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Abstract

Although diarrhea is the predominant bowel dysfunction in as many as one-third of patients with 

irritable bowel syndrome (IBS), it is unclear whether there is a specific disorder of intestinal fluid 

or electrolyte secretion in IBS. Diarrhea is generally considered secondary to accelerated colonic 

transit in patients with IBS. Although a primary secretory diathesis has not been well documented 

in patients with IBS with diarrhea (IBS-D), several mechanisms that could potentially contribute 

to intestinal secretion have been reported. Some of these mechanisms also influence motor and 

secretory dysfunctions that contribute to the pathophysiology of IBS-D. We review the evidence 

supporting secretion in IBS-D caused by peptides and amines produced by enteroendocrine cells 

or submucosal neurons, enterocyte secretory processes, and intraluminal factors (bile acids and 

short-chain fatty acids). Understanding these mechanisms and developing clinical methods for 

their identification could improve management of patients with IBS-D.
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Introduction

Diarrhea (D) is the predominant bowel dysfunction of up to one-third of patients with 

irritable bowel syndrome (IBS) and it appears to be dominant, particularly in patients with 

post-infectious IBS (PI-IBS).1 To date, there is no published evidence that there is a specific 

disorder of intestinal fluid or electrolyte secretion in IBS;2 thus, the diarrhea in IBS is 

generally considered secondary to accelerated colonic transit and the reduced volume of the 
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proximal colon. The 24-hour stool weight was significantly correlated with the rate at which 

radiolabeled solid residue emptied from the ascending and transverse colons, and there was 

also an inverse relationship between emptying rates of those colonic regions and the 

maxima1 volume of the proximal colon.3 Reduced volume may result from the increased 

rectal or colonic tone postprandially and in response to lipids, described in IBS-D.4,5 

Although a primary secretory diathesis has not been well documented in IBS-D, several 

mechanisms that could potentially contribute to intestinal secretion have been reported, and 

some of these mechanisms also influence motor and secretory dysfunctions that contribute 

to the pathophysiology of IBS-D.

Peptides and Amines Produced by Enteroendocrine Cells or Submucosal 

Neurons

Several peptides and amines such as serotonin, as well as granins, are released from 

enteroendocrine cells by luminal factors in the diet, by metabolites produced following 

intraluminal digestion of nutrients [into short chain fatty acids (SCFAs)], and by endogenous 

chemicals such as bile acids.6,7

Table 1 summarizes the literature on the effects of enteroendocrine peptides and amines that 

may induce intestinal secretion or inhibit absorption of fluids and electrolytes, and the table 

summarizes information reported in IBS that supports the hypothesis of a role of intestinal 

secretion in IBS.

The prototype mediator of intestinal secretion is the amine, serotonin [5-hydroxytryptamine 

(5-HT)]; therefore this will be discussed in greater detail than the other mediators. Serotonin 

is synthesized primarily in the gastrointestinal tract, stored in the mucosal enterochromaffin 

cells,8 and released in response to mechanical and chemical stimulation. It mediates intrinsic 

reflexes (e.g., stimulation of propulsive and segmentation motility, epithelial secretion and 

vasodilation) and activates extrinsic vagal and spinal afferents.9–11

Circulating 5-HT is derived primarily from the gut and represents the 5-HT that does not 

undergo re-uptake by the serotonin transporter (SERT) in the cells of the epithelial lining. 

Circulating postprandial 5-HT levels are increased in platelet-depleted plasma (PDP) in IBS-

D12,13 and PI-IBS,14 and are reduced14 or unchanged in IBS-C.12 Elevated postprandial 5-

HT in PDP in IBS-D and PI-IBS, but not IBS-C12–14, might reflect differences in platelet 

uptake of 5-HT by SERT, which is disrupted in IBS-D.15–17 The depletion of platelet SERT 

in IBS-D may reflect primary deficiency in SERT expression in gastrointestinal mucosa, 

which has been observed in adults and children with IBS.18,19 This is supported by platelet 

5-HT levels which are reduced in IBS-D16 and are ~2-fold higher in IBS-C patients 

compared to healthy controls,12 which, together with decreased postprandial release of 5-HT 

in IBS-C, suggests increased SERT reuptake activity.14. Alternatively, release of 5-HT to 

physiological stimuli appears impaired in IBS-C.12

In a study combining IBS-C and PI-IBS patients, there was a negative correlation between 

plasma 5-HT and colonic transit time;14 although not specifically studied, the transit time 

may reflect effects of 5-HT on both motor and secretory functions, given the well-

Camilleri Page 2

Clin Gastroenterol Hepatol. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



established effects of 5-HT on intestinal secretion and colonic transit, as observed in the 

carcinoid syndrome.20,21

Rectal or colonic mucosal 5-HT levels were increased in PI-IBS22 and in IBS-C and 

functional constipation,23–26 though no statistically different intensity of serotonin 

immunoreactivity was observed in any IBS group.27 The increased mucosal content in IBS-

C may reflect mucosal storage without release into the lumen or plasma, potentially 

explaining the lack of fluid secretion, more solid consistency of bowel movements, and low 

postprandial plasma 5-HT in IBS-C.

The potential role of serotonin in the induction of loose bowel movements in IBS-D is 

supported by the therapeutic effects of selective serotonergic receptor type 3 (5-HT3) 

antagonists (ondansetron, alosetron, ramosetron). These agents are effective in the overall 

relief of IBS-D and, particularly, in the normalization of bowel function and reduction of 

urgency in these patients.28,29

Chromogranins (Cg) and secretogranins (Sg) are present in secretory vesicles of nervous, 

endocrine, and immune cells, and CgA appears to be involved in intestinal secretion by 

inducing formation of secretory granules and release of other peptide hormones such as from 

enteroendocrine cells.30 IBS patients with faster colonic transit have higher levels of fecal 

CgA, SgII, and SgIII, but lower levels of CgB relative to healthy controls,31 and increased 

duodenal CgA cell density.27, 32 Overall, the data suggest that granins packaging 

neuropeptides indirectly stimulate colonic secretion or motility.33,34

Other biogenic peptides that may influence intestinal secretion or absorption are detailed in 

Table 1. These include somatostatin,35 PYY,36–40 and NPY, all of which increase fluid 

absorption, and their tissue expression is generally reduced in patients with IBS-D.11,41,42 

The mechanism of increased absorption by somatostatin is mediated in part by stimulation 

of apical membrane Na/H exchange (NHE3 transporter).43 In contrast, IBS-D is associated 

with increased mucosal expression of VIP and purinergic receptors,44 which are associated 

with intestinal secretion, and histamine, derived predominantly from mast cells, is generally 

associated with intestinal secretion.45–51

Intraluminal Factors: Bile Acids and Short Chain Fatty Acids

Bile acids (BA) stimulate colonic motility,52 transit,53 and secretion, primarily through 

electrogenic chloride secretion (apical chloride channels) and through increase in colonic 

mucosal permeability54,55 or activation of colonocyte apical Cl−/OH− exchange.56 An 

additional mechanism mediating effects of intraluminal BAs is the BA receptor, GPBAR1 

(or TGR5),57 which is expressed in enteric neurons, enteroendocrine cells,58 and primary 

spinal afferent and spinal neurons involved in sensory transduction.59 GPBAR1 mediates the 

prokinetic actions of intestinal BAs, is required for normal defecation in mice, and mediates 

colonic fluid secretion.60

A systematic review documented bile acid malabsorption (BAM) in a sizeable proportion of 

patients with chronic functional diarrhea, or IBS-D. BAM was typically identified by 

the 75SeHCAT retention test which uses a synthetic 75selenium homotaurocholic acid, a BA 
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that is resistant to bacterial degradation, does not undergo passive absorption, and is actively 

absorbed in the terminal ileum to enter the enterohepatic circulation or excreted into stool, 

unaltered by its passage through the colon. Normal retention is >15% at 7 days, and 

moderate and severe malabsorption are respectively defined by retention <10% and<5% 

respectively; the level of isotope retention predicts response to BA sequestrants. Five studies 

(429 patients) indicated that 10% (CI: 7–13) of patients had severe BAM (75SeHCAT 7 day 

retention <5%); and 17 studies (1073 patients) indicated that 32% (CI: 29–35) of patients 

had moderate BAM (75SeHCAT retention <10%).61 Patients with increased fecal BA 

excretion (>2337mM/48h, the 90th percentile in healthy controls) have increased small 

bowel permeability, borderline faster colonic transit and higher CDCA proportion in stool 

and fecal fat excretion compared to IBS-D patients without increased fecal BA excretion.62

The human small intestine also secretes fluid in response to perfusion with conjugated di-α 

hydroxyl BAs.63,64 In patients with IBS-D, there is evidence that the small intestinal mucosa 

is more sensitive to secretory effects of BAs compared to mucosa from healthy controls.65 

Variation in GPBAR1 genotype (rs11554825, which is in strong linkage disequilibrium with 

mutations that alter expression and function of the receptor)66 was significantly associated 

with colonic transit at 48 hours,67 a surrogate of the intestinal secretory effects of BAs; these 

genotype data are consistent with a secretory diathesis in patients with IBS-D and could 

potentially explain the increased secretory response of ileal mucosa to infused BAs.65

Short Chain Fatty Acids

In healthy volunteers, 2 to 20% of dietary starch escapes absorption in the small bowel,68 

providing substrate for the generation of short-chain (<6 carbon) fatty acids (SCFAs) by 

colonic bacteria and increased delivery of water to the colon.69 SCFAs stimulate 

intraluminal colonic release of 5-hydroxytryptamine (5-HT)70 from enteroendocrine cells in 

rats.71 The SCFA, propionate, induced transepithelial ion and fluid secretion in guinea pig 

distal colon mucosal preparations in vitro and increased the expression of receptor FFA2, 

which co-localizes with chromogranin A in enteroendocrine cells.72 However, the overall 

effect of SCFAs is generally to enhance absorption of fluids and electrolytes, effects that are 

mediated through a common mechanism, that is, the SCFA induced increase in expression 

of NHE3,73 although the magnitude of effect may differ among the SCFAs. Moreover, the 

fecal SCFA profile of patients with IBS-D is characterized by lower concentrations of total 

SCFA, acetate, and propionate, and a higher concentration and percentage of n-butyrate, 

which is pro-absorptive. Fecal flora from these patients produced less SCFA in an in vitro 

fermentation system in response to incubations with various carbohydrates and fibers.74 

Overall, since the SCFA composition in stool of IBS-D patients has lower amounts of the 

pro-secretory propionate and higher amounts of the pro-absorptive butyrate, these data 

suggest that the SCFAs in stool would be associated with less fluid secretion in patients with 

IBS-D.

Enterocyte Secretory Processes

There are two lines of evidence that support the existence of enterocyte secretory 

mechanisms in IBS or functional diarrhea. Guanylate cyclase C (GUCY2C) is a 
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transmembrane receptor whose extracellular domain is activated by ligands that may be 

endogenous (e.g. guanylin and uroguanylin) or exogenous (e.g. E. coli enterotoxin).

A dominant inheritance gain of function variation in GUCY2C gene was reported in a 

Norwegian family75 with a rare form of familial diarrhea (FD), characterized by onset of 

symptoms in infancy, chronic, relatively mild diarrhea, diagnosed as IBS-D. Subsequently, 

it was demonstrated that this dominantly inherited, fully penetrant disease was due to a 

heterozygous base substitution, c.2519G→T, in exon 22 of chromosome 12, GUCY2C. This 

functional mutation encodes for the guanylate cyclase-C (GC-C) receptor which induces 

enterocyte secretion. Conversely, an autosomal-recessive phenotype of meconium ileus 

(associated with inadequate intestinal fluid and electrolyte secretion) was observed in two 

unrelated consanguineous Bedouin kindreds, caused by different homozygous loss of 

function mutations (c.1160A>G; c.2270dupA insertion) in GUCY2C.76

In order to determine whether this mutation might be overlooked in patients with IBS-D 

outside Norway or this specific family, we explored the association of GUCY2C (c.

2519G→T) mutation in 406 patients with IBS and 227 healthy controls from the upper 

Midwest U.S.A. None of our IBS patients or controls carried the c.2519G→T mutation in 

GUCY2C, and these results were confirmed by sequencing in 5 randomly selected DNA 

samples. We concluded that this c.2519G→T mutation in GUCY2C is unlikely to be 

responsible for IBS in patients from the Midwest U.S.A.; however, the identification of the 

genetic mutation in association with chronic functional diarrhea or IBS-D in the Norwegian 

family is consistent with the concept that variations in the functional expression of such 

receptors involved in enterocyte chloride secretion may result in chronic diarrhea that is 

mistakenly attributed to IBS-D.

The same principle applies to congenital Na+ diarrheas (rare autosomal recessive disorders 

characterized by polyhydramnios, hyponatremia, metabolic acidosis, and diarrhea with high 

sodium content) associated with genetic variations in the SLC9/NHE gene family. The latter 

is a plasma membrane and organellar family of Na+/H+ exchangers (particularly NHE3 and 

NHE8) which constitute the major way Na+ is absorbed in the kidney and GI tract.77

Congenital chloridorrhea is an autosomal recessive disorder involving the gene, solute 

carrier family 26 member 3 (SLC26A3), which encodes a transmembrane protein that 

functions as an apical epithelial Cl−/HCO3− exchanger in the colon. The defect in this 

transporter hinders the absorption of chloride and the secretion of bicarbonate. SLC26A3 is 

coupled to a Na+/H+ exchanger (NHE2 and/or NHE3) that leads to intestinal loss of sodium, 

chloride, and fluid due to a chloride-rich diarrhea.78 These congenital diarrheas usually 

present in infancy; however, they may also cause chronic diarrhea,79 and the patients may 

rarely present with chronic diarrhea later in life and may receive a diagnosis of IBS-D.80

A second line of evidence comes from recent observations based on expression studies of 

jejunal or colonic mucosa in patients with IBS. Several groups have reported alterations in 

expression of tight junction proteins in the jejunal81 or rectosigmoid mucosa of patients with 

IBS-D; in some studies, these changes were associated with increased mucosal 
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permeability.82,83 However, these alterations do not necessarily prove an intestinal secretory 

mechanism in IBS-D.

On the other hand, increased mucosal expression of genes demonstrated on RNA sequencing 

for ion channels suggests more directly that the mucosa of patients with IBS-D may have 

intrinsic secretory properties.44 Thus, there are two enterocyte secretory mechanisms that 

are overexpressed in rectosigmoid mucosa of patients with IBS-D: GUC2AB (guanylate 

cyclase 2B receptor associated with enterocyte chloride channel activation in response to 

uroguanylin); and PDZD3 (a protein that associates with guanylate cyclase C and regulates 

cGMP production following receptor stimulation and chloride secretion).84

Conclusion

Although a primary secretory diathesis has not been well documented in IBS-D, several 

mechanisms that could potentially contribute to intestinal secretion have been reported. 

Understanding these mechanisms and developing clinical methods for their identification 

have the potential to enhance management of patients with IBS-D.
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Figure 1. 
The critically important cells involved in intestinal secretory processes are the 

enteroendocrine cells and enterocytes in the epithelium, as well as mast cells and 

submucosal neurons in the lamina propria and submucosa. From granin vesicles in the 

enteroendocrine cells, a number of peptides or amines are released to induce intestinal 

secretion of chloride ions, typically by activation of submucosal neurones or the enterocytes. 

Similarly, release of proteases and histamine from mast cells induces intestinal secretion. 

Ion transport channels such as SLC26A3 and SLC9 are important in absorption of sodium 

and chloride ions and may be mutated to result in congenital diarrhea that may be identified 

later in life. Rare familial mutations in the gene for the guanylate cyclase C receptor may 

result in familial diarrhea that is attributed to chronic functional diarrhea. In patients with 

IBS-diarrhea, increased expression of factors involved in intestinal secretion (e.g., PDZD3, 

GUCA2B, VIP) or reduced expression of pro-absorptive peptides (e.g., somatostatin) have 

been reported and are the subject of ongoing research.
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Table 1

Examples of Altered Functions of Peripheral Hormones, Amines and Peptides in IBS

Mechanisms Pathophysiology Release, distribution, action Biological and clinical 
correlates

References

Granins Chromogranins (Cg) 
or secretogranins (Sg) 
in secretory granules 
mobilize release of 
peptide hormones 
from EC cells

Release of (e.g.) 5-HT, PYY, 
somatostatin (SS) from secretory 
granules of EC cells into lumen or 
interstitial fluid

IBS-D or -A higher fecal 
Cg A, SG II and III and 
duodenal CgA cell density; 
changes not specific for 
IBS; higher CgA and SG 
associated with faster 
colonic transit and weakly 
with symptoms

Montero-Hadjadje 
2009; Ohman 2012; 
El-Salhy 2012,

Serotonin Derived primarily 
from EC cells and 
neurons: mediates 
intrinsic reflexes 
(stimulates motility, 
secretion and 
vasodilation); 
activates extrinsic 
afferents that mediate 
extrinsic reflexes, 
sensation

Release from EC cells with re-uptake 
by the serotonin transporter (SERT) 
in epithelial cells or platelets; 
circulating 5-HT represents 5-HT 
that does not undergo re-uptake

Plasma post-prandial 5-HT 
elevated in IBS-D, and PI-
IBS; reduced in IBS-C; 
Platelet SERT uptake is 
disrupted in IBS-D; 
Mucosal 5-HT elevated in 
IBS-C and in PI-IBS; 
Mucosal SERT mRNA 
expression and immune-
reactivity decreased in some 
reports

Donowitz and 
Binder 1975; Spiller 
2000; Mawe, 
Hofmann 2013; 
Houghton 2003, and 
2007; Atkinson 
2006; Bellini 2003; 
Franke 2010; Foley 
2011; El-Salhy 
2013

Histamine Derived primarily 
from mast cells

Locally released histamine stimulates 
ileal fluid secretion via H1 receptors, 
and sensation (possibly via H1 
receptors)

Mucosal extracts from IBS 
activate submucosal and 
sensory neurons; possible 
therapeutic benefit with H1 
antagonists ketotifen and 
ebastin in IBS

Linaker 1981
Coelho 1998
Mobarakeh 2000
Barbara 2007
Buhner 2009, 
Klooker 2010
van Wanrooij 2013

Peptide YY Derived primarily in 
enteroendocrine cells

Intraluminal PYY induces small 
bowel and colon fluid/electrolyte 
absorption

Rectal biopsy PYY elevated 
during acute Campylobacter 
enteritis; normal in PI-IBS 
by 12 weeks; lower PYY in 
colonic mucosa in IBS

Playford 1990; 
Bilchik 1993, and 
1994; Liu 1997; 
Spiller 2000; El-
Salhy 2013

NeuropeptideY Derived from enteric 
neurons

NPY Y2 receptor agonists reduce 
intestinal fluid secretion (mice)

NPY levels in both plasma 
and the sigmoid lower in 
IBS patients than controls

Zhang et al 2008; 
Moriya 2010;

Somatostatin (SS) Derived primarily 
from enteroendocrine 
cells and neurons:

SS inhibits NHE1 (basolateral in 
enterocytes), involved in HCO3

− 

secretion

Expression of SS in serum 
and colonic or rectal 
mucosa of IBS higher 
compared with controls; SS 
in mucosa in IBS-C greater 
than in IBS-D

Han 2013; Zachos 
2005; El-Salhy 
2013

Vasoactive 
Intestinal Peptide 
(VIP)

Derived mainly from 
gut secretomotor 
neurons

VIP modulates secretion and 
vasodilatation

Sigmoid mucosa and 
plasma VIP higher in IBS 
than controls; Rectosigmoid 
expression of VIP increased 
on RNA-Seq

Zhang 2008; Han 
2013; Camilleri 
2014

Purines P1 and P2 ubiquitous 
receptors activated by 
adenosine and extra-
cellular nucleotides 
e.g. ATP

P1A2B receptor regulates colonic Cl− 

and water secretion; P2Y activates 
K+, Cl−, HCO3

− secretion; inhibits 
Na+ absorption

Rectosigmoid expression of 
P2RY4 increased on RNA-
Seq

Camilleri 2014

EC=enteroendocrine cells; CHO=carbohydrates; RNA-Seq=mRNA sequencing
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