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Abstract

Malignant astrocytomas are highly invasive into adjacent and distant regions of the normal brain. 

Rho GTPases are small monomeric G proteins that play important roles in cytoskeleton 

rearrangement, cell motility, and tumor invasion. In the present study, we show that the knock 

down of StarD13, a GTPase activating protein (GAP) for RhoA and Cdc42, inhibits astrocytoma 

cell migration through modulating focal adhesion dynamics and cell adhesion. This effect is 

mediated by the resulting constitutive activation of RhoA and the subsequent indirect inhibition of 

Rac. Using Total Internal Reflection Fluorescence (TIRF)-based Förster Resonance Energy 

Transfer (FRET), we show that RhoA activity localizes with focal adhesions at the basal surface 

of astrocytoma cells. Moreover, the knock down of StarD13 inhibits the cycling of RhoA 

activation at the rear edge of cells, which makes them defective in retracting their tail. This study 

highlights the importance of the regulation of RhoA activity in focal adhesions of astrocytoma 

cells and establishes StarD13 as a GAP playing a major role in this process.
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Introduction

Gliomas, which are neuroepithelial brain tumors derived from astrocytes, oligodendrocytes, 

or ependymal cells, constitute up to 80% of primary brain tumors in humans [1, 2]. 

Astrocytomas are gliomas that arise from astrocytes [1]. Malignant astrocytomas are usually 

associated with poor prognosis and high mortality rate[3]. Malignant astrocytomas rarely 

metastasize to other organs, but are highly invasive within the brain and could spread to 

distant regions of the brain, which renders them surgically unmanageable and accounts for 

their often fatal outcome [4].

Invasion of glioma is a complex process consisting of several steps that involve coordinated 

intracellular and extracellular interactions [4, 5]. Cell migration is an integral element of the 

invasion process [4, 5]. To actively migrate, a cell follows a well-defined motility cycle that 

is initiated in response to the detection of a chemoattractant. This commits the cell to 

undergo actin polymerization transients in order to extend an actin-rich protrusion, such as 

lamellipodia or filopodia, towards the direction of the chemoattractant [6]. The steps that 

follow to achieve the motility cycle include formation of adhesion structures that stabilize 

the protrusion [7], development of contractile force that translocates the cell body forward, 

release of adhesion structures at the cell rear and finally retraction of the cell towards the 

direction of motility [8]. These processes are regulated by Rho family of small guanosine 

triphosphatases (GTPases), which includes key enzymes that play a major role in the 

reorganization of the actin cytoskeleton [9].

Rho GTPases are small monomeric G proteins of a 20–40 kDa molecular mass, which 

belong to the Ras superfamily [10]. The three most characterized and studied members of 

the Rho family are RhoA, Rac1, and Cdc42 [11]. It was initially believed that RhoA, Rac1 

and Cdc42 regulate the formation of actin-myosin filaments, lamellipodia and filopodia 

respectively [12]. However, recent studies taking into consideration the different effects of 

Rho GTPases in different cell systems and the cross-talk between the signaling pathways 

regulated by Rho GTPases, have shown that this model is too simplistic. For instance, the 

role of RhoA during cell motility was initially thought to be restricted to the generation of 

contractile force and focal adhesion turnover needed for tail retraction; however, it was 

recently shown that RhoA is active at the cell edge [13, 14], and that this activation might 

coordinate the Cdc42 and Rac-1 regulation of the actin cytoskeleton [14, 15]. Moreover, in 

neutrophils, Rac activation was observed in the tail of the cells in addition to the leading 

edge [16].

Rho GTPases are found in two forms, a GDP-bound inactive and a GTP-bound active form 

[17]. As Rho GTPases govern a wide range of critical cellular functions, their function is 

tightly regulated by three classes of proteins, Guanine nucleotide exchange factors (GEFs), 

GTPase-activating proteins (GAPs), and guanine nucleotide dissociation inhibitors (GDIs). 

GAPs negatively regulate Rho GTPases by stimulating the intrinsic GTPase activity of Rho 

GTPases and promoting the formation of the inactive GDP-bound form [18]. StarD13, 

which is also referred to as START-GAP2 or DLC2, is a Rho GAP that was first described 

as a tumor suppressor in hepatocellular carcinoma [19]. This Rho-GAP, whose gene is 

located on the position 13q12.3, specifically inhibits the function of RhoA and Cdc42 and 
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was demonstrated to inhibit the Rho-mediated assembly of actin stress fibers in cultured 

cells.

Overexpression of StarD13 is associated with a decrease in cell growth [19]. Cancer-

profiling arrays indicated that StarD13 expression is down-regulated in several types of solid 

tumors including in renal, uterine, gastric, colon, breast, lung, ovarian, and rectal tumors 

[20]. Furthermore, a Genome-Wide Analysis integrating a paired copy number and gene 

expression survey on glioblastoma samples concluded that StarD13 is a potential tumor 

suppressor gene that could be involved in the resistance of this tumor to etoposide [21].

A study that aimed at examining the intracellular localization of StarD13 showed that it is 

found in focal adhesions and that it is anchored to tensin2, a component of focal adhesions, 

through a so-called focal adhesion targeting domain made of amino acids 318–472 in the N-

terminal region [22]. StarD13 also plays a role in cell migration and attachment, where its 

silencing was found to enhance the migration and decrease cell attachment in normal 

vascular endothelial cells [23]. Moreover, StarD13 deficiency plays a role in the metastasis 

of breast carcinoma into secondary sites. Using quantitative RT-PCR, a significantly low 

expression of the StarD13 gene was detected in tumor samples taken from primary ductal 

carcinomas from patients with metastases into a regional lymph node [20].

In this study, we investigate the role of StarD13-mediated RhoA regulation in astrocytoma 

cell motility. The knockdown of StarD13 surprisingly inhibited astrocytoma cell motility. 

This was shown to be mediated by the resulting constitutive activation of RhoA. Similar to 

the effect of constitutive RhoA activation, StarD13 knockdown resulted in larger focal 

adhesions. Consequently, the cells were unable to detach their tails, which prohibited the 

completion of the motility cycle. This study highlights the importance of the regulation of 

RhoA activity in astrocytoma cell motility and establishes StarD13 as the GAP playing a 

major role in this process.

Materials and Methods

Cell Culture

Human astrocytoma cell lines SF268 and T98G were cultured in DMEM medium 

supplemented with 10% FBS and 100U penicillin/streptomycin at 37°C and 5% CO2 in a 

humidified chamber.

Antibodies and reagents

Goat polyclonal anti-StarD13 antibody was obtained from Santa Cruz Biotechnology. 

Mouse monoclonal anti-RhoA, mouse monoclonal anti-Rac1, and mouse monoclonal anti-

paxillin antibodies were purchased from Upstate biotechnology, Lake Placid, NY. The anti-

Cdc42 antibody (Sc-87) was obtained from Santa Cruz Biotechnology. Anti-goat and anti-

mouse HRP-conjugated secondary antibodies were obtained from Promega. Fluorescent 

secondary antibodies (AlexaFluor 488) and Rhodamin Phalloidin were obtained from 

Invitrogen. The full length GFP-StarD13 construct was a generous gift from Dr. Hitoshi 

Yagisawa from the University of Hyogo, Japan (Mammalian expression plasmids for GFP 

fusion proteins, pEGFPSTART-GAP1(wt)) [22]. The RhoA constructs were a generous gift 
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from Dr. Hideki Yamaguchi and the Cherry-Rac-DA from Dr. Louis Hodgson from the 

Albert Einstein College of Medicine, New York, USA.

Cell transfection and small interfering RNA

Cells were transfected with 5 μg GFP-StarD13, Dominant active RhoA, dominant active 

Rac, or control empty GFP alone vectors using Lipfectamine LTX with Plus reagent 

(Invitrogen) as described by the manufacturer. The experiments were performed 24 hours 

following transfection. Goat FlexiTube siRNA for StarD13, RhoA, and Rac1 were obtained 

from Qiagen. The siRNAs used had the following target sequences: StarD13: Oligo 1, 5′-

CCCGCAATACGCTCAGTTATA-3′ and Oligo 2, 5′-

ATGGCTACATCCCTACTAATA-3′, RhoA: 5′-TTCGGAATGATGAGCACACAA-3′, 

and Rac1: 5′-ATGCATTTCCTGGAGAATATA-3′. The cells were transfected with the 

siRNA at a final concentration of 10 nM using HiPerfect (Qiagen) as described by the 

manufacturer. Control cells were transfected with siRNA sequences targeting GL2 

Luciferase (Qiagen). After 72 hours, protein levels in total cell lysates were analyzed by 

western blotting using the appropriate antibodies or the effect of the corresponding knock 

down was assayed.

Pull down assays and Western Blots

The pull-down assays were performed using the RhoA/Rac1/Cdc42 Activation Assay 

Combo Kit (Cell BioLabs) following the manufacturer’s instructions. Briefly, cell lysates 

were incubated with GST-RBD (for Rho pull down) or GST-CRIB (for Rac pull down) for 1 

hour at 4 °C with gentle agitation. Then, the samples were centrifuged, and the pellet 

washed for several times. After the last wash, the pellets were resuspended with sample 

buffer and boiled for 5 minutes. GTP-RhoA and GTP-Rac were detected by western blotting 

using anti-RhoA or anti-Rac, respectively. Total RhoA/Rac and Cdc42 were collected prior 

to the incubation with GST-RBD/GST-CRIB and used as a loading control. All western 

blots were analyzed by ECL (GE Healthcare) followed by densitometry.

Immunostaining

Cells were plated on cover slips, and the appropriate treatment was applied. Cells were fixed 

with 4% paraformaldehyde for 10 minutes at 37°C, and permeabilized with 0.5% Triton-

X100 for10 minutes at room temperature. To decrease background fluorescence, cells were 

rinsed with 0.1 M glycine then incubated with 0.1 M glycine for 10 minutes at room 

temperature. For blocking, cells were incubated 4 times with 1% BSA, 1% FBS in PBS for 5 

minutes at room temperature. Samples were stained with primary antibodies for 2 hours and 

with fluorophore-conjugated secondary antibodies for 2 hours at room temperature. All 

fluorescent images were taken using a 60x 1.4 NA infinity corrected optics on a Nikon 

Eclipse microscope supplemented with a computer-driven Roper cooled CCD camera and 

operated by IPLab Spectrum software (VayTek).

Wound healing and motility assays

Cells were grown to confluence on culture plates and a wound was made in the monolayer 

with a sterile pipette tip. After wounding, the cells were washed to remove debris and new 
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low-serum medium (containing 0.5% FBS) was added. Phase-contrast images of the 

wounded area were taken at 0 and 24 hours after wounding using a 10X objective. Wound 

widths were measured at 11 different points for each wound, and the average rate of wound 

closure was calculated in μm/hr. For motility analysis, images of cells moving randomly in 

serum were collected every 60 seconds for 2 hours using a 20X objective. During imaging, 

the temperature was controlled using a Nikon heating stage which was set at 37 °C. The 

medium was buffered using HEPES and overlayed with mineral oil. The speed of cell 

movement was quantified using the ROI tracker plugin in the ImageJ software, written by 

Dr. David Entenberg. This was used to calculate the total distance travelled by individual 

cells. The speed is then calculated by dividing this distance by the time (120 minutes) and 

reported in μm/min. The speed of at least 15 cells for each condition was calculated. The net 

distance travelled by the cell was calculated by measuring the distance travelled between the 

first and the last frames. Both assays were done using infinity corrected optics on a Nikon 

Eclipse microscope supplemented with a computer-driven Roper cooled CCD camera and 

operated by IPLab Spectrum software (VayTek).

RhoA FRET biosensor imaging and analysis

SF268 cells were transfected with 1 μg of the RhoA FLARE biosensor, a fluorescence 

resonance energy transfer (FRET)-based biosensor plasmid described earlier [13]. FRET 

image sequences were obtained with an automated Olympus IX70 microscope equipped 

with filter wheels in the excitation and emission light path and coupled to a cooled 

SensiCam QE CCD camera (Cooke Corp., MI). CFP was excited using a S430/25 filter with 

a Sutter DG4 illuminator (Sutter Instruments, Novato, CA) and the fluorescence detected 

with a S470/30 (donor image) or S535/30 (FRET image) emission filter. YFP was imaged 

with exciter S500/20 and emitter S535/30 (YFP image). In all cases a dual-band dichroic 

mirror 86002v2bs was used (Chroma Technology Corp., VT). Images were background 

corrected and the YFP images were thresholded to generate a binary mask with values of 1 

within the cell and 0 for the background. The increase in FRET signal due to activation of 

RhoA was detected by ratioing the FRET image (CFP excitation- YFP emission) to the 

donor image (CFP excitation- CFP emission). FRET signals were quantified by averaging 

the mean FRET ratio in cells. For the live FRET movies, the cells were transfected with the 

RhoA biosensor as described above, and images of the cells moving randomly in serum 

were taken at a 1 minute time interval for 1 hour. The images from each frame were 

analyzed as described above. Detailed description of the image analysis process is described 

in [24].

TIRF imaging of RhoA activity and mCherry-Paxillin

Astrocytoma cells (SF268) were transfected with 500ng of the RhoA biosensor plasmid and 

500ng of the mCherry-Paxillin plasmid using Fugene6. Twenty four hours after transfection, 

cells were plated onto glass coverslips and allowed to attach for a further 24 hrs prior to 

imaging. During imaging cells were maintained in Ham’s F12(K) (Caisson Labs), 

supplemented with 5% FBS, at 37°C using a heated stage insert (20/20 Technologies). Cells 

were imaged using an Olympus IX-81 microscope equipped with a 60x 1.45NA PlanApo 

TIRF objective, multi-line CELLTIRF system (Olympus) and ES Coolsnap CCD camera 

(Photometrics). CFP and FRET were excited using a 440nm HeCd laser (Kimmon) and 
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emission detected using ET470/24M and ET535/30M filters, respectively. mCherry was 

excited using a 594nm Mambo diode laser (Cobolt) and emission detected using an 

HQ630/40M filter. In all cases a 445/505/580 ET series dichroic mirror was used (filters and 

dichroics from Chroma). Images were shade corrected and background subtracted using 

Metamorph software (Molecular Devices). RhoA activity maps were derived by dividing the 

FRET image by the CFP image. A detailed description of image analysis used here can be 

found in [24].

Adhesion assay

96-well plates were coated with collagen using Collagen Solution, Type I from rat tail 

(Sigma) overnight at 37 °C then washed with washing buffer (0.1% BSA in DMEM). The 

plates were then blocked with 0.5% BSA in DMEM at 37 °C in a CO2 incubator for 1 hour. 

This was followed by washing the plates and chilling them on ice. Meanwhile, the cells were 

trypsinized and counted to 4×105 cell/ml. 50 μl of cells were added in each well and 

incubated at 37°C in a CO2 incubator for 30 minutes. The plates were then shaken and 

washed 3 times. Cells were then fixed with 4% paraformaldehyde at room temperature for 

10 minutes, washed, and stained with crystal violet (5 mg/ml in 2% ethanol) for 10 minutes. 

Following the staining with crystal violet, the plates were washed extensively with water, 

and left to dry completely. Crystal violet was solubilized by incubating the cells with 2% 

SDS for 30 minutes. The absorption of the plates was read at 550 nm using a plate reader.

Statistical analysis

All the results reported represent average values from three independent experiments. All 

error estimates are given as ± SEM. The p-values were calculated using SPSS software by 

ANOVA or chi-square tests depending on the experiment.

Results

StarD13 knock down inhibits astrocytoma cell motility through modulating focal adhesion 
dynamics and cell adhesion

In order to investigate the role of StarD13 in motility of astrocytoma cells, we knocked 

down its expression using siRNA oligonucleotides and confirmed the knock down by 

western blot (Figure 1A and S1). We then determined the effect of StarD13 knock down on 

the rate of wound closure in a wound healing assay as well as on individual cell speed and 

net distance migrated in time lapse assays. The knock down of StarD13 significantly 

decreased the wound closure rate (Figure 1B and C). Since Oligo 1 showed higher knock 

down efficiency (Figure 1A and S1) and a more pronounced effect on cell motility in the 

wound healing assay, we used this siRNA oligonucleotide to knock down the expression of 

StarD13 in the following experiments. The decrease in cell migration due to StarD13 knock 

down was successfully rescued by expressing a GFP-StarD13 construct (Figure 1C and S2), 

which further shows that the inhibition of migration is due to the loss of StarD13 and not to 

non-specific off-target effects. StarD13 knock down significantly decreased the average 

speed of individual cells from 0.44 μm/min to 0.24 μm/min and the net distance migrated 

from 8.5 μm to 3.02 μm (Figure 1D and E; movie S1). Altogether, these results show that the 

knock down of StarD13 inhibits astrocytoma cell motility. Similar to its previously reported 
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localization in HeLa cells [22], our results show that StarD13 colocalizes with two focal 

adhesion markers, paxillin and vinculin, in both T98G and SF268 astrocytoma cell lines 

(Figure S3). To determine whether the effect of StarD13 knock down on motility is related 

to its localization to focal adhesions, we examined the focal adhesion phenotype in control 

and StarD13 knock down by immunostaining for paxillin, a component of focal complexes 

and focal adhesions [25]. StarD13 knock down cells showed larger and more prominent 

focal adhesions at the cell edge (Figure 2A) with more than two-fold increase in area of 

focal adhesions (Figure 2B). StarD13 knock down cells where StarD13 was overexpressed 

showed both focal complexes and focal adhesions at the cell edge (Figure 2A, upper right 

panel) indicating that a normal adhesion phenotype is restored. The formation of focal 

complexes and their subsequent maturation into focal adhesions has been reported to be 

regulated by Rac and Rho, respectively [25–27]. We confirmed this in astrocytoma cells 

since the knock down of Rac resulted in cells with no adhesion structures at the cell edge, 

while cells where RhoA was knocked down showed only small punctate focal complexes 

(Figure 2A, lower panel). The fact that StarD13 knock down resulted in the formation of 

large focal adhesions suggested that StarD13 might be important for focal adhesion 

dynamics in astrocytoma cells. To test this, we performed time lapse analysis on control or 

StarD13 knock down cells that are transfected with a GFP-tagged construct of vinculin, a 

component of focal adhesions [25]. While control cells showed dynamic assembly and 

disassembly of adhesion structures as they migrated, StarD13 knock down cells were static 

and showed longer-lived stable adhesion structures (Figure 2C and D; movie S2). Many of 

the StarD13 knock down cells were also unable to detach their tails and move forward as 

observed in time lapse analysis of randomly migrating cells (Figure 2E; movie S3). 

Accordingly, cells where StarD13 was knocked down showed more than a two-fold increase 

in adhesion to collagen matrix (Figure 2F and G).

The effect of StarD13 knock down on cell motility is through RhoA and Rac

StarD13 was described as a GAP for RhoA and Cdc42 but not for Rac [19]. We have 

previously reported that StarD13 also plays this role in astrocytoma cells through 

overexpressing StarD13 [28]. In the current study, we performed pull-down assays to 

determine the level of Rho GTPase activation in StarD13 knock down cells. As expected, 

the knock down of StarD13 caused a decrease in RhoA activation (Figure 3A). Interestingly, 

Rac activation was lower in StarD13 knock down cells as compared to control cells (Figure 

3A). Based on the antagonistic relationship between RhoA and Rac in these cells as evident 

by the increase in Rac activation upon RhoA knock down (Figure 3A), we hypothesized that 

StarD13 could be affecting Rac activation indirectly through its activity on RhoA. This was 

confirmed since the simultaneous knock down of RhoA and StarD13 prevented the decrease 

in Rac activation caused by the absence of StarD13 (Figure 3A). This suggested that the 

effect of StarD13 knock down on cell motility is mediated through the direct increase in 

RhoA activation, the subsequent decrease in Rac activation, or both. Therefore, we next 

determined the effect of knocking down Rac as well as expressing a dominant active form of 

RhoA on astrocytoma cell motility. Knock down of Rac by siRNA as verified by western 

blot (Figure 3B) inhibited cell motility. In the wound healing assay, Rac1 knock down 

decreased wound closure rate from 8.22 μm/hr to 1.76 μm/hr (Figure 3C and D). Likewise, 

there was a significant decrease in cell speed from 0.44 μm/min to 0.17 μm/min and the net 
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distance migrated from 8.50 μm in controls to 1.7 μm (Figure 3E and F; movie S4). 

Expression of dominant active RhoA also inhibited cell motility similar to StarD13 knock 

down. In the wound healing assay, dominant active RhoA decreased wound closure rate 

from 7 μm/hr to 2.7 μm/hr (Figure 4A and B). Similarly, dominant active RhoA decreased 

average cell speed from 0.34 μm/min to 0.25 μm/min (Figure 4D; movie S5). A more 

substantial decrease in the net path was observed in cells transfected with dominant active 

RhoA from 9.31 μm to 1.43 μm (Figure 4C and D; S5).

To confirm that StarD13 knock down is affecting motility through RhoA and Rac, we 

expressed dominant active Rac or knocked down RhoA in StarD13 knock down cells 

(Figure 5A) and determined the effect on cell motility. The decrease in cell motility caused 

by the absence of StarD13 was completely or partially reversed by the expression of 

dominant active Rac and the knock down of RhoA, respectively (Figure 5B and C). When 

both RhoA and Rac were knocked down in StarD13 knock down cells, the motility of cells 

was almost completely inhibited (Figure 5B and C).

RhoA knockdown or dominant active Rac in StarD13 knockdown cells reverses the 
stabilization of focal adhesions

To show that constitutive activation of RhoA due to the knock down of StarD13 is leading 

to the stabilization of focal adhesions, we determined the effect of knocking down RhoA in 

StarD13 knock down cells on focal adhesions. This led to the abolishment of focal 

adhesions, where only immature focal complexes were observed (Figure 5D). The 

expression of a dominant active Rac also led to the absence of the large focal complexes 

induced by the knockdown of StarD13, where both focal complexes and focal adhesions 

were observed (Figure 5D). Consistently, the knockdown of both RhoA and Rac in StarD13 

knockdown cells led to the complete absence of any form of adhesion (Figure 5D).

StarD13 knock down inhibits the cycling in RhoA activation

The fact that the constitutive increase in RhoA activity either by the knockdown of StarD13 

or the expression of a dominant active RhoA is inhibiting motility implies that RhoA has to 

be inactivated at some point in the cell motility cycle for the cells to move efficiently. To 

investigate this possibility, we transfected control or StarD13 knock down astrocytoma cells 

with a RhoA FRET biosensor in order to determine the temporal and spatial dynamics of 

RhoA activation in cells undergoing random motility. At the cell tail of control cells 

(identified by a white box in the upper panel of Figure 6A), RhoA showed cycles of 

activation and inactivation (Figure 6A upper panel and B; movie S6). A decline in RhoA 

activation was specifically evident as the cell retracted its tail to move forward (time points 

16′ and 20′). As previously described, a phenotype that was evident in cells where StarD13 

was knocked down is the inability of cells to retract their tail and move forward.. FRET 

analysis showed that this phenomenon was correlated with a high and persistent RhoA 

activation at the tail as seen in the StarD13 knock down cells transfected with the RhoA 

FRET biosensor (Figure 6A lower panel and B; movie S7). We also detected RhoA 

activation at the edge of cells as well as the tail (Figure S4A). Accordingly we suspected 

that, other than its effect at the cell tail, StarD13 knock down inhibits cell motility by 

altering the dynamics of cell adhesions at the cell edge. Indeed, other than its cycles of 
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activation and inactivation at the tail of cells undergoing motility, RhoA showed cycles of 

activation and inactivation at the leading edge of cells towards the direction of movement as 

well (Figure S4B). At the leading edge of protrusions, RhoA activation was more persistent 

in cells where StarD13 was knocked down (Figure S5). Similar to the previously described 

effect of dominant active RhoA on inhibition of cell migration, and consistent with the idea 

that cycling of RhoA activity is required for efficient migration, knock down of RhoA also 

inhibited cell migration in the wound healing and time lapse assays (Figure S6; movie S8). 

To show that RhoA is active at the basal surface of cells, where focal adhesions are 

localized, we performed TIRF-based FRET analysis on cells simultaneously transfected with 

RhoA FRET biosensor and mCherry-paxillin. These studies showed that RhoA activity is 

distributed at the basal surface, where high activity colocalizes with adhesive structures 

(Figure 6C; movie S9). These experiments also confirmed that RhoA activity is distributed 

along the whole cell edge before the cell starts migrating (Figure 6C left panel).

Discussion

StarD13 is a Rho GAP that inhibits the activity of RhoA and Cdc42. Previous studies have 

shown its inhibitory effect against RhoA in hepatocellular carcinoma cells [19] and its 

localization to focal adhesions in HeLa cells [22]. StarD13 was also found to inhibit cell 

motility in hepatocellular carcinoma which was consistent with its role as a tumor 

suppressor [29]. However, its role in astrocytoma has never been studied. We recently 

published a paper showing that StarD13 plays a role of a tumor suppressor in astrocytoma 

[28]. In the current study, we investigate the role of StarD13 in astrocytoma cell motility. 

This was highly intriguing given the crucial role of Rho GTPases, the downstream effectors 

of StarD13, and focal adhesions to which StarD13 localizes in cell motility and tumor 

invasion. To our surprise, and in contrast to its role as a tumor suppressor, the knock down 

of StarD13 decreased the migration of astrocytoma cells. In order to confirm the specificity 

of this effect, we used a second StarD13 siRNA oligonucleotide that also resulted in a 

similar inhibition in cell motility. In addition, the expression of wild type StarD13 in cells 

with StarD13 knock down was able to restore cell migration to a level similar to wild type 

cells. This further confirms that the loss of StarD13 in cells transfected with the StarD13 

siRNA is responsible for the decrease in cell motility observed.

Previous reports that investigated the role of StarD13 in cell motility showed that it 

negatively regulates motility [29, 30]. However, there are no previous reports on the role of 

StarD13 in astrocytoma or glioblastoma cells. The discrepancy between our results and the 

previous reports could be due to the fact that the dependence of migration on RhoA-

governed adhesion turnover is different in distinct cell types. Indeed, in glioblastoma, the 

model that we are investigating in the current study, the aberrant increase in RhoA activity 

has been linked to impaired cell migration through inducing profound morphological 

changes including the rearrangement of actin into stress fibers and the formation of focal 

adhesions. These changes, which are mainly linked to RhoA activity, increased the 

attachment of cells to matrix and rendered them immobile [31]. In fact, there are also 

contradictory results regarding the role of a closely related protein, DLC1, in cell migration. 

DLC1 is a well-established tumor suppressor that has been shown to inhibit proliferation, 

induce apoptosis, and suppress migration [32]. However, at least two reports show that 
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DLC1 positively regulates cell migration similar to our data with DLC2. In the first report, 

the proper localization of DLC1 to focal adhesions in HeLa cells has been shown to be 

necessary for cell migration [33]. The other study recently reported that the silencing of 

DLC1 in prostate cells significantly inhibits cell migration as determined by wound-healing 

and transwell assays, which is a result similar to our findings for DLC2 [34] Indeed, in our 

system, the knock down of StarD13 in HUVEC cells did not result in a significant change in 

cell motility in a wound healing assay (Figure S7). Interestingly, we have previously 

reported that the expression of StarD13 is higher in grade IV as compared to grade I human 

astrocytoma tissues [28]. In the same report, we presented data from REMBRANDT 

database showing that although the mRNA expression of StarD13 is higher in grade IV 

human astrocytoma samples as compared to lower grades, it was still lower than the 

expression in non-tumor tissues. This suggests that, consistent with its tumor suppressor 

role, an initial decrease in StarD13 levels might contribute to the initiation of astrocytic 

tumors. However, as the tumor progresses, it accumulates novel mutations that increase 

StarD13 to adequate levels that would, based on our current data, provide migratory and 

invasive properties to astrocytoma cells.

In this study as well as in a previous report [28] we showed that StarD13 indeed functions as 

a GAP for RhoA in astrocytoma cells. We also confirmed that StarD13 localizes to focal 

adhesions in these cells since it colocalizes with paxillin and vinculin. Hence, we 

hypothesized that the knock down of StarD13 led to the constitutive activation of RhoA in 

focal adhesions, which in turn inhibited cell motility. In order to mimic the effect of StarD13 

knock down and to determine the effect of the constitutive activation of RhoA on cell 

motility, we transfected astrocytoma cells with dominant active of RhoA. Indeed, this 

resulted in decreased cell motility similar to the knock down of StarD13. The decrease in 

cell motility due to the constitutive activation of RhoA has been reported before in other 

systems [35–38]. In fact, the correlation of RhoA expression and activity with brain tumor 

progression and cell motility remains a highly debatable issue in the literature (discussed in 

[39]). Our results show that the knock down of RhoA using siRNA decreases the motility of 

cells. A previous study has reported that RhoA is needed for the migration of glioma cells in 

response to lysophosphatidic acid (LPA), an agent that is able to strongly induce 

chemokinesis and chemotaxis in human glioma cells [40]. Moreover, the use of RNA 

interference to deplete mDia1, another downstream effector of Rho, inhibited both adhesion 

turnover and cell polarization in rat C6 glioma cells, which rendered them unable to undergo 

directed migration [41]. Indeed, a positive role of RhoA or its downstream effectors in cell 

motility and invasion has been described in many cell systems [42–46]. On the other hand 

however, inhibition of the RhoA effector ROCK has been shown to enhance the invasive 

and migratory properties of glioblastoma cells [47]. Interestingly, we detected a decrease in 

Rac activation when StarD13 was knocked down, which is consistent with the antagonistic 

relationship between RhoA and Rac activity we also observed in these cells. Hence, the 

inhibition of astrocytoma cell motility when StarD13 is knocked down could be secondary 

to Rac inhibition caused by the constitutive activation of RhoA. To investigate this 

possibility, we determined the individual effect of Rac knock down on cell motility. The 

absence of Rac did indeed inhibit cell motility. Importantly, the transfection of StarD13 

knock down cells with active Rac was able to completely restore cell motility to normal 
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levels. The ability of dominant active Rac to restore cell motility could be due to the fact 

that dominant active Rac is neutralizing the effect of StarD13 knock down on Rac inhibition, 

which brings back the activation state to normal levels. Collectively, the previously 

discussed observations suggest that the constitutive activation of RhoA in the absence of 

StarD13 could be inhibiting cell motility either directly or indirectly through inhibiting Rac 

or a combination of both.

After verifying that StarD13 localizes to focal adhesions in astrocytoma cells, and in order to 

determine the mechanism through which StarD13 knock down is inhibiting motility, we 

started investigating the hypothesis that the knockdown of StarD13 leads to constitutive 

activation of RhoA in focal adhesions, which leads to the stabilization of focal adhesions by 

preventing their disassembly and ultimately inhibiting cell migration. A high level of focal 

adhesions inhibits cell migration because of the strength of attachment to the extracellular 

matrix [48]. At the tail, RhoA activation in adhesion complexes must be inhibited since tail 

detachment can often be the rate-limiting step of cell migration [43]. Time-lapse movies of 

StarD13 knockdown cells showed that a large proportion of cells were unable to move 

forward due to their inability to retract their tail. This was accompanied by persistent 

activation of RhoA at the cell tail as revealed by FRET analysis. Hence, StarD13 might be 

playing a role in the inhibition of RhoA in focal adhesions at the tail of cells, which seems to 

be an important event for the cells to be able to detach their tails and to pull themselves and 

move forward. Our results verified this hypothesis, as StarD13 silencing induced the 

formation of larger and thicker focal adhesions especially at the tail of cells. This was also 

supported by the fact that cells with StarD13 knock down were more adhesive to collagen 

than control cells. The increase in adhesion could have prevented the retraction of the tail, 

which we suspect is the major event that impeded cell motility.

One instance where RhoA could be needed in cell motility is for the stabilization of 

protrusions through inducing the maturation of focal complexes into focal adhesions, a 

process that we have shown to be inhibited in the absence of RhoA as previously discussed. 

Focal complexes are small punctate structures formed behind the front of the lamellipodium 

[49]. These structures do not confer enough contractility needed for cell motility [49]. Focal 

complexes are precursors for focal adhesions, which appear larger in size and less persistent 

[49], and are needed to provide the cell with the mechanical strength needed for the cell 

body to contract and move forward [7]. However, in order for RhoA to be able to drive the 

conversion of focal complexes into focal adhesions, Rac must first induce the formation of 

these focal complexes. This is confirmed by our results that show the absence of both focal 

complexes and focal adhesions when Rac is knocked down. On the other hand, cells showed 

exaggerated focal complexes with a complete absence of focal adhesions when RhoA was 

knocked down. In fibroblasts, it was shown that initial cell spreading is associated with the 

formation of focal complexes and with high Rac activation [49, 50]. Formation of focal 

complexes stabilizes the lamellipodium of migrating cells by binding to the ECM [8]. Some 

studies described a high FAK activation during initial cell spreading, which potentiates Rac1 

activation and suppresses RhoA activation [51, 52]. This initial dip in RhoA activity may 

allow Rac to initiate the formation of focal complexes. This also suggests sequential roles of 

Rac and RhoA in adhesion, whereby initially RhoA activation is suppressed allowing Rac-

dependent focal complex formation and allowing the cells to spread. This is followed by 
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high RhoA activation which leads to the maturation of focal complexes into focal adhesions. 

The activation of RhoA possibly leads to the local inhibition of Rac in order to allow the 

focal complexes to mature. As previously discussed, we did observe an increase in Rac 

activation when RhoA was knocked down and a decrease in Rac activation when StarD13 

was knocked down. It is classically accepted that RhoA and Rac cross-talk and that they 

tend to have an inverse relationship [53]. A mechanism through which Rac inhibits Rho was 

proposed, whereby Rac mediates the production of oxygen radicals which causes the 

phosphorylation and activation of p190 RhoGAP. This, in turn, results in the inactivation of 

Rho [54]. Recently, it was shown that Rho leads to the inhibition of Rac through the ROCK-

dependent Rac GAP, filamin GAP (FilGAP) [55]. Whereas ROCK inhibited Rac, mDia was 

found to activate Rac in the same cells, independently of ROCK, through the Cas/DOCK180 

pathway [41, 56]. The fact that the knock down of RhoA in StarD13 knockdown cells 

caused the total disappearance of focal adhesions supports the idea that these structures are 

caused by the constitutive activation of RhoA in the absence of StarD13. It is important to 

note that no focal adhesions were observed in these cells. The knockdown of RhoA was not 

able to completely reverse the inhibition in motility caused by the knockdown of StarD13, as 

normal focal adhesion formation is needed for efficient cell migration. This is consistent 

with the fact that the knock down of both RhoA and Rac in StarD13 knock down cells 

completely paralyzed the cells.

Our hypothesis that the knock down of StarD13 is inhibiting cell motility through the 

constitutive activation of RhoA is also highly reinforced by our results showing that RhoA 

undergoes cycles of activation and inactivation, and that this cycling is abolished when 

StarD13 is absent. Spatio-temporal analysis of RhoA activation by time-lapse FRET showed 

that the cycling of RhoA occurs at both the tail and the leading edge of cells. The inhibition 

of RhoA at the leading edge of cells is most probably important for the activation of Rac and 

the subsequent formation of focal contacts. FRET analysis also showed that in the absence 

of StarD13 there is a persistent high activity of RhoA at the cell tail and the leading edge of 

cells. Altogether, this data suggests that StarD13 is necessary for the inhibition of RhoA 

both at the cell tail and at the cell front. These events are required for the tail to retract and 

Rac to become active and induce the formation of focal complexes, respectively. Then, the 

activation of RhoA at the cell edge is needed for these focal complexes to mature generating 

the necessary tension for the cell to move forward. Importantly, through imaging of cells 

using TIRF-based FRET, we were able to show that RhoA activity colocalizes with focal 

adhesions at the basal surface of cells.

This paper also shows that RhoA should be activated at the leading edge of astrocytoma 

cells, as previously established for breast cancer cells [14]. The role of RhoA at the edge is 

to allow the maturation of Rac-mediated focal complexes into focal adhesions since the 

absence of RhoA leads to the absence of focal adhesions and the accumulation of focal 

complexes (this study and [14]. Even though protrusion is unaffected, the absence of focal 

adhesions leads to an ineffective protrusion with not enough traction force on the ECM for 

the cells to move forward [7]. In this system and in other systems in previous work [14, 57], 

we have shown that defective adhesions due to inhibition of Rac or RhoA, though they do 

not affect protrusion, inhibits cell motility. Hence, as we describe a need to inhibit RhoA at 

the tail of cells, we also confirm the newly described role of RhoA at the leading edge of 
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cancer cells undergoing movement, contrary to the canonical distribution of RhoA 

activation.

This work establishes that, in addition to the activation of RhoA needed for the stabilization 

of protrusions (at the cell edge) and the generation of contractile force (along the cell body), 

an equally important event in the cell motility cycle is the inactivation of RhoA in focal 

adhesions at the cell tail. This is needed for the dissolution of these adhesions and the 

successful retraction of the tail. This work also defines StarD13, which is probably one 

member of a whole orchestra of GEFs and GAPs coordinating the activation and 

inactivation of RhoA respectively, as an important regulator of the cell motility cycle. One 

GAP that could also be playing such a role is DLC1, which belongs to the same family as 

StarD13. It would also be intriguing to investigate a possible role for DLC1 in focal 

adhesion dynamics and spatial regulation of RhoA activation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• This study, for the first time, describes a tumor suppressor needed for cancer 

cell motility

• The study reconciles many reports showing contradictory roles of RhoA in cell 

motility

• The study highlights the importance of the regulation of RhoA activity in 

astrocytoma cell motility

• The study establishes StarD13 as a GAP playing a major role in this process.
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Figure 1. StarD13 is needed for cell motility
Cells (T98G) were transfected with luciferase control siRNA or with StarD13 siRNA (2 

oligos) for 72 hours. A) The cells were lysed and immunoblotted by western blot analysis 

for StarD13 (upper gel) or for actin (lower gel) for loading control. B) Cells transfected with 

luciferase siRNA, StarD13 siRNA, or StarD13 siRNA and GFP-StarD13 were grown in a 

monolayer then wounded and left to recover the wound then imaged at the same frame after 

24 hours (lower micrographs). Scale bar is 50 μm. C) Quantitation for B). Wound widths 

were measured at 11 different points for each wound, and the average rate of wound closure 

for the cells was calculated in μm/hr. Data are the mean −/+ SEM from 3 wound closure 

movies. ** indicates that the value is significant with p<0.01. D) The net paths of projected 

120 frames from 2 hour long time lapse movies of cells (SF268) transfected with luciferase 

control siRNA or with StarD13 siRNA undergoing random motility in serum (different 

colors represent different cells) E) Quantitation of the cell speed from D) expressed in 

μm/min or the net paths shown expressed in μm. Data are the mean −/+ SEM from 15 cells. 

*** indicates that the values are significant with p<0.001.
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Figure 2. Proper regulation by StarD13 of Rho GTPases is needed for adhesion dynamics and 
tail detachment
A) Representative micrographs of cells (T98G) transfected with luciferase control, StarD13 

siRNA or StarD13 siRNA and GFP-StarD13 (upper panel) or RhoA and Rac siRNA (lower 

panel) that were fixed and immunostained with paxillin. B) Quantitation of focal adhesion 

size in cells transfected with luciferase control or StarD13 siRNA. Data are the mean +/− 

SEM from 3 different experiments. C) Representative fluorescent micrographs taken from a 

time lapse of cells were transfected with luciferase or StarD13 siRNA and then transfected 

with GFP-vinculin and imaged while undergoing random motility in serum for 1 hour. D) 
Quantitation of C) showing percentage of focal adhesions persisting more than 20 minutes 

(Control n=32 and StarD13 siRNA n=23). E) Representative phase contrast micrographs 

taken from a time lapse of cells were transfected with luciferase or StarD13 siRNA and 

imaged while undergoing random motility in serum for 2 hours. F) Representative 

micrographs of cells fixed and stained with crystal violet to detect adhesion (as described in 

methods). Scale bar is 50 μm. G) Graph shows quantitation of F) where crystal violet was 

solubilized and the absorption of the plates was read at 550 nm using an ELISA plate reader. 

Data is measured in arbitrary units and normalized to the luciferase control. Data are the 
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mean −/+ SEM from 3 experiments (15 cells/condition/experiment). ** indicates that the 

value is significant with p=0.007.
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Figure 3. Effect of StarD13-RhoA on Rac activation which is needed for cell motility
A) T98G cells were transfected with luciferase, StarD13, RhoA, or StarD13 and RhoA 

siRNA for 72 hours. The cells were then lysed and incubated with GST-RBD (Rhotekin 

binding domain), or with GST-CRIB (Cdc42 and Rac interactive binding domain) to pull 

down active RhoA or Rac respectively. The samples were then blotted with RhoA or Rac 

antibody. The lower gel in each panel is a western blot for the total cell lysates for loading 

control. B) Cells (T98G) were transfected with luciferase control siRNA or with Rac siRNA 

for 72 hours. The cells were lysed and immunoblotted by western blot analysis for Rac 

(upper gel) or for actin (lower gel) for loading control. C) The luciferase siRNA-transfected 

and Rac siRNA-transfected cells were grown in a monolayer then wounded and left to 

recover the wound then imaged at the same frame after 24 hours (lower micrographs). Scale 

bar is 50 μm. D) Quantitation for C). Wound widths were measured at 11 different points for 

each wound, and the average rate of wound closure for the cells was calculated in μm/hr. 

Data are the mean −/+ SEM from 3 wound closure movies. ** indicates that the value is 

significant with p=0.001. E) The net paths of projected 120 frames from 2 hour long time 

lapse movies of cells (SF268) transfected with luciferase control siRNA or with Rac siRNA 

undergoing random motility in serum (different colors represent different cells) F) 
Quantitation of the cell speed from F) expressed in μm/min or the net paths shown expressed 

in μm. Data are the mean −/+ SEM from 15 cells. *** indicates that the values are 

significant with p<0.001.
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Figure 4. Constitutively active RhoA inhibits cell motility
A) Cells (T98G) were transfected with GFP vector or dominant active RhoA construct 

(RhoA DA). Cells were grown in a monolayer then wounded and left to recover the wound 

then imaged at the same frame after 24 hours (lower micrographs). B) Quantitation for A). 

Wound widths were measured at 11 different points for each wound, and the average rate of 

wound closure was calculated in μm/hr. Data are the mean −/+ SEM from 3 wound closure 

movies. * indicates that the value is significant with p=0.01. C) Cells (SF268) were 

transfected with GFP vector or with GFP-RhoA-DA. The images show net paths of 

projected 120 frames from 2 hour long time lapse movies of green cells undergoing random 

motility in serum (different colors represent different cells). D) Quantitation of the cell 

speed from D) expressed in μm/min or the net paths shown expressed in μm. Data are the 

mean −/+ SEM from 15 cells. *** indicates that the values are significant with p<0.001.
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Figure 5. StarD13 regulation of focal adhesions is needed for cell motility
A) Cells were transfected with luciferase control, StarD13 and dominant active Rac, 

StarD13 and RhoA siRNA, or StarD13, Rac, and RhoA siRNA, lysed and western blots of 

total lysates blotted with StarD13, RhoA, Rac or actin antibodies. B) Same cells as in A) 

transfected and grown in a monolayer then wounded and left to recover the wound then 

imaged at the same frame after 24 hours (lower micrographs). C) Quantitation for B). 

Wound widths were measured at 11 different points for each wound, and the average rate of 

wound closure for the cells was calculated in μm/hr. Data are the mean −/+ SEM from 3 

wound closure movies. ** indicates that the values are significant with p<0.01. D) 
Representative micrographs of cells (T98G) transfected with luciferase control, StarD13 and 

Rac siRNA, StarD13 and RhoA siRNA, or StarD13, Rac, and RhoA siRNA that were fixed 

and immunostained with paxillin. Scale bar is 10 μm.
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Figure 6. StarD13 knockdown inhibits cycling of RhoA activity and RhoA actication co-localizes 
with focal adhesions
A) Montage of representative SF268 cells (15 cells/condition/experiment of 3 experiments) 

transfected with luciferase or StarD13 siRNA and with the RhoA FRET biosensor 

undergoing motility in serum with the direction of migration indicated by an arrow (frames 

are 4 min apart). The lower panels for each cell types are a closeup of the area enclosed by a 

white box in the upper panels. B) The graph is a quantitation of the FRET signal in the area 

indicated by the shadowed area in the lower panels representing the cell tail. C) SF268 cells 

were transfected with 500ng of the RhoA biosensor plasmid and 500ng of the mCherry-

Paxillin plasmid. The paxillin signal and the FRET signal were collected on a TIRF station.
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Figure 7. 
Model of StarD13 regulation of RhoA activation at the tail and at the leading edge of 

astrocytoma cells undergoing cell motility.
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