not change with future discoveries (Marmarelis, 2004; Song et 

al., 2009b,c). It should also be noted that the 300ms memory of the kernels allows the 

kernels to capture much more complicated dynamics than simple synaptic transmission, 

which takes 2–3ms from CA3→CA1 via the Schaffer-Collateral pathway and takes 

anywhere from 18–45ms from CA1→CA3 via the entorhinal Cortex Deadwyler et al. 
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(1975); Buzsáki (1989). These more complicated dynamics encapsulate the time-course of 

NMDA and GABA synaptic transmission (100ms, and 200–500ms, respectively; Wang 

(2001)), intraregional recurrent connectivity, and the afterhyperpolarization (>1s; Spruston 

and McBain (2007)).

4.2 Modeling Methodology

In this paper, a linear (1st order Volterra) Laguerre autoregressive model was used to 

describe hippocampal dynamics (Marmarelis, 2004). This linear model is differentiated from 

an ARMAX model by the use of the Laguerre basis expansion which reduces model 

parameters and the amount of data needed to estimate the model. In the past it has been 

demonstrated that the CA3→CA1 relationship is nonlinear, and that at least a 2nd order 

Volterra model is needed to describe these nonlinearities (Song et al., 2007; Zanos et al., 

2008). Here, we confined ourselves to a linear model for two reasons. First, our goal was not 

to make the best predictive model, but only to identify predictive relationships amongst the 

recorded neurons. Second, linear models lend themselves more easily to interpretation via 

intuitive metrics such as total power and excitatory index. However, there may be nonlinear 

causal relationships between neurons which the linear model will not detect. For example, 

an input neuron may not influence the output neuron directly, but only through cross-

interactions with another input neuron. This causal influence would be detected in a second 

order Volterra model in the form of cross-terms, but will not show up in a linear model. 

Thus, the number of causal connections which were found in this study serve only as a lower 

bound for the true number of causal connections.

4.3 Rhythms

Feedforward and feedback kernels were analyzed in the frequency domain to see whether 

they could shed light on how oscillations emerge within regions (via the feedback kernels) 

and how these oscillations spread to other regions (via the feed-forward kernels). Before 

discussing the results, the relationship between the kernels and rhythmogenesis should be 

clarified. The feedback kernels reflect the casual effects cells have on themselves. 

Minimally, these effects would include the after-hyperpolarization (AHP) induced in cells 

after action potentials. The AHP can last upto several seconds and results from the various 

ionic currents which restore a cell back to equilibrium potential (Spruston and McBain, 

2007). It has been shown that the AHP in CA1 pyramidal cells has a theta resonance brought 

about by Ih channels (Leung and Yu, 1998; Pike et al., 2000). Additionally, the feedback 

kernels would incorporate intraregional recurrent connections between cells such as the 

extensive recurrent principal cell networks in CA3 (Kim et al., 2011; Li et al., 1994). The 

feedback kernels may also reflect interregional recurrent connections between cells, such as 

the connections between CA3 and the Dentate hilar region which have been suggested to 

give rise to theta oscillations (Buzsáki, 2002; Scharfman, 2007; Gonzalez-Sulser et al., 

2011). The feedforward kernels on the other hand reflect all the physiological processes 

which occur between a spike in the input cell and a spike in the output cell. These minimally 

include axonal conductance in the input cell and synaptic integration mechanisms in the 

output cell. They could also include propagation via intermediate cells, such as the 

multisynaptic route from CA1 to CA3 via the EC. On a functional level, however, the 

feedforward kernels should be seen as a filter for information flow from one region to the 
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other. Thus, the theta and delta peaks found in the feedforward kernels indicate that 

information packaged within theta and delta oscillations will be preferentially transferred to 

the adjacent region (Gloveli et al., 1997).

In our analysis it was found that CA3 feedback kernels had more theta power than CA1 

feedback kernels. This supports previous experimental studies which have shown that CA3 

is able to independently generate strong theta rhythms and that it projects these rhythms to 

CA1 (Kocsis et al., 1999; Buzsáki, 2002). Furthermore it has been shown that individual 

pyramidal cells and interneurons cyclically fire in a consistent phase with the theta field 

potential (Mizuseki et al., 2009). This is ideal for our analysis which deals exclusively with 

spike data from individual cells. The CA3 region has also been shown to be an independent 

gamma rhythm generator and to project these rhythms to CA1 (Csicsvari et al., 2003; Colgin 

et al., 2009). Gamma field potentials, however, are generated by the coordinated activity of 

interneurons and pyramidal cell ensembles and not individual pyramidal cells. Thus, while 

pyramidal cells may have subthreshold gamma oscillations, these are not reflected in their 

spiking activity since their mean firing rate is well below the gamma range (Mann and 

Paulsen, 2005; Buzsáki and Wang, 2012). This is presumably why there was no gamma 

difference in the feedback kernels, even though it is known that CA3 is a gamma generator. 

There was however more power in the CA3→CA1 feedforward kernels in the beta/low 

gamma range. This is in accordance with reports showing that gamma rhythms in CA3 may 

entrain beta rhythms in CA1 (Bibbig et al., 2007). The agreement of our results with 

previous physiological studies shows that our method can be used to detect intraregional 

rhythmogenesis and to probe frequency selective information flow between regions.

4.4 Potential Applications

In the past, our group has done work to implement a hippocampal cognitive prosthetic 

between CA3 and CA1 (Berger et al., 2005, 2012; Hampson et al., 2012a). The principal 

behind the prosthetic is that the predictive relationship from CA3→CA1 can be identified 

and CA1 neurons can be artificially stimulated to evoke their natural response, even if the 

direct Schaffer-Collateral connection is damaged. This essentially creates an electronic 

‘neural bypass’ for the Schaffer-Collateral connection. The prosthetic was successfully 

developed and used to restore a rat’s performance ability during a behavioral task 

(Marmarelis et al., 2012; Berger et al., 2012). Given the finding that the CA1→CA3 

predictive relationship is just as strong as the CA3→CA1 predictive relationship, we suggest 

the prosthetic idea can be extended to a CA1→CA3 prosthetic, and help restore some of the 

function of CA3 even when CA3 afferents are damaged.

Recurrent connections between brain regions have long been thought to be a critical 

component for sustaining seizures. Several studies have shown that these recurrent 

connections can amplify ictal activity and lead to the synchronized oscillations which 

characterize seizures (Wendling et al., 2002; Wendling, 2008; Bertram, 2013). In particular, 

several studies have directly explored the role recurrent connections between the 

hippocampus and entorhinal Cortex play in epilepsy (Barbarosie and Avoli, 1997; Boido et 

al., 2014). So far, however, there has been no attempt to create a data-based closed-loop 

model of this phenomenon. Such a model can potentially be used to rigorously study how 
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ictal activity arises from recurrent connections between these regions. Furthermore, one can 

use such an ‘in-silico’ epilepsy model to study what effect external perturbations will have 

on the seizure and its associated oscillations. This is particularly relevant for deep-brain 

stimulation (DBS) which aims to abort seizures by perturbing the in-vivo epileptic brain. In 

this study we have shown that there is a recurrent connection between CA3 and CA1 and 

several distinctive features of these dynamics have been identified. Currently, work is 

underway to use our identified CA3→CA1 and CA1→CA3 dynamics as subsystems in 

precisely this type of closed-loop model (Sandler et al., 2013).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(A) Horizontal rodent hippocampal slice showing anatomical locations of the areas dealt 

with in our model. (B) Detailed schematic representation of anatomical connectivity of 

hippocampus. Black and red lines show excitatory and inhibitory connections, respectively. 

Notice that information from CA1 may enter CA3 via a direct inhibitory connection (bold 

red line), or via multisynaptic paths through the entorhinal Cortex (bold black line)
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Fig. 2. 
Model Configuration. Each model has N point-process inputs which each go through a 

linear kernel, Ki. These inputs are then summed with the output of the feedback kernel, KAR 

to generate the final output, y(t), which is a continuous signal
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Fig. 3. 
Representative CA1→CA3 model with 4 inputs and a single output. (a) Rasterplots of input 

and output activity over 4 minutes. MFR is abbreviation for mean firing rate. (b) Estimated 

input (feedforward) and feedback kernels. Notice that many kernels have both excitatory 

(positive area) and inhibitory (negative area) effects. Furthermore, input kernels #1 and #4 

display strong theta oscillations. (c) ROC plot showing model predictive power. The light 

blue line (TPR=FPR) indicates a model with no predictive power. AUC=668.001. For this 

model, ρ=0.11
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Fig. 4. 
(A,B) Examples of Monte Carlo simulations: For each model, 40 surrogate models with 

random Poisson inputs of the same mean firing rate were generated. The Fischer z-scores of 

these models, which are derived from ρ, were plotted as a histogram, while the true ρ value 

is the plotted dashed red line. The P value for the hypothesis that the true ρ value is greater 

than the simulated ρ values is printed above the graphs. Models were deemed significant if 

P<.05. (A) shows the results for the model in Fig. 3, which was deemed significant. (B) 

shows an insignificant model (C) Scatterplot of absolute values of ρ and their associated 

significance values. The green line shows the probability that a model with a given ρ value 

or greater will be deemed significant
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Fig. 5. 
All significant feedforward (top) and feedback (bottom) kernels from CA3→CA1 (left) and 

CA1→CA3 (right)
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Fig. 6. 
(A) Boxplots of total power of all feedforward kernels (FF, N=659) and all feedback kernels 

(FB, N=203). The average feedback kernels had 2.82 times the area of the average 

feedforward kernel (MW test, P<.001. CI=[2.5,3.2]). (B) Scatterplot of input MFR vs kernel 

total area. Notice there was little to no difference between CA3→CA1 and CA1→CA3 

models
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Fig. 7. 
Comparison of CA3→CA1 and CA1→CA3 predictive power. (A) Histogram of CA3→CA1 

(top) and CA1→CA3 (bottom) P-values, acquired from Monte Carlo simulations (see Fig. 

4). Dashed red line is the 5% significance level. (B) Boxplot (right) and histogram (left) of 

the ρ values of all significant models. The black line shows the median, while the red line 

shows the mean
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Fig. 8. 
(A) Representative bidirectional connectivity grid. In each square there are two values 

representing the excitatory indices from CA3→CA1 (top) and from CA1→CA3 (bottom). 

Blue shading corresponds to net excitatory connections, while salmon shading corresponds 

to net inhibitory connections (i.e. excitatory index < 0.5) Blank values indicate no 

significant causal connection. (B) Table of significant connections. S=significant, N=not 

significant, Tot=total. (C) Scatter plot of bidirectional excitatory levels and fitted linear 

regression.
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Fig. 9. 
(A) mean normalized RMS power of CA3→CA1 and CA1→CA3 pathways. (B) The ratios 

of power of early dynamics (1st 10ms, pink plot) and late dynamics (20–40ms, blue plot) vs 

total power were compared between both pathways using a two-sample Mann-Whitney test. 

It was found that the CA3→CA1 pathway has more power in 1st 10ms (Δ=+13.5%, P=.026) 

whereas CA1→CA3 has more power later on from 20–40ms (Δ=+14.5%, P=.005). Here 31 

and 13 refer to CA3→CA1 and CA1→CA3 kernels respectively.
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Fig. 10. 
Global PDMs for (A) CA3→CA1 pathway and (B) CA1→CA3 pathway.
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Fig. 11. 
Frequency power band di3erences between CA3→CA1 and CA1→CA3 models. (A) 

Feedforward kernels. Top: mean band power per frequency for both classes. Bottom: Mann-

Whitney scale estimate and confidence bounds for every frequency in the 0–50Hz range. 

Positive values reflect CA3→CA1 model is greater. Differences are significant whenever 

confidence bounds do not include 0. Notice CA3→CA1 models have significantly greater 

beta/low gamma band power (20–40 Hz, indicated by orange bar). (B) Histograms and 

boxplot of band power values for the beta/low gamma range which are shown in A. Solid 

violet line and dashed black line show the mean and median of the data, respectively. The 

boxplot labels of 31 and 13 refer to CA3→CA1 and CA1→CA3 respectively. (C,D) Same 

as A,B for Feedback kernels. Notice CA3 neurons have significantly greater feedback theta 

components (4-6 Hz, indicated by grey bar)
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Fig. 12. 
Abstract schematic of CA3 and CA1. Notice CA1 can have predictive power over CA3 via 

anatomical connections (labeled FB) and through common inputs which project to both 

regions
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Table 1

Summary of obtained data. Subsession labels LA, LB, RA, and RB refer respectively to left hippocampus A-

nonmatch, left hippocampus B-nonmatch, right hippocampus A-nonmatch, and right hippocampus B-

nonmatch. A-nonmatch and B-nonmatch refer to the right and left lever during the DNMS task. See Hampson 

et al. (2012a). Last row indicates totals.

Animal Session Subsessions CA3 Cell Count CA1 Cell Count

1098 53 LA,RA,LB,RB 15 23

1099 58 LA,LB 4 8

1141 60 RA,RB 4 7

1134 100 LA,RA,LB,RB 12 12

1148 116 LA,LB 4 8

1147 117 LA,LB 6 4

118 LA,RA,LB,RB 12 8

1154 120 LA,RA,LB,RB 9 8

124 LA,RA,LB,RB 8 6

7 9 28 74 84
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Table 2

Summary of kernel analysis metrics used

Metric Interpretation Formula Notes

Total Power (TP) Predictive power of given input

Excitatory Index (EI) Inhibitory/Excitatory connections

Band Power (BP) Power in frequency band between 
[a,b]Hz

K(f) = DFT[k(t)]
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