
Pyramidal cell selective ablation of NMDA-R1 causes increase in 
cellular and network excitability

Valerie M. Tatard-Leitman, PhD1,2, Catherine R. Jutzeler1,2,†,‡, Jimmy Suh1,2,†, John A. 
Saunders, PhD1,2, Eddie N. Billingslea, PhD1,2, Susumu Morita1,#, Rachel White, PhD2, 
Robert E. Featherstone, PhD1,2, Rabindranath Ray, PhD2, Pavel I. Ortinski, PhD2, Anamika 
Banerjee, PhD2, Michael J. Gandal, PhD1, Robert Lin1, Anamaria Alexandrescu1, Yuling 
Liang, MD1,2, Raquel E. Gur, MD PhD2, Karin E. Borgmann-Winter, MD2, Gregory C. 
Carlson, PhD2, Chang-Gyu Hahn, MD PhD2, and Steven J. Siegel, MD PhD1,2

1Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, 
Philadelphia, PA 19104, USA

2Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA

Abstract

Background—Neuronal activity at gamma frequency is impaired in schizophrenia (SZ) and is 

considered critical for cognitive performance. Such impairments are thought to be due to reduced 

N-Methyl-D-Aspartate Receptor (NMDAR)-mediated inhibition from parvalbumin (PV) 

interneurons, rather than a direct role of impaired NMDAR signaling on pyramidal neurons. 

However, recent studies suggest a direct role of pyramidal neurons in regulating gamma 

oscillations. In particular, a computational model has been proposed in which phasic currents from 

pyramidal cells could drive synchronized feedback inhibition from interneurons. As such, 

impairments in pyramidal neuron activity could lead to abnormal gamma oscillations. However, 

this computational model has not been tested experimentally and the molecular mechanisms 

underlying pyramidal neuron dysfunction in SZ remain unclear.

Methods—In the present study, we tested the hypothesis that SZ-related phenotypes could arise 

from reduced NMDAR signaling in pyramidal neurons using forebrain pyramidal neurons specific 

NMDA-R1 knocked-out mice.
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Results—The mice displayed increased baseline gamma power as well as socio-cognitive 

impairments. These phenotypes were associated with increased pyramidal cell excitability due to 

changes in inherent membrane properties. Interestingly, mutant mice showed decreased expression 

of GIRK2 channels, which has been linked to increase neuronal excitability.

Conclusions—Our data demonstrate for the first time that NMDAR hypofunction in pyramidal 

cells is sufficient to cause electrophysiological, molecular, neuropathological and behavioral 

changes related to SZ.
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Introduction

Schizophrenia (SZ) is characterized by psychosis as well as profound social and cognitive 

impairments. EEG oscillatory activity at gamma frequencies (30–80Hz) is thought to reflect 

neural activity and functional connectivity that underlie social and cognitive function(1–3). 

Interestingly, abnormalities in gamma oscillations represent one of the most reproducible 

endophenotypes of SZ(4). Indeed, several studies have reported an increase in pre-stimulus 

gamma power in SZ patients during auditory paradigms(5, 6). A decrease in evoked gamma 

power has also been observed in SZ, when patients were exposed to simple auditory 

stimuli(7–14). Current studies have demonstrated that gamma oscillatory abnormalities can 

arise from excitatory-inhibitory (E/I) imbalance. E/I balance relies on reciprocal local-circuit 

connections among GABAergic interneurons and glutamatergic pyramidal neurons(15–17), 

for review(4, 18).

GABAergic interneurons expressing the calcium binding protein parvalbumin (PV) are 

particularly affected in SZ(19–21). Hypofunction of NMDAR signaling in these 

interneurons has been proposed to reduce feed forward inhibition, leading to abnormal 

gamma oscillations(1, 22). The resulting hyperexcitability has further been proposed as a 

mechanism for abnormal gamma oscillations in SZ, as well as SZ-related behavioral and 

cognitive impairments. A few recent studies using PV-specific NMDA-R1 knockout mice 

have reported enhanced baseline cortical gamma rhythms as well as impaired hippocampal 

synchrony. However, in these studies, the mutant mice showed largely normal behaviors 

except for selective cognitive impairments (e.g. deficits in habituation and working memory)

(23, 24).

In a review published in 2012, Gonzales-Burgos and collaborators propose a new circuit 

model of inhibition-based gamma oscillations relevant to SZ, in which pyramidal neuron 

dysfunction could be the primary source of reduced interneuron activation(1). In this model, 

alterations in pyramidal neurons would lead to disrupted efferent drive onto interneurons, 

yielding abnormal synchronization of feedback inhibition. However, this model has not been 

tested experimentally and the mechanisms that would lead to dysfunction of the pyramidal 

neurons remain unknown.
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NMDAR signaling is one of the major regulators of interneuron and pyramidal neuron 

excitability(22, 25). Preclinical and clinical studies focusing on pharmacology and genomics 

support the hypothesis that hypofunction of NMDAR signaling contributes to the 

pathophysiology of SZ(3, 26–31). For example, NMDA-R1 hypomorphic mice display SZ-

like changes in oscillatory activity as well as social, cognitive and psychosis-related 

behaviors(32–38). Moreover, previous studies demonstrate that knocking out NMDA-R1 in 

pyramidal cells in hippocampal CA1 or CA3 induces a subset of cognitive deficits similar to 

those reported in SZ(39–41). However, the broader effect of knocking out NMDA-R1 in all 

forebrain pyramidal neurons has not been evaluated. Therefore, the present study was 

conducted to address this gap in understanding the potential mechanisms by which changes 

in NMDAR signaling specifically in pyramidal neurons may result in cellular, circuit-level 

and behavioral changes relevant to SZ.

Methods

Breeding strategy

Mice bearing a floxed NMDA-R1 allele were crossed with transgenic Camk2αCre mice, in 

which the expression of cre recombinase is driven in postmitotic pyramidal neurons(42). For 

more details see supplementary methods.

RNA and Protein Analysis

Tissues were surgically removed and were used either for In Situ Hybridization, 

Quantitative PCR or post-synaptic density fractionation(43) as detailed in supplementary 

methods.

Behavioral measures

All tests were performed blind to the genotypes of the subjects.

Social Interaction—Social behavior was assessed as described previously by Sankoorikal 

et al.(44). Social approach of test mice was measured toward same sex gonadectomized 

DBA/2J stimulus mice to minimize aggressive and sexual motivations of the test mouse. 

Test and stimulus mice were brought to the testing room in their home cages for a 

habituation period of approximately 30 min before starting the test. All behavioral tests were 

run in red light and videotaped. Further details are noted in supplemental methods.

Self-care behaviors—Assessment of nest building was performed as previously 

described(45). Further details are noted in supplemental methods.

Cognitive measures—Spatial working memory was assessed using both a continuous 

and discrete T-maze paradigm(46). Further details are noted in supplemental methods.

Open Field—Animals were tested in the open field as previously described(38). Further 

details are noted in supplemental methods.
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Ex Vivo Electrophysiology

Mice aged 3–5 months were decapitated following isoflurane anesthesia. Further details are 

noted in supplemental methods.

In Vivo Electrophysiology

Animals were anesthetized with isoflurane and underwent stereotaxic implantation of 

tripolar electrode assemblies (PlasticsOne, Roanoke, VA, USA). EEG recording was 

performed at least a week after surgery on awake animals, in a home cage environment as 

previously described(36, 47–49) and see supplementary materials and methods. Baseline 

and auditory-evoked electrophysiological signals were recorded following paired-click 

stimuli using low-impedance macroelectrodes placed in hippocampal CA3 and the 

ipsilateral frontal sinus (positive electrode: 1.8 mm posterior, 2.65 mm right lateral, and 2.75 

mm deep relative to Bregma). This differential recording configuration captures both early 

and late components of the auditoryevoked potential, including the acoustic brainstem 

response, mid-latency P20 (human P50/M50) and N40 (human N100/M100), as well as the 

late P2 and P3a peaks(50–52), with strong analogy to human scalp electroencephalogram 

(EEG)(47, 53).

Statistical Analysis

Statistical analyses were performed using Prism 5 software. Outliers were determined using 

Grubbs’ test. Unpaired, two tailed t-test with Welch’s correction or repeated measures 

ANOVA, with post-hoc Bonferroni were performed where appropriate as specified in figure 

legends. For nest building, quantitative PCR and western blot experiments the Mann 

Whitney U test was applied. (* - p<0.05, ** - p<0.01, *** - p<0.001). All data were 

Bonferroni corrected as follow: For behavioral experiments 4 measures were used p=0.0125 

(social interaction, nest building, LMA, and T-maze); for EEG experiments, 9 measures 

were used p=0.006 (baseline activity, evoked activity, inter trial coherence at both gamma, 

theta and beta frequencies) and for patch clamp experiments 7 measures were used p=0.007 

(frequency/current, RMP, sEPSC amplitude, sEPSC frequency, evoked EPSC, membrane 

resistance and rheobase). For QPCR experiments the data were corrected individually for 

each brain region (Hippocampus, Cortex and Striatum) and each group of markers 

(interneuron markers, dopamine receptors, serotonine receptors and AMPA-receptors).

Results

Characterization of pyramidal neuron specific NMDA-R1 knockout mice

We performed GAD67 immunostaining in transgenic Camk2αCre;(td)TomatoFlox mice in 

which the expression of the red fluorescent protein (td)Tomato is restricted to Camk2αCre 

expressing cells. No GAD67 co-staining was observed in (td)Tomato positive cells, 

demonstrating that no recombination occurred in GABAergic interneurons (Sup Fig. 1). We 

also showed that NMDA-R1 mRNA was decreased in most forebrain pyramidal neurons of 

the Camk2αCre-cKO mouse brains, except for a small population of cells in CA3 (Fig. 1A). 

The total expression was decreased by 57% in cortex (p=0.006), 66% in hippocampus 

(p=0.006) and 34% in striatum (p=0.128)(Fig. 1B). Moreover, whole-cell recordings in 

Tatard-Leitman et al. Page 4

Biol Psychiatry. Author manuscript; available in PMC 2016 March 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



hippocampal slices in vitro demonstrated the loss of NMDAR currents specifically in 

pyramidal cells of the Camk2αCre-cKO;(td)TomatoFlox compare to their wild type 

littermate Camk2αCre-WT;(td)TomatoFlox, while the AMPA currents where maintained in 

both genotypes (p<0.005)(Fig. 1C). We also confirmed the functional loss of NMDA-R1 in 

pyramidal neurons by measuring long-term potentiation (LTP) of field excitatory post-

synaptic potentials (fEPSPs). When LTP was induced by tetanic stimuli, Camk2αCre-WT 

mice fEPSPs increased significantly from the baseline (p=0.026) and remained stable 

throughout the duration of recording (p=0.002). Conversely, Camk2αCre-cKO mice fEPSPs 

did not change significantly from baseline (Fig. 1D, E).

Loss of expression of NMDA-R1 in pyramidal neurons leads to SZ-like behavioral 
phenotypes

Social behavior was determined by assessing the time spent by the mice smelling the social 

and non-social cylinders. Camk2αCre-cKO mice spent significantly less time sniffing the 

social cylinder than Camk2αCre-WT mice (p=0.008)(Fig. 2A). Self-care was evaluated 

using a nest-building paradigm. Camk2αCre-cKO mice formed poor quality nests or no nest 

at all while the Camk2αCre-WT mice produced well-formed nests (p<0.0001)(Fig. 2B). 

LMA was assessed using automated software. Camk2αCre-cKO mice traveled 

approximately 1.78 times more than Camk2αCre-WT littermates (p=0.002)(Fig. 2C). 

Finally, we used both continuous and discrete T-Maze test tasks, as measures of working 

memory(46). For both tests, the Camk2αCre-cKO mice performed worse than the 

Camk2αCre-WT mice, showing a deficit in spatial working memory (Discrete T-maze: 

p=0.028; Continuous T-maze: p=0.037)(Fig. 2D).

Gamma, Theta and beta oscillatory activities were disturbed in pyramidal neuron specific 
NMDA-R1 KO mice

Gamma frequencies—We observed an increase in gamma EEG activity before (baseline/

background) stimulus (p<0.0001)(Fig. 3A) and a decrease in stimulus evoked gamma 

activity (p=0.006)(Fig. 3B). These changes can also be represented as a decrease in the ratio 

of evoked to background activity (p=0.001). We also analyzed the inter-trial coherence 

(ITC) and did not observe a significant difference between the two groups of mice (p=0.16)

(Fig. 3C).

Theta frequencies—We observed an increase of theta baseline activity in Camk2αCre-

cKO mice (p=0.002)(Sup Fig. 2A) while theta evoked activity was reduced (p=0.028)(Sup 

Fig. 2B). As a result, the ratio of evoked to baseline activity was significantly decreased in 

the Camk2αCre-cKO compared to the Camk2αCre-WT mice (p=0.015). Finally, we 

observed a strong trend toward a decrease in ITC in the Camk2αCre-cKO mice, but the 

difference did not reach significance (p=0.055)(Sup Fig. 2C).

Beta frequencies—We observed an increase of beta baseline activity in Camk2αCre-

cKO mice (p=0.0001)(Sup Fig. 3A) while beta evoked activity was reduced (p=0.01)(Sup 

Fig. 3B). As a result, the ratio of evoked to baseline activity was significantly decreased in 

the Camk2αCre-cKO compared to the Camk2αCre-WT mice (p=0.0016). Finally, we 
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observed a significant decrease in ITC in the Camk2αCre-cKO mice (p=0.022)(Sup Fig. 

3C).

Loss of NMDA-R1 in pyramidal neurons leads to an increase in pyramidal cell excitability

Using patch clamp we found that pyramidal neurons in Camk2αCre-cKO mice fired 

significantly more action potentials in response to depolarizing current steps than neurons in 

the Camk2αCre-WT mice (p=0.001)(Fig. 4A). Accompanying this change we also observed 

an increase in the frequency/current slope (p=0.01)(Sup Fig. 4A), as well as a decrease in 

rheobase (p=0.028)(Sup Fig. 4B) in Camk2αCre-cKO mice compared to Camk2αCre-WT 

mice. Additionally, the resting membrane potential was significantly depolarized in 

Camk2αCre-cKO mice relative to the Camk2αCre-WT (p=0.007)(Fig. 4B). We also 

observed differences in synaptic properties between the two genotypes. Spontaneous EPSC 

(sEPSC) frequency was increased in the Camk2αCre-cKO mice (p=0.007)(Fig. 4C). Data 

indicate that there is an alteration of inherent membrane properties within pyramidal neurons 

in Camk2αCre-cKO mice, resulting in increased pyramidal cell excitability. However, the 

amplitude of sEPSC did not differ between the 2 groups (p=0.41)(Fig. 4D), suggesting that 

ion flux through individual channels was not different. Additionally, there was no difference 

in evoked EPSC between the two groups of mice (p=0.85) (Sup Fig. 4C), again suggesting 

that the primary alteration in network dynamics is due to changes in basal activity. Finally, 

no difference in membrane resistance was observed between the wild type and the 

transgenic mice (p=0.66)(Sup Fig. 4D).

Consequences of forebrain pyramidal neurons specific NMDA-R1 knock out on molecular 
markers relevant to SZ

Impact on GIRK channels and GABAB2 receptors—We found a significant decrease 

of GIRK2 channel protein expression in the cortical synaptic membrane of Camk2αCre-

cKO mice compared to Camk2αCre-WT mice (p=0.015)(Sup Fig. 5A). We also quantified 

GABAB2 expression and phosphorylation at serine 783, which is a marker of receptor 

activation, in the cortical PSD. We did not observe any difference in the expression of 

GABAB2 (data not shown, p=0.445) or in its level of activation P-GABAB2/GABAB2 

(p=0.456)(Sup Fig. 5B).

Impact on dopaminergic and serotoninergic systems—In the cortex of 

Camk2αCre-cKO mice, we observed a significant decrease of the expression of DRD2 

receptors (p=0.015)(Sup Fig. 6A) as well as a qualitative decrease of the expression of 

DRD1 (p=0.07)(Sup Fig. 6B). We also measured the expression of DRD1 and DRD2 

mRNA in the hippocampus and the striatum and did not observe any difference between the 

two groups of mice (Sup Fig. 6A and B). Finally, there was no difference in the expression 

of the serotonin receptors 5HT1A, 5HT2A-B-C in the cortex, hippocampus or striatum, 

except for 5HT2A receptor, which was decreased in the hippocampus (p=0.008)(Sup Fig. 

6C).

Impact on GABAergic system—We measured the level of expression of GAD67 

mRNA in the cortex and hippocampus of the Camk2αCre-cKO and WT mice (Fig. 5A). We 

did not find any significant difference in expression between the two groups of mice 
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(Cortex: p=0.053; Hip: p=0.165). We did not find any changes in expression of PV mRNA 

in the Camk2αCre-cKO mice (Cortex: p=0.421; Hip: p=0.548)(Fig. 5B). However, we 

observed a decrease of CCK expression in the cortex of the Camk2αCre-cKO mice 

compared to Camk2αCre-WT mice (p=0.017)(Fig. 5C). No difference was observed in the 

hippocampus (p=0.151). Finally, we found a non-significant increase in somatostatin mRNA 

expression in the cortex and a qualitative increase in the hippocampus of the Camk2αCre-

cKO mice (Cortex: p=0.056; Hip: p=0.259)(Fig. 5D).

Impact on AMPA receptors—We quantified the mRNA expression of GluR1–4 in the 

cortex and hippocampus and did not find any significant changes between the Camk2αCre-

cKO mice and their wild type littermates (Cortex: GluR1 p=0.805; GluR2 p=0.180; GluR3 

p=0.165; GluR4 p=0.456; Hippocampus: GluR1 p=0.456; GluR2 p=0.259; GluR3 p=0.945; 

GluR4 p=0.620)(Sup Fig. 7).

Discussion

Several studies of the role of NMDA-R1 knock out in GABAergic interneurons in relation 

with SZ have been reported. However, to date, none has focused on the role of the receptor 

specifically in pyramidal neurons. While there is limited data showing alteration of 

pyramidal neurons in SZ, post mortem studies have reported that SZ patients have abnormal 

pyramidal neurons with smaller soma, as well as abnormal laminar distribution and dendritic 

extensions(54, 55). Additionally, while no post mortem studies have reported a decrease of 

NMDA receptors expression in pyramidal cell in SZ patients, we have previously reported 

attenuated ligand-induced activation of NMDAR signaling in the post-mortem dorsolateral 

prefrontal cortex (DLPFC) of subjects with SZ compared to their matched controls(56). 

These data demonstrate a striking decrease in NMDA receptor function in the DLPFC of SZ 

cases compared to controls(56). The assessment of NMDA receptor function in this study 

was based on tissues homogenates. Thus the results do not distinguish between decreases in 

specific cell types. However, given that pyramidal neurons comprise up to 80 percent of the 

DLPFC and the DLPFC of SZ cases have shown striking decreases in NMDA receptor 

function, the data are consistent with primary dysfunction of pyramidal cells. Finally, 

previous animal studies demonstrate that knocking out NMDA-R1 in pyramidal cells 

restricted to hippocampal CA1 or CA3 induces a subset of cognitive deficits similar to those 

reported in SZ(39–41). Altogether, these studies highlight the importance of examining the 

broader effect of knocking out NMDA-R1 in all forebrain pyramidal neurons..

The Camk2αCre mice have been extensively used to knock out genes specifically in 

forebrain pyramidal excitatory neurons(57–62). While these studies have shown that 

recombination happens in pyramidal neurons, which we confirm here, no study has 

previously reported the absence of recombination in GABAergic interneurons. Because the 

aim of the present study was to demonstrate a role of NMDA-R1 restricted to excitatory 

cells in relation to SZ, it was important to confirm that the receptor was not knocked out in 

inhibitory interneurons. Using a cre reporter mouse line ((td)Tomato-Flox) we now 

demonstrate that the cre recombinase is not expressed in GABAergic GAD67 positive cells. 

To avoid possible down regulation of GAD67 expression caused by NMDA-R1 knock out, 

the mice used for this part of the study had not been crossed with NMDA-R1Flox mice. We 
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also report that there is no significant decrease in expression of NMDA-R1 in the striatum, 

where most neurons are GABAergic. Because we demonstrate here that no recombination 

occurs in GABAergic neurons, such decrease is most likely an indirect consequence of 

NMDA-R1 loss in pyramidal neurons. This result is interesting as striatal-specific 

manipulations can cause schizophrenia-like symptoms (63, 64). Finally, in the Camk2αCre 

mice used in this study the recombination starts at approximately 4 to 6 weeks of age, which 

is roughly equivalent to adolescence. Therefore, the changes that we report are occurring 

during the period that is similar to the prodromal period in SZ. As such, this model may be 

appropriate for alteration of NMDA receptor signaling that are manifest during adolescence 

and may precede the onset of the disease.

SZ is characterized by electrophysiological, behavioral and molecular disruption. We have 

performed a broad range of analysis covering these different areas in the pyramidal neuron 

specific NMDA-R1 knockout mice (Camk2αCre-cKO mice). Abnormalities in gamma 

oscillatory activity are among the most reproducible endophenotypes in SZ(4). Several 

studies have reported an increase in baseline activity(5, 6) and a decrease in evoked 

activity(7–14) in SZ patients. We found similar disruption in the Camk2αCre-cKO mice. 

These changes translated into a decrease in the ratio of evoked to background/baseline 

activity, which is consistent with the results obtained in previous clinical SZ studies(6, 65, 

66). EEG oscillatory activity at gamma frequencies is thought to reflect neural activity 

underlying functional connectivity related to social and cognitive tasks processing. 

Accordingly, in the present study we observed impairment in social and cognitive behavior 

in the Camk2αCre-cKO mice. Several other behavioral impairments were also found in 

these mice such as a decrease in self-care and an increase locomotor activity. Locomotor 

activity is used as a measure of abnormal dopamine (DA) and serotonin (5-HT) functions, 

which are thought to be a major cause of psychosis(67, 68). We found a significant decrease 

of the expression of DRD2 receptors in the cortex of Camk2αCre-cKO mice but no 

significant changes occurred in the striatum. These results are in part in agreement with post 

mortem studies reporting a decrease of DRD2 expression in the forebrain and an increase in 

the striatum of patients with SZ(69–71) (and for review see(72, 73)).

The significant decrease in the ratio of evoked to background gamma activity in 

Camk2αCre-cKO mice may reflect a perturbation of E/I balance between GABAergic 

interneurons and pyramidal neurons in favor of increased excitability(38). We therefore 

examined cellular responses using current clamp in CA3 pyramidal cells. Altogether the 

patch clamp data converge toward an increase in pyramidal neuron and circuit excitability. 

Moreover, the data suggest that the primary alteration in network dynamics is due to 

changes in basal activity. We investigated possible mechanisms that could explain such 

phenotypes in the Camk2αCre-cKO mice.

Previous studies have demonstrated that NMDA-R1 activation increases the expression of 

GIRK channels, which facilitates hyperpolarization and reduces spike frequency under 

physiological condition(74, 75). Consequently, a decrease in GIRK channel activity would 

be in agreement with our results showing an increase in resting membrane potential as well 

as action potential firing frequency in the Camk2αCre-cKO. Interestingly, these mice did 

indeed have a decreased expression of GIRK2 in the synaptic membrane, where the majority 
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of GIRK channels reside. This result suggests that increased cellular and network 

excitability following NMDA-R1 knock out in pyramidal neurons could be in part explained 

by changes in GIRK channels expression and/or activity. Regulation of cellular excitability 

by GIRK channels depends on their level of expression, the activity of the channels and also 

their coupling with other proteins such as the GABAB2 receptors(76–78). We did not find 

any difference in expression or activation the GABAB2 receptors, suggesting that an 

alternative mechanism might be used to regulate the GIRK channels activity, such as direct 

regulation of GIRK currents.

The increase in pyramidal neuron and circuit excitability could also be explained by 

compensatory mechanisms through increased activity at non-NMDA glutamatergic 

receptors (i.e. AMPA and kainate receptors). Variability in AMPA-Receptors (GluRs) has 

been reported in post-mortem brain tissues from SZ patients. While most studies show a 

significant decrease in mRNA and protein expression(79–82), an increase in mRNA 

expression has also been reported(83). Moreover, it has been shown that knock out of 

NMDA-R1 in the hippocampus of mice leads to an enhancement of GluRs expression(84). 

Although the current study did not find any changes in expression of GluR1–4, we cannot 

rule out change in function. Indeed, Moghaddam and collaborators reported that the 

NMDAR antagonist ketamine results in increased stimulation of postsynaptic AMPA 

glutamate receptors(85). Future studies will determine if using non-NMDA glutamate 

receptor antagonists could help rescue the endophenotypes observed in the Camk2αCre-

cKO mice.

Alterations of GABAergic interneurons have been repeatedly shown in SZ. Several post-

mortem studies report a decrease in the expression of GAD67, the principal enzyme 

involved in GABA synthesis, in the prefrontal cortex and hippocampus of patients with 

SZ(19, 20, 86–91). However, we did not find a decrease in expression of GAD67 in 

Camk2αCre-cKO mice. A sub-population of GAD67 positive fast spiking GABAergic 

interneurons, positive for the calcium binding protein parvalbumin (PV), contributes to 

neural synchronization at gamma frequencies, and PV expression is consistently decreased 

in SZ. Moreover, it has been shown that ablation of NR1 in a subpopulation of GABAergic 

interneurons leads to a decrease in PV expression (92). We did not find any difference in PV 

mRNA expression between the Camk2αCre-cKO and their wild type littermates. This result 

could partly explain why we did not find any differences in gamma ITC. Moreover, it is 

possible that because we looked at the expression in the whole cortex, we obscured 

differences that would show up in a more restricted area such as the prefrontal cortex where 

changes of GAD67 and PV mRNA expression are the most often reported. In contrast to 

PV-interneurons, cholecystokinin (CCK) containing GABAergic interneurons are thought to 

be important in regulating EEG theta oscillations, and decreased CCK expression has also 

been reported in SZ(19, 93–95). Abnormalities in EEG measures at theta frequencies have 

been reported in SZ patients and in animal models of SZ(2, 47, 96–103). Additionally, theta 

modulation of gamma oscillatory activity is abnormal in SZ, and this disruption has been 

linked to altered NMDAR function in multiple animal and computational models(2, 3, 104"–

106). Consistent with these results obtained in human and animal studies, we found a 

decrease in CCK mRNA expression as well as significant changes in EEG theta oscillations. 

Finally, in the hippocampus, somatostatin positive GABAergic interneurons play a key role 

Tatard-Leitman et al. Page 9

Biol Psychiatry. Author manuscript; available in PMC 2016 March 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



in gating network excitability(107–109) and somatostatin expression is decreased in post-

mortem tissue of SZ patients, both in the hippocampus and prefrontal cortex(91, 110). 

However, we did not find any significant difference in somatostain mRNA expression in 

either the hippocampus or cortex of Camk2αCre-cKO mice. Altogether, our model 

reproduces some alterations in GABAergic interneurons that are reported in SZ. Future 

studies could determine the extent to which PV, CCK and somatostatin positive GABAergic 

interneurons display alterations in firing properties (EPSC and IPSCs) in the Camk2αCre-

cKO mice.

In summary, the present study proposes an alternate mechanism to the prevailing 

disinhibition hypothesis, by which impairments in NMDAR signaling leads to symptoms 

and electrophysiological alterations related to SZ. Indeed, our results collectively provide 

direct evidence that reduced NMDA receptor signaling in pyramidal neurons can induce 

increased cellular and network excitability associated with SZ-like endophenotypes. 

Importantly, these data are consistent with the PING model that has been recently proposed 

by Gonzales-Burgos and collaborators in which pyramidal neuron dysfunction could be the 

primary source of reduced interneuron activation(1).

Supplementary Material
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Figure 1. Pyramidal neuron specific NMDA-R1 KO characterization
A) In Situ Hybridization showing the localization of NMDA-R1 mRNA in Camk2αCre-WT 

(top panel) and Camk2αCre-cKO (bottom panel) mice. Left panel: expression in the CA1 

and dentate gyrus, Middle panel: expression in CA2 and CA3 and Right panel: expression in 

the neocortex, layers I through VI. Note that the expression of NMDA-R1 mRNA was 

reduced in all layers of neocortex in CamkαCre-cKO mice, except layer IV where 

interneurons are positioned. NMDA-R1 mRNA expression was also lost throughout CA1, 

CA2 and the dentate gyrus, while scattered expression remains in CA3. B) Real-time PCR 

quantification of NMDA-R1 mRNA, in the cortex, hippocampus, and striatum of the 

Camk2αCre-cKO and Camk2αCre-WT mice. The expression in the Camk2αCre-cKO mice 

is normalized to the expression in the Camk2αCre-WT mice. The expression of NMDA-R1 

mRNA is significantly decreased by 66% in the hippocampus and 57% in the cortex, while a 

non-significant decrease is observed in the striatum (Cortex: Camk2αCre-WT=1±0.04, n=7; 

Camk2αCre-cKO=0.44±0.07, n=7; p=0.0006. Hippocampus: Camk2αCre-WT=1±0.01, 

n=7; Camk2αCre-cKO=0.34±0.05, n=7; p=0.0006. Striatum: Camk2αCre-WT=1±0.09, 
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n=7; Cam2aCre-cKO=0.67±0.13, n=7; p=0.1282, Mann-Withney, two tailed, all samples 

were run in duplicate). C) Whole-cell recordings in hippocampal slices in vitro. NMDA 

currents in pyramidal cells are lost while AMPA currents are preserved. (Camk2αCre-WT;

(td)TomatoFlox: NMDA/AMPA ratio=0.16±0.04, n=6 cells/4 mice; Camk2αCre-cKO;

(td)TomatoFlox, NMDA/AMPA ratio=0.02±0.001, 6 cells/3 mice, p<0.005, unpaired t-test). 

D, E) NMDA-R1 loss in pyramidal neurons prevents long-term potentiation. Field 

excitatory post-synaptic potentials (fEPSPs) were recorded in the CA1 area of the 

hippocampus at baseline (first 15 minutes) and following the 2 tetanic stimuli (During 45 

minutes) in CA1. Note the complete absence of LTP in the Camk2αCre-cKO mice. D) 
Following the tetanic stimuli, Camk2αCre-WT mice developed long-term potentiation, 

which lasted for over one hour. However, Camk2αCre-cKO mice did not develop LTP, as 

the fEPSPs were not different before and after the tetanic stimuli. (Camk2αCre-WT: 

Baseline fEPSPs=99.69±0.25 %, All fEPSPs after tetanic stimuli=147.66±13.40 %, n=6; 

p=0.0048; Camk2αCre-cKO: Baseline fEPSPs=99.62±0.17 %, All fEPSPs after tetanic 

stimuli=102.07±2.019 %, n=6; p=0.0651. Mann-Whitney, two tailed). E) Comparison of 

field EPSPs during the 5 minutes (=15 recording) of baseline pre tetanic stimuli, the first 

five minutes post tetanic stimuli and the last five minutes post tetanic stimuli. The results are 

shown for each sequence as percentage of baseline. There is a significant increase in fEPSP 

(averaged over the first five minutes responses post tetanic stimuli=15 recording) compare 

to the baseline in the Camk2αCre-WT mice but no difference is observed in the 

Camk2αCre-cKO mice (Camk2αCre-WT: Baseline fEPSPs=101.78±1.60 %, First 5 minutes 

fEPSPs=135.06±15.64 %, n=6; p=0.026; Camk2αCre-cKO: Baseline fEPSPs=98.78±2.06 

%, First 5 minutes fEPSPs=98,83±2,86 %, n=6; p=0.8182. Mann-Whitney, two tailed). For 

the Camk2αCre-WT, the response was maintained for over an hour, as the fEPSP during the 

last 5 minutes after the tetanic stimuli were still significantly higher than the baseline 

(Baseline fEPSPs=101.78±1.60 %, Last 5 minutes fEPSPs=151.35±11.34 % n=6; p=0.0022, 

Mann-Whitney, two tailed). (* - p<0.05, ** - p<0.01, *** - p<0.001).
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Figure 2. Pyramidal neuron specific NMDA-R1 KO mice show SZ-related behaviors
A) Social interactions were measured in a three-chamber apparatus as previously described. 

Time spent sniffing the social cylinder (containing the stimulus mouse) is shown. 

Camk2αCre-cKO mice spent significantly less time interacting with the stimulus mouse 

than the Camk2αCre-WT mice (Camk2αCre-WT=40.46±3.49 sec, n=17; Camk2αCre-

cKO=19.65±6.21 sec, n=16; p=0.008, t=2.92). B) Self-care was assessed using a nest 

building method and the nest quality was quantified from 0 a.u. (poor) to 5 a.u. (best) as 

previously described. Camk2αCre-cKO mice scored significantly lower for next 

construction than WT littermates (Camk2αCre-WT=4.85±0.17 a.u., n=13; Camk2αCre-

cKO=1.62±0.56 a.u., n=16; p<0.0001, Mann-Whitney, two-tailed). C) Locomotor activity 

was measured in an open field. The Camk2αCre-cKO mice show a significant increase in 

LMA, as measure by total distance (Camk2αCre-WT=1965±108 cm, n=18; Camk2αCre-
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cKO=3454±410 cm, n=18; p=0.0023, t=3.51). D) Cognitive function was assessed using the 

continuous and discrete T-maze. The percentage of correct alternations for each mouse was 

measured. Camk2αCre-cKO mice show a significant impairment in spatial working memory 

compared to Camk2αCre-WT mice (Discrete T-maze: Camk2αCre-WT=75±9.70 % of 

correct alternations, n=12; Camk2αCre-cKO=41.67±10.36 % of correct alternations, n=12; 

p=0.0284, t=2.34. Continuous T-maze: Camk2αCre-WT=60.04±2.83 % of correct 

alternations, n=12; and Camk2αCre-cKO=42.36±7.06 %, n=11; p=0.037, t=2.32). Statistical 

analyses in (A, C, and D) were performed using an unpaired, two tailed t-test followed by 

Welch’s post-hoc when appropriate (A, C and D), to correct for unequal variance. 

Significance after Bonferroni correction requires p=0.0125. (* - p<0.05, ** - p<0.01, *** - 

p<0.001).
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Figure 3. Gamma band oscillatory activity is disrupted in pyramidal neuron specific NMDA-R1 
KO mice
A) Camk2αCre-cKO mice show a significant increase in baseline gamma power compared 

to the wild type mice recorded from −200ms to 0ms before the stimulus (Camk2αCre-

WT=71.92±0.51 dB, n=17; Camk2αCre-cKO=81.66±1.10 dB, n=16; p<0.001, t=8.02). 

Result is illustrated on the time-frequency decomposition map shown at the right of the 

histogram. B) Evoked gamma power, measured within 50ms following the stimulus, was 

decreased in the Camk2αCre-cKO compare to the Camk2αCre-WT mice (Camk2αCre-
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WT=0.82±0.09 dB, n=17; Camk2αCre-cKO=0.48±0.07 dB, n=16; p=0.0062, t=2.95). 

Result is illustrated on the time-frequency decomposition map shown at the right of the 

histogram. C) The inter-trial coherence (ITC) representing the level of synchrony of 

oscillatory activity between trials at gamma band frequency was qualitatively, but not 

significantly decreased in Camk2αCre-cKO mice (Camk2αCre-WT=0.35±0.02, n=17; 

Camk2αCre-cKO=0.31±0.02, n=16; p=0.156, t=1.46). ITC is measured in degrees of phase 

coherence ranging from 0 = no coherence to 1 = perfect coherence(111). Result is illustrated 

on the time-frequency decomposition map shown at the right of the histogram. Statistical 

analysis in (A, B and C) were performed using an unpaired two tailed t-test followed by 

Welch’s post-hoc when appropriate (A), to correct for unequal variance. Significance after 

Bonferroni correction requires p=0.006. (* - p<0.05, ** - p<0.01, *** - p<0.001).
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Figure 4. Loss of NMDA-R1 in pyramidal neurons leads to an increase in pyramidal cell 
excitability
Patch clamp was used to determine the electrophysiological cellular properties of pyramidal 

neurons. A) Frequency-current (F–I) plot show an increase in spike frequency as a function 

of increasing current injection in both groups of mice. Note the significantly higher rate of 

spike frequency firing in Camk2αCre-cKO mice compared to Camk2αCre-WT mice (n=13 

for each group, p<0.001, Sum-of-squares=8653, F=296.5. Two-way ANOVA with 

Bonferroni post-hoc). B) Pyramidal neurons from Camk2αCre-cKO mice are more 

depolarized at rest compared to the Camk2αCre-WT mice (Camk2αCre-WT=−69.21±1.24 
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mV, n=13; Camk2αCre-cKO=−63.88±1.31 mV, n=13; p=0.007, t=2.95). C, D) Pyramidal 

neuron spontaneous EPSC frequency (C) and peak amplitude (D) are both increased in 

Camk2αCre-cKO mice but the increase reached significance only for frequency (Frequency: 

Camk2αCre-WT=0.86±0.18 Hz, n=14; Camk2αCre-cKO=2.00±0.33 Hz, n=15; p=0.007, 

t=2.97. Peak amplitude: Camk2αCre-WT=16.08±1.48 pA, n=13; Camk2αCre-

cKO=17.95±1.69 pA, n=15; p=0.418, t=0.823). E) There was no significant difference for 

peak amplitude of evoked EPSCs between the 2 groups (p=0.445, Sum-of-squares=1298, 

F=0.592. Two-way ANOVA with Bonferroni post-hoc). F) The Resistance did not differ 

significantly between the two groups of mice (Camk2αCre-WT=402.3 ± 47.99 n=14; 

Camk2αCre-cKO=429.6 ± 38.20 n=19; p=0.660; t=0.444). Statistical analysis in (B, C, D 
and F) were performed using an unpaired two tailed t-test followed by Welch’s post-hoc 

when appropriate (C) to correct for unequal variance. Significance after Bonferroni 

correction requires p=0.007. (* - p<0.05, ** - p<0.01, *** - p<0.001).
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Figure 5. GABAergic interneurons alteration in the cortex and hippocampus of Camk2αCre-
cKO mice
A) The expression of GAD67 mRNA was not significantly changed in the Camk2αCre-cKO 

mice (Cortex: Camk2αCre-WT=1.0±0.02, n=7; Camk2αCre-cKO=1.09±0.03, n=7; 

p=0.053. Hippocampus: Camk2αCre-WT=1.0±0.06, n=7; Camk2αCre-cKO=0.85±0.06, 

n=7; p=0.165) B) The expression of PV mRNA was unchanged in the Camk2αCre-cKO 

mice (Cortex: Camk2αCre-WT=1.01±0.07, n=7; Camk2αCrecKO= 1.14±0.06, n=7; 

p=0.421. Hippocampus: Camk2αCre-WT=1.0±0.06, n=7; Camk2αCre-cKO=1.23±0.12, 

n=7; p=0.548). C) The expression of CCK mRNA was decreased in both cortex and 

hippocampus, the difference being significant only in the cortex (Cortex: Camk2αCre-

WT=1.0±0.06, n=7; Camk2αCre-cKO=0.81±0.04, n=7; p=0.017. Hippocampus: 

Camk2αCre-WT=1.0±0.04, n=7; Camk2αCre-cKO=0.88±0.05, n=7; p=0.151). D) 
somatostatin (Cortex: Camk2αCre-WT=1.0±0.08, n=7; Camk2αCre-cKO=1.42±0.16, n=7; 

p=0.056. Hippocampus: Camk2αCre-WT=1.0±0.22, n=7; Camk2αCre-cKO=1.47±0.32, 
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n=7; p=0.259). Mann-Whitney, two tailed, all samples were run in duplicate. Significance 

after Bonferroni correction requires p=0.012 (* - p<0.05, ** - p<0.01, *** - p<0.001).
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