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Abstract

Approximation Bayesian computation [ABC] is an analysis approach that has arisen in response to 

the recent trend to collect data that is of a magnitude far higher than has been historically the case. 

This has led to many existing methods become intractable because of difficulties in calculating the 

likelihood function. ABC circumvents this issue by replacing calculation of the likelihood with a 

simulation step in which it is estimated in one way or another. In this review we give an overview 

of the ABC approach, giving examples of some of the more popular specific forms of ABC. We 

then discuss some of the areas of most active research and application in the field, specifically, 

choice of low-dimensional summaries of complex datasets and metrics for measuring similarity 

between observed and simulated data. Next, we consider the question of how to do model 

selection in an ABC context. Finally, we discuss an area of growing prominence in the ABC 

world, use of ABC methods in genetic pathway inference.

Introduction to Approximate Bayesian Computation

At a time in which our ability to collect data is growing at great rates, it is also the case that 

new challenges arise when attempting analysis of those data. Given data, D, a model, M, that 

attempts to explain the data, and a set of model parameters, θ, our analysis task often 

depends upon calculation of the likelihood, f(D | θ), either as a direct component of a 

frequentist analysis, or as a step towards calculating the posterior distribution f(θ | D) in the 

Bayesian paradigm (and our perspective in this article will be Bayesian). Using Bayes 

theorem the posterior distribution is calculated as f(θ | D) ∝ f(D | θ)π(D), where π(·), the 

prior distribution, captures our beliefs about θ before the data is collected. However, as 

complexity or volume of data increases, calculation of the likelihood (and, therefore, also 

the posterior) often becomes impossible, either because it is computationally intractable or 

because closed-form expressions are not derivable. This conflict has lead to the rise of an 

alternative approach called approximate Bayesian computation [ABC].

ABC methods borrow intuition from likelihood estimation, introduced in [9]. There, large-

scale Monte Carlo simulation is used to directly approximate the likelihood of D given θ 

(and all expressions here are implicitly also dependent upon the model M) as the proportion 

of times in which simulation of data, D′, using parameter θ, results in D′ = D. However, as 

data complexity grows, the probability of observing D′ = D typically becomes vanishingly 

small, even when the correct value of θ is used. This has led the to appearance of ABC 

versions of rejection methods.
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Methods

ABC Rejection Methods

The simplest form of ABC, that based on rejection methods, supposes the existence of a set 

of summary statistics, S, that capture key features of D, and adopts the intuition of likelihood 

approximation within the following algorithm:

1. Set i = 0.

2. Sample θ′ from the prior π().

3. Simulate data D′ using model M with parameter θ′. Calculate a set of summary 

statistics S′ from D′.

4. If S′ = S accept θ′.

5. Set i = i + 1. If i < N, goto 1; else stop.

Here, N is a predetermined large number. The resulting set of accepted θ-values form a 

sample from the distribution f(θ | S). In the best case scenario in which the set of statistics S 

are sufficient for θ, we have (by definition of sufficiency) f(θ | S) = f(θ | D). However, in 

most contexts exact matching even of summary statistics is relatively unlikely, in which case 

we introduce a distance measure, d(·, ·), a tolerance threshold ε, and we replace step 4 above 

with

4’ If d(S′, S) < ε accept θ′.

Now we obtain independent samples from a distribution that we will call ϕ(θ | S). One of the 

important caveats of an ABC analysis is that, in general, it is not possible to state the degree 

of agreement between the distribution one wanted to calculate, f(θ | D), and the distribution 

from which one obtains a sample, ϕ(θ | S). This is currently often assessed via simulation 

study, but is an area of active research in the ABC community.

Rejection methods work well provided there is good overlap between prior and posterior 

parameter distributions. However, when this is not the case efficiency is low since much 

time is wasted sampling potential θ-values from parts of the prior distribution that are poorly 

supported by the posterior. Problems also arise when the dimension of the parameter spaces 

is large. For this reason a number of other methods have arisen, previous to the existence of 

ABC, that are more efficient. Many of these ideas have now been adapted into the ABC 

context. An early example is the adoption of Metropolis-Hastings Markov chain Monte 

Carlo [MCMC] [21, 13], into what has become known as ABC-MCMC (or the “no-

likelihoods” MCMC method).

ABC Markov chain Monte Carlo

The ABC Markov chain Monte Carlo algorithm, ABC-MCMC, originally proposed in [19], 

starts from an arbitrarily chosen θ-value and proceeds as follows:

1. If now at θ, propose a move to θ′ according to a proposal distribution q(θ → θ′).

2. Simulate a dataset, D′ using θ′.
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3. If D′ ~ D proceed to 4; else, output θ and return to 1.

4. Calculate the Hastings Ratio [HR]:

5. Accept, and output, the new θ′ with probability h. Else return to, and output, θ. Go 

to 1.

Here, q() is a user-defined transitional kernel that controls how we propose new θ-values. 

Once the chain of θ-values has reached stationarity, outputs from the chain have the 

required distribution.

ABC-MCMC differs from traditional MCMC in that the calculation of the ratio of 

likelihoods for new and old parameter values has been replaced by a step in which we 

simulate a single dataset, D′, using θ′, and then proceed to calculate the rest of the HR only 

if D′ ~ D. Thus, the intractable likelihood has again been replaced by a simulation step, 

thereby recovering tractability. However, ABC-MCMC has been shown to mix relatively 

poorly, compared to traditional MCMC, in the tails of the posterior. The reason for this is 

simple. In traditional MCMC, if we propose a θ′-value in the tail of f(θ | D) it will be the 

case that f(D | θ′) is likely to be very small. However, provided the transitional kernel q() 

proposes small changes to θ when generating θ′, at least some of the time, it will also be the 

case that f(D | θ) will be small, and that the ratio f(D | θ′)/f(D | θ) will typically be of order 1. 

Thus, the HR will, all other things being equal, not take too small a value. This encourages 

good mixing. In ABC-MCMC we have replaced the ratio of likelihoods term with the 

generation of a dataset for θ′ only. Thus, in the tails of the posterior for θ, the probability of 

generating a D′ ~ D may be vanishingly small, and is not countered by similar behavior of 

P(D ~ D′ | θ).

There are several possible responses to this, if mixing becomes problematic. First, use a 

proposal kernel that sometimes proposes large changes to θ, thereby retaining the possibility 

of proposing θ′ values out of the tail of the posterior, whatever is the currently accepted 

value of θ. Second, [1] have shown that we can run a generalized version of the ABC-

MCMC algorithm in which we simulate data to approximate the likelihood of (D | θ) for 

both new and old parameter values. However, it is important to note that when one estimates 

f(D | θ) in the denominator of the traditional MCMC HR this way, one must recycle the 

estimate that was used when accepting θ, rather than re-estimate it. Otherwise biases are 

introduced. We note in passing that the ABC-MCMC algorithm above can be viewed as a 

version of this latter approach in which we use a single dataset, and an indicator function 

that takes the value 1 if D′ ~ D, as a crude estimate of f(D′ ~ D | θ′) and f(D′ ~ D | θ).

An alternative response to these mixing issues results in another popular ABC algorithm, 

Sequential Monte Carlo ABC:
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Sequential Monte Carlo ABC

Sequential Monte Carlo ABC [ABC-SMC], introduced in [e.g., 8, 26], uses a population of 

θ-values, rather than a single θ-value, at any given time. While some of these may be in the 

tails of the posterior, others will likely not, thus improving mixing properties. The algorithm 

is a form of Importance Sampling [24]. It iterates through T generations, proceeding as 

follows (we base our description on that of [26]):

1. Define tolerances ε1, …, εT. Tolerance εi is used in generation i. Define the initial 

‘posterior’ parameter distribution, f1, to be equal to the prior distribution π. Set the 

population count to t = 1, and define a target number of acceptances per population, 

N.

1.A. Set the particle indicator to i = 0.

1.B. Sample a parameter-value, θ, from ft. If t > 1 perturb the sampled 

parameter value (e.g., by adding a Normal random variable).

1.C. Simulate data Dt,i using θ. If the distance between Dt,i and the observed 

data is greater than εt return to step 1.B; otherwise, set i = i + 1, and 

calculate a ‘weight’ for the accepted parameter value θ. This weight is an 

‘importance sampling’ weight that corrects for the fact that θ was 

sampled from ft rather than π.

1.D. If i < N go to 1.B; otherwise construct a new ‘posterior’ distribution, fi+1, 

from the set of weights of accepted parameter values.

2. If t < T, set t = t + 1 and go to 1.A.

We have omitted many of the technical details, but the intuition is that the algorithm 

performs a rejection method in which, rather than sampling from the prior, we sample from 

an importance sampling distribution formed from posterior distribution calculated in the 

previous ‘generation’, but adding noise to sampled parameter values to allow the generation 

of new values. As such, it is a form of importance sampling in which the importance 

sampling distribution changes over time. The algorithm has now been used in a number of 

applications [7, 27, 26, 14], and is implemented in the ABC-SysBio package [18].

ABC - Data Summaries and Match Tolerance

A number of decisions need to be made when performing an ABC analysis. Principal among 

them, perhaps, is the needs to measure the match between observed and simulated data. This 

is often achieved through the adoption of a set of summary statistics that are designed to 

capture key features of the data. In the early days of ABC these were often chosen 

using ’investigator intuition’. More recently a number of papers have appeared in which 

more principled methods are proposed. Joyce & Marjoram [15] developed a sequential 

scheme for scoring statistics according to whether their use in the analysis substantially 

improved the quality of inference, as measured by changes to the posterior distribution (the 

addition of uninformative statistics should not be expected to substantially change the 

posterior distribution that results). Nunes et a.. [22] proposed a similar scheme designed to 

minimize the average squared error of the posterior distribution. Fearnhead & Prangle [11] 
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showed how to construct statistics in a semi-automatic manner. In [16], Jung & Marjoram 

develop a method to choose both a subset of statistics and weights that should be applied to 

each statistic in the subsequent calculation of similarity with observed data.

In other related work, Beaumont et al. [4] discarded the concept of ‘rejection’ and instead 

included all simulated iterations in the estimation of the posterior for θ, but now weighting 

each iteration by the distance between observed and simulated statistic values after fitting a 

local linear regression of θ on S. Blum et al. generalized this to use non-linear regression, 

using an importance sampling scheme to refine the fit [5]. Wegmann, et al. [31] aimed to 

reduce the dimensionality of the analysis, and thereby increase efficiency, by reducing the 

number of data-points considered in the analysis, and so raise the acceptance rate. One 

might hope to do this simply by calculating principal components [PCs] of the values the 

data take over a large number of simulated datasets. However, PCs often perform rather 

poorly in ABC analyses, since they are designed to return orthogonal directions for which 

the variation in the data is greatest, whereas ABC performs best when projections of the 

data concisely capture variation in the parameters. Wegman’s method uses a partial least 

squares (PLS) approach to choose orthogonal axes that have maximum correlation with the 

parameters of interest. These axes are analogous to the results of a PCA, but the PLS 

approach ensures that the axes have good utility in predicting parameter values. In [31] the 

method was applied to an analysis of time of divergence of two populations in an ABC-

MCMC context.

In an alternative approach, Hamilton et al. took an existing set of statistics and chose 

weights for them using a scheme in which large numbers of dataset were simulated, with 

only those that were similar to the observed data being retained [12]. Using those data, 

regress the Si on each parameter in θ in turn, recording the model-fit R2 in each case. A set 

of weights are then calculated to measure the degree of informativeness of statistic i on 

parameter j. (In fact, rather than weighting the statistics directly, Hamilton defines a 

weighted Euclidean distance metric to measure the difference between observed and 

simulated statistic values, but the effect is the same.) The scheme was applied to an analysis 

of evolutionary parameters in models of human demography.

A number of these methods were compared by Barnes et al., in which a further new, 

improved method was proposed (see below) [2].

ABC and Model Selection

One of the most active areas of research in ABC is its application to model selection. Here, 

we suppose we are trying to decide between two models, M1 and M2 (the following 

generalizes in an obvious way if there are more than two models). In a Bayesian paradigm, 

evidence for M1 compared to M2 is weighed in terms of the Bayes Factor, BF = f(D | 

M1)/f(D | M2), the ratio of the posterior and priors odds in favor of M1 [17]. In an ABC 

context it has been common to use an approximation to the Bayes factor, BFABC = f(S | 

M1)/f(S | M2). Research in this area was perhaps provoked by a paper of Templeton [28] that 

attacked an ABC analysis of Fagundes et al. [10] in which several possible models for early 

human evolution were compared. It was later shown that Rogers was in fact attacking the 
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Bayesian method itself, rather than the ABC approach to Bayesian analysis [3], but a series 

of papers have subsequently emerged in which complications involved with ABC in a model 

selection context have been discussed. Fundamentally, the issue is that the ABC 

approximation to the Bayes Factor is related to the actual Bayes factor in the following way: 

B = BFABC × f(D | S, M1)/f(D | S, M2). However, rather obviously, it is not necessarily the 

case that f(D | S, M1)/f(D | S, M2) = 1. Most interestingly, as pointed out by Robert et al. 

[25], we do not necessarily have f(D | S, M1)/f(D | S, M2) = 1, even when the statistics S are 

sufficient for parameter estimation in M1 and M2 individually. Robert et al. give a nice 

example in which count data might arise from Poisson or Geometric distributions. They 

show that the ratio f(D | S, M1)/f(D | S, M2) is not equal to one even when S is formed from 

the union of statistics that are sufficient for inference in the two models separately.

There have been two responses to this issue. First, it has been noted that provided one works 

with the data, rather than summary statistics there of, the problem is avoided. In this context, 

with a slight abuse of notation, the Bayes Factor is approximated as 

, and we note that, as ε → 0 we have 

. Of course, as we have noted, choice of ε represents a compromise between 

accuracy and tractability, so achieving a result sufficiently close to the limiting behavior 

may be practically difficult. The second approach introduces the concept of statistics that are 

sufficient for model selection [SFM], in the sense that if S is SFM, then f(D | S, M1)/f(D | S, 

M2) = 1. This was introduced by Barnes et al. [2], in a paper in which they present an 

algorithm that attempts to choose a set of statistics that appear to be SFM, and which 

generalizes and improves the methods of [15] for choosing approximately sufficient 

statistics in a non-model-selection context.

ABC and Genetic Networks

An area of growing application of ABC methods is that of inference of genetic networks. 

Here the goal is to infer parameters of a known network relating expression of a set of 

genes, possibly related to some phenotypes of interest. Alternatively, we might wish to 

construct the network from scratch, aiming to infer which genes are involved and how they 

interact with each other. ABC methods are of interest here because as the complexity of 

networks grows, computational intractability becomes an issue (again either because exact 

solutions are impossible, or networks contain genuinely stochastic components, or because 

numeric algorithms become too slow to perform well). See [20] for an overview of this 

perspective.

The leading exponents of ABC in this field are the group of Stumpf et al., who have written 

a number of papers on the subject [e.g. 29, 26] and have also produced a software package 

(ABC SysBio) that makes implementations of ABC methods relatively straightforward in this 

context, and which integrates with the widely used SysBio systems biology software package 

[18].

The ABC SysBio method is for analysis of known networks. A recent paper by Rau et al. 

[23] addressed the issue of how to build networks from the ground up in an ABC context. 

Their method uses time-course data to test for linear relationships between pairs of genes, 
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arguing that many networks can be well approximated using linear components. The 

complexity of the search space is kept manageable by supposing limits on the number of 

genes that can directly effect the behavior of another gene.

It remains to be seen how popular applications of ABC analyses will become in the context 

of gene networks, but the growing view that such networks might be used to leverage the 

power of genome-wide association studies, suggests that there is a powerful need for 

methods that remain tractable for relatively complex networks.

Conclusion

In the modern era we are collecting data that are bigger, generally by orders of magnitude, 

than data that were collected previously. This means that more detailed inference can be 

made, often using models that are more complex than before. A consequence of this is that 

standard statistical analysis methods often become intractable. There are two common 

responses to the intractability of the likelihood: (1) Simplify the model so that the likelihood 

function can, once again, be calculated; or (2) Add an approximation step to the analytic 

method itself. At this point we recall a quote attributed to George Box: “All models are 

wrong, but some are useful” [6]. While approach (1) above is possible, it may lead to a 

model so divorced from reality that conclusions drawn from it cannot be considered 

particularly informative. The American statistician John Tukey said “Far better an 

approximate answer to the right question, which is often vague, than an exact answer to the 

wrong question, which can always be made precise.” [30]. ABC methods embrace this spirit, 

allowing tractable analysis of large, modern datasets. Consequently, there is an increasing 

tendency for investigators to turn to ABC methods in answer to the challenges of analysis of 

modern data sets. As such, the rise of ABC has been rapid - from essentially no papers prior 

to 2000, to over a hundred per year most recently.

In this review we surveyed ABC methods and illustrated some of the key decisions that need 

to be made in an ABC analysis. We also pointed to areas of active research in the ABC 

community. We expect the rise of ABC methods to continue, and we hope this will include 

the continued development of theory and machinery to guide the user in making some of the 

key choices discussed above.
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