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Abstract

Traumatic brain injury (TBI) is predominantly a clinical problem of young persons, resulting in 

chronic cognitive and behavioral deficits. Specifically, the physiological response to a diffuse 

biomechanical injury in a maturing brain can clearly alter normal neuroplasticity. To properly 

evaluate and investigate developmental TBI requires an understanding of normal principles of 

cerebral maturation, as well as a consideration of experience-dependent changes. Changes in 

neuroplasticity may occur through many age-specific processes, and our understanding of these 

responses at a basic neuroscience level is only beginning. In this article, we will particularly 

discuss mechanisms of TBI-induced altered developmental plasticity such as altered 

neurotransmission, distinct molecular responses, cell death, perturbations in neuronal connectivity, 

experience-dependent ‘good plasticity’ enhancements and chronic ‘bad plasticity’ sequelae. From 

this summary, we can conclude that ‘young is not always better’ and that the developing brain 

manifests several crucial vulnerabilities to TBI.
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Introduction

Traumatic injury to the developing brain is distinct from adult traumatic brain injury (TBI) 

in many ways. One major difference is that the developing brain is more malleable to 

external stimuli, or more plastic, a characteristic that has often been touted as a significant 

advantage with regard to recovery of function. However, children who suffer TBI are well 

known to develop chronic cognitive and behavioral disturbances [Ewing-Cobbs et al., 1997, 

1998; Fay et al., 1994; Jaffe et al., 1993; Levin et al., 1982, 2002]. Children also have a 

higher incidence of posttraumatic epilepsy [Annegers et al., 1998; Annegers and Coan, 
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2000] than adults. Infants and toddlers might arguably have the most plasticity and yet 

actually seem to have some of the worst developmental outcomes after significant TBI 

[Barlow et al., 2005; Ewing-Cobbs et al., 1997; Levin, 2003; Levin et al., 1992; Taylor and 

Alden, 1997]. Clearly, plasticity is not simply an all-or-none beneficial response that just 

happens to be more robust in development, it is a complex series of molecular, cellular and 

physiological events that must be carefully orchestrated for optimal developmental outcome. 

While the effects of ischemia, seizures and other brain injuries have been extensively 

studied during development, TBI, the number one cause of pediatric death and disability, 

has not. Here, we will describe the basic principles of developmental plasticity and review 

the current literature with regard to potential mechanisms underlying altered plasticity 

following TBI in the immature brain. Better delineating the nature and timing of these 

processes will provide a foundation for the therapeutic manipulation of neuroplasticity to 

enhance functional recovery in the developing brain.

Plasticity: Drastic or Fantastic?

Plasticity is defined by Merriam-Webster as ‘the capacity to vary in developmental pattern, 

phenotype or behavior according to varying environmental conditions’. In general, this 

ability has been viewed as an advantageous quality, one that permits the individual to 

change in response to external cues, and thus, make it better suited to survive and thrive in 

the current circumstances. However, to a large degree, the beneficial results of plasticity in 

the nervous system appear to be contingent upon the inciting stimuli. Physiological stimuli 

such as the presence of light-activating visual pathways would seem to be necessary for 

promoting normal development of the relevant neural circuitry. On the other hand, 

pathological or abnormal stimuli (or the absence of normal stimuli), such as persistent dark 

rearing, can result in aberrant neuroplasticity with subsequent abnormal developmental 

outcomes. These ‘abnormal’ outcomes may not be distinctly deleterious and, in fact, may 

confer some advantages to the individual/pathway/neuron in the ‘abnormal’ environment. 

However, upon exposure back into a normal environment, these changes are likely to be 

suboptimal.

Other examples of the ‘drastic versus fantastic’ nature of developmental plasticity are of 

tremendous potential clinical relevance. One type of beneficial plasticity is the response of 

the brain to enriching environmental conditions. In both animals and humans, stimulating 

environments trigger outgrowth of neural projections, resulting in increased dendritic 

arborization and cognitive enhancement [Greenough et al., 1973; Jacobs et al., 1993; 

Rosenzweig and Bennett, 1996]. The ability of the brain to benefit from environmental 

stimulation appears most robust during brain maturation. On the other hand, excessive 

stimulation of particular pathways, as may occur during seizures or other types of brain 

injury, can also promote outgrowth of abnormal neural connections, as well as development 

of circuitry that subsequently leads to epilepsy, and interferes with normal cognitive 

development.
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Principles of Plasticity and Development after Injury

Type of Injury

Much of our current understanding about developmental plasticity and recovery from injury 

comes from studies of focal brain lesions induced at particular developmental stages. Focal 

sensorimotor cortex lesions sustained in development show better recovery than similar 

lesions in adulthood. This ‘younger is better’ paradigm was originally described in primates 

by Margaret Kennard [1942] and has been dubbed the ‘Kennard Principle’. This 

phenomenon has been ascribed to the enhanced plasticity and ability for reorganization 

present in the developing brain, particularly in the setting of a unilateral focal injury. 

Following surgical hemidecortication, anatomical recovery (brain weight, cortical thickness, 

brain region cross-sectional area) and behavioral outcome (Morris water maze, foot faults, 

beam walking, claw cutting) were best in neonatally lesioned rats, while rats lesioned as 

adults had the largest deficits [Kolb and Tomie, 1988]. Similar results were seen when 

kittens or adult cats underwent hemispherectomy – kittens performed close to controls, 

while adult-lesioned cats showed abnormal limb preference and reduced locomotion 

[Burgess and Villablanca, 1986].

Lesion location is also important in determining developmental vulnerability or resistance to 

functional impairment. Frontal lobectomy or lesions of the dorsolateral frontal cortex in 

monkeys resulted in less impairment on delayed response testing when the lesions were 

induced in infancy rather than as juveniles [Goldman, 1971]. In fact, monkeys that 

underwent dorsolateral frontal lesions in infancy performed similarly to nonlesioned 

controls at 1 year of age. However, when tested for visual pattern discrimination, monkeys 

with dorsolateral frontal cortex lesions from infancy actually showed worse 1-year outcomes 

than those lesioned as juveniles. On the other hand, orbitofrontal lesions showed no such 

sparing with age for multiple cognitive tasks (delayed response, visual pattern 

discrimination, delayed alternation, object reversal) [Goldman, 1971; Miller et al., 1973].

Circumstances become more complicated if bilateral homotypic cortical areas are lesioned. 

Following bilateral motor cortex lesions, postnatal day 10 (P10)-lesioned rats showed better 

behavioral performance (Whishaw reaching task, beam walking) than adult or P1-lesioned 

animals, although anatomical measures (brain weight, cortical thickness) seemed to favor 

the adult-lesioned animals [Kolb et al., 2000]. Bilateral medial frontal lesions showed that 

the youngest rats (P3, P6) actually had worse anatomical and functional outcomes [Kolb et 

al., 1996]. Furthermore, bilateral medial frontal lesions in the perinatal period (P2) resulted 

in markedly reduced brain weight, dendritic arborization and spine density, leading to the 

conclusion that, in some settings, ‘earlier may be worse’ [Kolb and Cioe, 2000].

Of course, generally, TBI is a diffuse biomechanical injury that may have focal or multifocal 

components superimposed. Thus, while we can learn much from these age-at-lesion studies, 

it is essential to specifically model and study TBI in the developing brain [Prins and Hovda, 

2003].
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Recovery to Baseline

One important aspect of measuring physiological responses and functional outcomes during 

development is the fact that both physiology and function are often dynamically changing 

over time. This principle must be considered for both clinical management and research 

investigations involving the care and study of immature or pediatric populations. For 

example, in a more static (adult) model, a given function remains constant over time, as 

illustrated in figure 1a. If an injury occurs, there may be a permanent deficit ( fig. 1a, dotted 

line) or an acute reduction in function that slowly recovers over time. At some point, if and 

when the level of function returns to the premorbid level, recovery is said to be complete 

(fig. 1a, dashed line). However, this paradigm does not hold in a dynamic (developing) 

model. In a developing model, the level of function in normal subjects is changing over 

time. After developmental injury, while functional recovery may return to the premorbid 

baseline ( fig. 1b, dashed line), the baseline function of normal peers has already moved on 

(fig. 1b, solid line). Therefore, the duration of recovery, the rate of functional change across 

development and the presence/timing of critical windows all become important measures to 

determine whether the injured immature brain can actually fully recover to an age-matched 

baseline after injury. In the setting of pediatric brain injury, functional comparisons between 

injured and control subjects must be made at similar developmental ages.

It is also possible that the immature brain may appear to have a complete functional 

recovery, but that the strength of this recovery is limited. One example of this is a study of 

unilateral excitotoxic injury in P7 rats. Early after injury, motor deficits are seen 

contralateral to the damage, but recovery occurs by 3–4 weeks. However, administration of 

an N-methyl-D-aspartate (NMDA) receptor antagonist after the time of full recovery is able 

to transiently reinstate the deficit [Felt et al., 2002].

One final related concept to be introduced is that of ‘growing into the lesion’. This idea 

purports that if a particular function is not normally well developed at the time of injury, 

then such a deficit may not necessarily be observed until a later developmental stage. In the 

study of dorsolateral versus orbital frontal lesions in monkeys described above [Goldman, 

1971], the dorsolateral frontal lesioned animals, which appeared to show developmental 

sparing when tested 1 year after the lesion, actually demonstrated relative impairments on 

the delayed alternation task when tested after 2 years. This illustrates that developmental 

outcome should be interpreted not only based on age at injury, but also on age at testing.

Effects of Experience

An additional critical consideration when managing or investigating recovery from 

developmental brain injury is the presence of salient environmental stimuli. In a mature 

brain, functional enhancements may occur in response to appropriate environmental 

conditions, such as exploring an enriched environment or taking lessons in a foreign 

language. In these situations, the normally flat time course of function is now changed to a 

developmental one, with a change in function marked over time in the presence of the 

prescribed intervention (fig. 1c, thick solid line). The effects of injury on this now dynamic 

system may be mediated by a direct injury-induced deficit or by an injury-induced impaired 

responsiveness to the intervention. Thus, in situations where there is an environmentally 
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induced increase in function, the appropriate comparison is not simply with uninjured 

controls, but also with uninjured controls exposed to the same environment or therapy ( fig. 

1c). In this case, as described in the preceding discussion, recovery to premorbid baseline is 

an inadequate goal, as uninjured subjects experiencing the beneficial intervention will have 

gained enhanced functions over the same time period. In other words, when studying the 

recovery from pediatric TBI, one must control not only for age, but also for environmental 

conditions that can influence developmental trajectory (i.e. maternal behavioral factors, 

living conditions, social interactions).

Finally, it is important to realize that brain maturation occurs in situations where 

environmental conditions and training are superimposed upon normal developmental 

changes. One must carefully consider these complexities in the investigation and 

interpretation of injury recovery responses. Both normal maturational changes and response 

to environmental stimuli will affect functional outcomes measured during recovery from 

pediatric TBI.

Mechanisms of Altered Plasticity

The multiple variables operant during the recovery from developmental TBI are probably 

more easily addressed in basic science studies using well-characterized injury models and 

strict age- and environment-matched developmental controls than in clinical pediatric TBI 

studies, where the ability to control these variables is quite limited. Once an injury response 

or recovery mechanism is characterized in the preclinical setting, it would be possible to 

design well-controlled clinical studies to ensure that these findings are translatable back to 

pediatric brain-injured patients. In the following section, we will review the current status of 

basic science investigations into mechanisms of neuroplasticity following developmental 

TBI.

Changes in Neurotransmission

A major potential mechanism of alterations in developmental neuroplasticity following TBI 

involves changes in neurotransmission (table 1). Clinically, dysfunctional neurotransmission 

has been implicated in many sequelae of pediatric TBI, including memory impairment and 

attention problems [Blitzer and Lombroso, 2003; Griffin et al., 2003; Johnston, 2004; 

Konrad et al., 2003]. In both immature and adult TBI models, abnormalities have been 

reported in multiple neurotransmitter systems, including glutamatergic [Biegon et al., 2004; 

Giza et al., 2006; Kumar et al., 2002; Miller et al., 1990; Osteen et al., 2004; Sihver et al., 

2001], γ-amino-butyric acid (GABA)ergic [Lowenstein et al., 1992; Sihver et al., 2001], 

cholinergic [Dixon et al., 1996, 1997, 1999; Gorman et al., 1996; Shao et al., 1999; Sihver et 

al., 2001] and aminergic [Walter et al., 2004] neurotransmission.

Indiscriminate activation of glutamate receptors is a fundamental component of 

biomechanical neural injury [Faden et al., 1989; Katayama et al., 1990; Kawamata et al., 

1992]. This initial flood of glutamate is followed by an apparent downregulation of NMDA 

receptors [Biegon et al., 2004; Giza et al., 2006; Kumar et al., 2002; Miller et al., 1990; 

Osteen et al., 2004; Sihver et al., 2001]. The time frame of these reductions ranges from a 
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few hours to several days after injury depending upon injury model, age at injury and 

methodology used to measure receptors (mRNA, protein, receptor binding).

In uninjured immature animals, the NR2A subunit of the NMDA receptor shows dynamic 

developmental regulation, increasing dramatically in many brain regions during maturation 

– somatosensory cortex [Flint et al., 1997], visual cortex [Roberts and Ramoa, 1999], 

cerebellum [Takahashi et al., 1996] and hippocampus [Tovar and Westbrook, 1999] – and 

also increasing in response to specific environmental conditions, i.e. nurturing maternal 

behaviors [Liu et al., 2000], switching from dark to light rearing [Quinlan et al., 1999a, 

1999b] and enriched environment housing [Tang et al., 2001]. It appears that upregulation of 

NR2A is a fundamental molecular process that underlies maturation of these excitatory 

circuits. Interestingly, fluid percussion injury causes a reduction in cortical NR2A in the first 

1–2 days after injury in adults [Osteen et al., 2004] and P19 pups [Giza et al., 2006; Santa 

Maria et al., 2005]. Furthermore, pups also show a longer-lasting age-specific reduction in 

the NR2A subunit in the hippocampus until postinjury day 4 [Giza et al., 2006; Santa Maria 

et al., 2005]. Electrophysiological studies demonstrate impaired induction of long-term 

potentiation (LTP) with preserved long-term depression in the developing hippocampus 

after TBI [D’Ambrosio et al., 1998]. Impairment of LTP induction without affecting long-

term depression has been shown to result from NR2A-specific inhibition of the NMDA 

receptor [Liu et al., 2004]. This raises the intriguing idea that impaired glutamatergic 

neurotransmission underlies deficits in cognition and plasticity after TBI and that perhaps 

the developing brain is uniquely vulnerable to the consequences of diminished excitatory 

activity.

GABAergic neurotransmission impairments, reduced inhibition and hyperexcitability have 

clearly been demonstrated after TBI in adults, particularly in hippocampal circuitry [Golarai 

et al., 2001; Toth et al., 1997]. Post-TBI reductions in GABA receptor binding have also 

been reported in mature animals [Sihver et al., 2001]. Reduction or genetic blockade of 

GABAergic activity impairs plasticity during critical periods of brain maturation [Hensch et 

al., 1998]. In the immature brain, there is evidence of hippocampal hyperexcitability early 

after fluid percussion injury [D’Ambrosio et al., 1999]. However, the specific contribution 

of GABAergic dysfunction to this hyperexcitability should be interpreted cautiously, as 

other mechanisms (such as glial dysfunction) have also been implicated.

Cholinergic pathways are clearly important for cognition and normal development [Berger-

Sweeney, 2003; Ricceri, 2003]. An impairment of this neurotransmitter system has been 

reported in adult models of TBI, including early reductions in choline acetyltransferase, the 

biosynthetic enzyme for acetylcholine [Gorman et al., 1996]. Following adult TBI, 

decreased muscarinic acetylcholine receptor binding and protein levels are seen [Shao et al., 

1999; Sihver et al., 2001], and evoked release of acetylcholine is diminished [Dixon et al., 

1997]. Perhaps in response to this injury-induced cholinergic dysfunction, vesicular 

acetylcholine transporter levels actually increase chronically after adult TBI [Dixon et al., 

1997; Shao et al., 1999].

While there have been no direct measures of post-TBI cholinergic neurotransmission in the 

immature animal, one study examined alterations in the regrowth of cholinergic projections 
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following developmental TBI and found evidence of impaired neuroplasticity in the 

hippocampal dentate gyrus [Prins et al., 2003]. Despite ample evidence of altered 

cholinergic neurotransmission after TBI in mature animals [Dixon et al., 1999; Shao et al., 

1999] and clear developmentally mediated changes in cholinergic receptors [Adams et al., 

2002; Miyoshi et al., 1987], further work is necessary to more precisely determine how this 

neurotransmitter system is involved in plasticity following TBI to the immature brain.

Chronic alteration in dopaminergic systems has been implicated in some of the cognitive 

and attention problems seen in patients after pediatric TBI. Recently, Walter et al. [2004] 

used positron emission tomography to estimate the activity of aromatic amino acid 

decarboxylase (the final enzyme in dopamine biosynthesis) after fluid percussion injury in 

newborn and juvenile piglets. In this study, severe TBI triggered a significant upregulation 

of amino acid decarboxylase, but only in neonates and not in the juvenile piglets [Walter et 

al., 2004]. This is the first experimental evidence of TBI-induced age-specific effects on 

dopaminergic neurotransmission. The behavioral and developmental consequences of these 

changes remain to be seen.

Molecular Alterations: Gene and Protein Expression

Complex pathophysiological events, such as the response to TBI and the normal path of 

cerebral maturation, are particularly amenable to investigations using molecular screening 

techniques to delineate major pathways involved in these multifaceted processes. Using 

standard microarray techniques, we investigated the postinjury gene expression profile in the 

preweanling male rat brain (P19). Specifically, pups were killed, fresh brains were harvested 

and brain regions dissected immediately on ice within 24 h of both mild and severe lateral 

fluid percussion injury (FPI) and compared with sham animals (n = 4 per group). FPI was 

directed via a 3-mm-diameter craniotomy located 3 mm posterior and 6 mm lateral to the 

bregma, as described previously [Giza et al., 2002; Prins et al., 1996]. Mild injury was 

defined as loss of toe pinch response <45 s and severe injury as loss of toe pinch >120 s. 

This loss of toe pinch represents a simple postinjury physiological measure which correlates 

with atmospheric pressure, duration of apnea and expression of c-fos expression in our prior 

work [Giza et al., 2002]. In no case was the dura breached, and similarly injured animals at 

this age do not go on to develop a histological lesion [Gurkoff et al., 2006]. RNA was 

isolated from the ipsilateral cortex and hippocampus using guanidine thiocyanate extraction 

[Chomczynski and Sacchi, 1987]. Affymetrix rat gene RG U43A arrays were used. Analysis 

of expression data was performed using Genesifter software (www.Genesifter.net), setting 

the significance at changes greater than 2.0 fold up- or downregulated compared with sham. 

This analysis was chosen to minimize the amount of false positives, while realizing that 

differentially expressed genes with higher individual variability or a lower magnitude of 

change might not be detected as significantly different.

For mild injury, 60 genes were differentially expressed in injured versus sham animals. 

Forty genes were altered in the cortex (30 up and 10 down) and 32 were significantly 

changed in the hippocampus (26 up and 6 down). Following severe injury, 96 genes showed 

significant differences from sham. In the cortex, 58 genes were changed (48 up and 10 

down), while in the hippocampus, 60 genes demonstrated differences (44 up and 16 down).
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Categorizing the differentially expressed genes by primary function after mild or severe 

injury demonstrates global patterns of response that allow some general interpretations to be 

made. As might be expected, genes associated with stress/reactive oxygen species, 

inflammation or cytoskeletal proteins comprised a larger proportion of the significant 

changes marked by upregulation ( fig. 2 ). Conversely, among all downward gene 

expression changes, a larger proportion was made up of genes related to neurotransmission/

plasticity and growth factors/hormones. These patterns remained consistent between mild 

and severe injuries.

Of the genes designated as neurotransmitter/ion channel/plasticity genes, 4/7 were 

downregulated by mild injury and 9/13 by severe injury. Genes coding for growth factors/

hormones were also predominantly reduced, 3/3 by mild and 3/4 by severe injury (table 2).

Regionally, the overall numbers of genes up- or down-regulated were similar in both cortex 

and hippocampus, although there were some interesting differences based on gene function. 

Genes involving cell cycle, metabolism and reactive oxygen species were more often altered 

in the cortex, usually being upregulated. The gene categories showing injury effects 

preferentially in the hippocampus included cytoskeletal, inflammation and 

neurotransmission/plasticity. Most cytoskeletal and inflammation genes were increased, but 

those involving neurotransmission/plasticity were generally reduced.

Impairment of glutamatergic systems has long been implicated in deficits of learning and 

memory. Interestingly, several genes coding for proteins associated with glutamate receptors 

and signaling were downregulated, including GluR4, GluR5, KA1 and GRIP (glutamate 

receptor interacting protein) ( table 2 ). Following mild injury, the glutamate transporter 

EAAT2 (excitatory amino acid transporter 2) was upregulated (table 2). Upregulation of the 

glutamate transporter and downregulation of glutamate receptor subunits may both serve as 

means of functionally downregulating the glutamatergic system following the indiscriminate 

excitatory amino acid release triggered by biomechanical injury. The glutamatergic activity-

dependent gene Arc also showed significant cortical downregulation following severe 

injury.

Among other neurotransmitter systems, the cholinergic marker VAChT (vesicular 

acetylcholine transporter) shows an upregulation in the hippocampus following severe 

injury, consistent with results seen in adults described above [Dixon et al., 1999; Shao et al., 

1999]. Dopaminergic-related genes (catechol-O-methyltransferase and the D1 dopamine 

receptor) also showed upregulation after severe injury, albeit only in the cortex (table 2). 

Upregulation of dopamine biosynthetic enzyme activity has also been reported after fluid 

percussion injury in neonatal pigs [Walter et al., 2004], as mentioned earlier.

Gene expression profiling can provide a broad picture of a complex response, but ultimately, 

proteins are the effectors of this response at the cellular level. Thus, proteomic approaches 

are also valuable in breaking down the response to injury, particularly in the developing 

brain. The advantages of a proteomic approach are that it will identify changes that occur 

independent of transcriptional alterations, including increased/decreased protein degradation 

and, most importantly, posttranslational modification. For these reasons, gene array and 
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proteomic results do not necessarily match; nonetheless, these two approaches can be 

strongly complementary. A proteomic approach was utilized in the preweanling rat (P17) 

looking at proteins from the dorsal hippocampus 24 h after controlled cortical impact (CCI) 

injury. Significant changes relevant to postinjury plasticity were detected and included 

reductions in several proteins associated with the cytoskeleton (actin β-chain −37%, tubulin 

α1α2-chain −45%, tubulin β-chain −53%), protein processing (glucose regulated protein 78 

−51%) and signal transduction (phosphatidylinositol transfer protein α isoform −27%). 

Increases in free radical/cell stress proteins were also detected, including a 62% upregulation 

of superoxide dismutase [Jenkins et al., 2002].

In addition to these broad gene and protein profiling approaches, several investigators have 

targeted studies of specific plasticity-related genes following developmental TBI. Using a 

subset of genes specifically induced by depolarization (but not by trophic factors), Giza et 

al. [2002] reported age- and severity-specific transcriptional changes in the hippocampus. 

Nerve growth factor-induced protein B, a transcription factor, is upregulated in a severity-

dependent fashion in the immature brain, but is increased independent of severity in adults. 

Synaptotagmin IV, a presynaptic calcium-binding protein that in distinction to other 

members of the synaptotagmin family inhibits synaptic activity, is increased only in 

developing animals after severe injury and not at all in adults [Giza et al., 2002].

Brain-derived neurotrophic factor (BDNF) is an activity-dependent molecule closely 

associated with experience-dependent plasticity which undergoes distinct developmental 

regulation. After mild lateral FPI in P19 rats, relative reductions in BDNF mRNA were 

noted between the ipsilateral and contralateral cortex and hippocampus, and protein levels of 

BDNF were significantly reduced (−10%) in the ipsilateral occipital cortex at postinjury day 

7 [Griesbach et al., 2002]. Studies in adults have shown that exercise-induced upregulation 

of BDNF and subsequent cognitive enhancement is impaired early after injury [Griesbach et 

al., 2004], suggesting that this reduction may also have relevance to plasticity and cognition 

in the developing animals. Most importantly, the immature animals demonstrated a pattern 

of impressive contralateral BDNF upregulation in both cortex and hippocampus up to 2 

weeks after injury, perhaps revealing a distinct compensatory mechanism for plasticity in the 

developing brain [Griesbach et al., 2002].

Molecular markers of cellular stress and injury have also been examined following 

developmental TBI. While these changes may be more relevant to neuronal survival and cell 

death (see next section), cells that are sublethally damaged may survive in a dysfunctional 

state. With either cell loss or localized cellular dysfunction (or both), the remaining neuronal 

circuits may thus be altered and potentially interfere with normal cerebral maturation. 

Glutathione peroxidase, a critical enzyme involved in superoxide metabolism, is upregulated 

in the adult mouse cortex and hippocampus following CCI. However, in the P21 mouse, this 

increase is not seen, indicating a potential age-specific vulnerability to oxidative stress in the 

immature brain [Fan et al., 2003]. Other cellular stress molecules implicated in an age-

specific pathophysiological response to developmental TBI include isoforms of heme 

oxygenase, which show a >2-fold induction in the P19 cortex and hippocampus following 

both mild and severe lateral FPI (table 2). The developmental implications of heme 

regulation after TBI have been recently reviewed [Chang et al., 2005]. Metallothionein I/II 
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are also important molecules in the response to oxidative stress and show developmental 

regulation with lower basal levels in the immature brain. However, deafferentation injury 

(occipital cortex ablation) induces a far higher and earlier induction of metallothionein I/II in 

the lateral geniculate in 10-day-old mice compared with adults [Natale et al., 2004]. 

Metallothionein I/II gene expression is also significantly upregulated in the cortex and 

hippocampus of P19 rats following TBI, as described above (table 2).

Cell Death: Necrosis and Apoptosis

Histological damage and neuronal loss are not direct measures of plasticity, but can certainly 

have effects upon developmental plasticity by disconnecting circuits, causing local calcium 

accumulation in dying cells, triggering inflammation, altering the extracellular milieu and 

reducing trophic support. Postinjury cell death is distinctly different in the immature rat 

brain, which is particularly sensitive to excitotoxicity in the neonatal period (1st postnatal 

week) [Ikonomidou et al., 1989, 1996], but seemingly less so in the 2nd to 3rd postnatal 

weeks, when compared with the adult brain. In fact, both weight drop and lateral FPIs seem 

to result in little neuronal loss in the preweanling (P15–19) rat [Adelson et al., 2001; 

Bittigau et al., 1999; Gurkoff et al., 2006; Prins et al., 1996]. This absence of overt cell death 

suggests that the molecular and physiological perturbations seen following developmental 

TBI are due in greater part to neuronal dysfunction rather than destruction. Tissue 

destruction is also dependent upon injury type, as CCI injury delivered to P21 mice [Tong et 

al., 2002] or P17 rats [Card et al., 2005] clearly does induce histological cell death.

However, in the neonatal period, the injury response is distinct. There is a peak in 

vulnerability to an excitotoxic lesion at P6–7 (hypobaric/ischemic injury or direct NMDA 

injection) [Ikonomidou et al., 1989]. This susceptibility to NMDA-mediated excitotoxicity is 

also seen after a weight drop/contusion TBI is administered to P7 rats. In this model, NMDA 

antagonists (but not α-amino-3-hydroxy-5-methylisoxazole-4-propionate antagonists) 

provide neuroprotection from necrotic neuronal death [Ikonomidou et al., 1996]. However, 

treatment with NMDA antagonists also appears to trigger a substantial wave of delayed 

apoptotic cell death in widespread brain regions 24–48 h after treatment [Bittigau et al., 

1999; Pohl et al., 1999]. Furthermore, this delayed apoptotic effect has been seen in the 

absence of injury after other neonatal treatments that impair neural activity, including 

common anticonvulsants and general anesthetics [Bittigau et al., 2002; Jevtovic-Todorovic 

et al., 2003]. There is some evidence that this drug-induced enhancement of developmental 

apoptosis has long-term effects on plasticity, as cognitive impairments in spatial learning 

have been reported in neonatally treated rats, with anesthetics [Jevtovic-Todorovic et al., 

2003] or MK801 [Adelson et al., 2002].

In addition to acute and subacute injury-induced cell death, there may also be a chronic 

evolving lesion after TBI. This has been well described in the adult brain after different 

models of injury, and ongoing neurodegeneration may occur as long as 1 year after the insult 

[Conti et al., 1998; Fox et al., 1998]. In this issue, using a developmental TBI model (P21 

CCI in mice), Pullela et al. [2006] describe cortical lesion expansion and progressive 

hippocampal neuron loss as late as 4.5 months after the original injury.
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Perturbation of Neural Connectivity and Function

Changes in neuronal circuitry are a critical part of normal development, and perturbations of 

this connectivity have been implicated in pediatric TBI-induced learning disabilities and 

psychiatric disorders [Kumar and Cook, 2002; Levin, 2003]. Lateral FPI in immature 

animals has been shown to result in alterations in anatomical connections that are not 

associated with functional improvement. Ip et al. [2002] reported increased dendritic 

branching in the parietal cortex of sham animals housed in enriched environment (EE), and 

these animals have been shown to be cognitively superior in spatial learning tasks [Fineman 

et al., 2000; Giza et al., 2005]. While injured animals reared in EE showed no dendritic 

expansion, injured animals maintained in standard housing conditions did show significant 

injury-induced dendritic expansion [Ip et al., 2002]; however, in this case, subsequent 

studies revealed that these injury-induced anatomical increases did not manifest as any 

functional advantage on cognitive tests [Fineman et al., 2000; Giza et al., 2005].

Using a clever system of pseudorabies virus (PRV) injection into the entorhinal cortex and 

retrograde transsynaptic transport, it has been possible to begin looking at functional 

connectivity after developmental TBI [Card et al., 2005]. The strength and pattern of the 

PRV immunohistochemical signal differed according to the number of synapses crossed, 

allowing for qualitative assessment of patterns of neural connections. Twenty-eight days 

after CCI on P17, the overall distribution of the PRV signal did not change, suggesting that 

the primary pathways remained intact. However, a significant increase in the magnitude of 

the PRV signal was detected in the neocortex and overall, leading the authors to conclude 

that this methodology would prove useful in further experiments to compare and contrast 

neural network development in the immature brain following injury.

Electrophysiological studies have also demonstrated impairment of neural function after 

TBI. Twenty-four to 48 h following lateral FPI in P24–31 rat pups, the threshold for 

generation of a CA1 population spike was increased and no induction of LTP was possible 

[D’Ambrosio et al., 1998]. These results clearly show impaired responsiveness of this 

excitatory circuit after developmental TBI. Abnormalities in the generation and maintenance 

of LTP have also been reported following lateral FPI in adult animals [Sanders et al., 2000; 

Sick et al., 1998].

Experience-Dependent Enhancement: Good Plasticity?

Normal cerebral maturation in animals and humans can be substantially modified by an 

individual’s environment. In fact, the effects of EE during development have been well 

characterized as a form of ‘good plasticity’ that results in lasting anatomical – rats 

[Greenough et al., 1973; Rosenzweig and Bennett, 1996] or humans [Jacobs et al., 1993] – 

and behavioral enhancements [Leggio et al., 2005; Noble et al., 2005; Venable et al., 1988].

Using the lateral fluid percussion model of TBI in P17–20 rat pups, Fineman et al. [2000] 

reported that injured pups showed no overt histopathology or impairment in spatial learning 

1 month after the injury, when housed in standard conditions. However, they discovered that 

injured pups reared in an enriched environment for 17 days failed to develop the increases in 

cortical thickness and improved spatial learning capabilities seen in their uninjured controls 
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[Fineman et al., 2000]. Thus, while there was no clear cortical atrophy, there was a failure of 

experience-dependent plasticity. Enriched environment rearing also resulted in an increase 

in cortical pyramidal neuron dendritic arborization, but this was inhibited in animals that 

underwent FPI prior to EE housing [Ip et al., 2002]. Since this injury model does not 

produce measurable neuronal loss [Gurkoff et al., 2006] and since the animals demonstrate 

normal open field exploratory behavior [Fineman et al., 2000], the impairment of plasticity 

seen is presumed to be due to diminished neural function or responsiveness. This period of 

unresponsiveness to EE has been shown to partially recover by 2 weeks after injury. When 

P19 pups were subjected to moderate-severe lateral FPI and allowed to recover for 2 weeks 

prior to differential housing (standard vs. EE), both sham and injured animals showed 

shorter latencies in the Morris water maze, indicating an augmentation of spatial learning. 

However, when tested for memory in the probe trial, uninjured EE animals still 

outperformed the FPI EE animals, which showed lasting deficits in spatial memory [Giza et 

al., 2005]. Thus, the 2-week postinjury delay allowed for enrichment-induced benefits in 

task acquisition, but augmentation of memory functions was still impaired.

By examining molecular signals for changes that correlate with diminished ‘enrichability’, it 

is interesting to remember that the injury-induced reductions in the NR2A subunit of the 

NMDA receptor occur within the first postinjury week. Preliminary work looking at whether 

EE housing rescues the levels of NR2A after injury reveals that these reductions occur 

independent of housing conditions [Santa Maria et al., 2005].

Chronic Sequelae: Bad Plasticity?

While the increased neuroplasticity of the developing brain has generally been thought of as 

beneficial, it is also known that abnormal neural connectivity can result in worsened 

function and this can be thought of as ‘bad plasticity’. One means by which functional 

deficits may occur is in conjunction with progressive lesions over time, as discussed above. 

If the injury process evolves over a long time period, then neural connections are being 

disturbed at the very time when circuit maturation should be occurring. In the model of 

developmental (P21) mouse CCI, no significant differences in latencies to find the hidden 

Morris water maze platform were detected when the animals were tested 5 weeks after 

injury, but in adulthood (over 4 months after injury), the injured animals showed clear 

acquisition deficits [Pullela et al., 2006]. This delayed impairment is likely due to ongoing 

injury progression and abnormal reorganization of damaged networks.

A second mechanism by which ‘bad plasticity’ can manifest negative cognitive 

consequences is when the initial injury triggers a trophic response but the regrowth of 

damaged fibers is perturbed. This would occur in the absence of a progressive lesion, so 

ongoing deafferentation could not be the underlying mechanism. Following an entorhinal 

cortical lesion in juvenile (P28) rats, the cholinergic axons to the hippocampus regrow in a 

characteristic manner, and this regrowth is correlated with changes in hippocampal 

synaptophysin staining. No distinct spatial memory deficits are seen. Animals subjected to 

fluid percussion injury 1 day prior to entorhinal cortex lesion showed altered patterns of 

cholinergic fiber regrowth and concomitant impairments of spatial memory [Prins et al., 

2003].
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A final mechanism of ‘bad plasticity’ involves self-propagating neural activation that can 

result in reinforcement of excitatory circuits, ultimately leading to spontaneous seizures. 

Chemically induced status epilepticus using lithium pilocarpine clearly has age-dependent 

patterns of acute cell death, mossy fiber sprouting and subsequent epileptogenesis [Sankar et 

al., 1998]. It is generally accepted that the pediatric population is more vulnerable to both 

acute posttraumatic seizures and to the development of late posttraumatic epilepsy 

[Annegers et al., 1998; Annegers and Coan, 2000]. Recently, chronic recordings after P32–

35 lateral FPI in rats have shown a high incidence of posttraumatic epilepsy as the animals 

mature [D’Ambrosio et al., 2004]. Furthermore, the electrical pattern of the neocortical 

seizures changes with postinjury time and with cerebral maturation, starting as focal 

seizures, but over time evolving into spreading seizures and eventually into limbic seizures 

involving hippocampal structures bilaterally [D’Ambrosio et al., 2005]. These studies 

provide strong evidence for ongoing circuit rearrangement and abnormal plasticity after 

developmental TBI and result in a clinically relevant and potentially disabling condition.

Summary

TBI is predominantly a condition of the young brain, and this younger age group has often 

been credited with enhanced plasticity that results in improved recovery. However, plasticity 

is a complex and balanced process that must be precisely executed for optimal maturational 

outcome. Injuries to the immature brain must be evaluated carefully, and recovery to 

preinjury baseline is clearly an inadequate endpoint in cases where ongoing development 

and/or ongoing experience-dependent enrichment are occurring. The pathophysiology of 

acute TBI results in a multitude of processes that can perturb normal developmental 

plasticity, including faulty neurotransmission, alterations in molecular signals, necrotic and 

apoptotic cell death, changes in neural connectivity and function, inhibition of experience-

dependent ‘good’ plasticity and activation of self-propagating ‘bad’ plasticity. Realizing that 

the dogma ‘younger is better’ may be incorrect is the first step to carefully investigating 

these complex injury effects and devising mechanistic interventions to promote recovery 

from these often devastating injuries.
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Fig. 1. 
Recovery of function after injury in different theoretical models. a Static (mature) model: 

baseline function does not change with time (solid line). Injury with no recovery shows 

downward step in function (dotted line). Injury with gradual return to premorbid baseline 

results in complete recovery (dashed line). b Dynamic (developmental) model: baseline 

function improves with time (solid line). Injury with gradual return to premorbid baseline 

results in incomplete recovery (dashed line). c Dynamic (interventional) model: baseline 

function shows no change with time (thin solid line), but following intervention, baseline 

function improves with time (thick solid line). Injury (followed by intervention) with return 

to premorbid baseline represents incomplete recovery (dashed line).
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Fig. 2. 
Gene expression changes by functional category after mild and severe developmental brain 

injury. a Proportion of gene changes ascribed to specific functional categories following 

mild injury. The greatest proportion of downregulated genes can be classified as genes 

related to neurotransmission/plasticity or growth factors/hormones. b Proportion of gene 

changes ascribed to specific functional categories following severe injury. Again, genes 

associated with neurotransmission/plasticity and growth factors/hormones represent a much 

larger percentage of downregulated than upregulated genes. ROS = Reactive oxygen 

species.
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Table 1

Neurotransmitter changes

Neurotransmitter System component Change after developmental TBI Change after adult TBI

Glutamate NMDA receptor binding ↓ H 2 h, 12 h, 7 days

↓ C 2 h, 12 h, 7 days1,9,13

NMDA receptor expression ↓ H 2 days, 4 days ↓ H 6 h, 12 h3

↓ C 1 day2 ↓ C 1 day, 2 days4

NMDA-mediated calcium flux ↓ C 1 day, 2days4

NMDA receptor electrophysiology ↓ H LTPi 1 day, 2 days5 ↓ H LTPi 4 h, 2 days6

↓ H LTPm 8 weeks7

glutamate antagonist effect on neuron survival ↓ H ↑ H

↓ C8 ↑ C (many)

other glutamate receptor-related genes

(GluR4, GluR5, KA1, GRIP) ↓ H <1 day16

GABA GABA receptor binding ↓ H 2 h

↓ C 2 h, 12 h9

Acetylcholine mACh receptor binding ↓ H 2 h, 12 h

↓ C 12 h9

mACh receptor expression ↓ H 4 weeks10

vesicular ACh transporter ↑ H <1 day16 ↑ H 4 weeks10

choline acetyltransferase ↓ H 1 h

↓ FC 1 h, 1 day

↑ PC 1 h, 1 day, 5 days11

cholinergic fiber regrowth ↓ H 2 weeks12 ↓ H 2 weeks14

Dopamine aromatic amino acid decarboxylase activity ↑ C 2 days15

catechol-O-methyltransferase and D1 receptor genes ↑ C <1 day16

H = Hippocampus; C = cortex; LTPi = long-term potentiation induction; LTPm = long-term potentiation maintenance; mACh = muscarinic 
acetylcholine; FC = frontal cortex; PC = parietal cortex.

1
Miller et al., 1990.

2
Giza et al., 2006.

3
Kumar et al., 2002.

4
Osteen et al., 2004.

5
D’Ambrosio et al., 1998.

6
Sick et al., 1998.

7
Sanders et al., 2000.
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8
Pohl et al., 1999.

9
Sihver et al., 2001.

10
Shao et al., 1999.

11
Gorman et al., 1996.

12
Prins et al., 2003.

13
Biegon et al., 2004.

14
Phillips et al., 1994.

15
Walter et al., 2005.

16
Prins and Giza, 2006.
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