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  The etiology of periodontal disease is multifactorial. Exogenous stimuli such as bacterial pathogens 
can interact with toll-like receptors to activate intracellular calcium signaling in gingival epithelium 
and other tissues. The triggering of calcium signaling induces the secretion of pro-inflammatory 
cytokines such as interleukin-8 as part of the inflammatory response; however, the exact mechanism 
of calcium signaling induced by bacterial toxins when gingival epithelial cells are exposed to pathogens 
is unclear. Here, we investigate calcium signaling induced by bacteria and expression of inflammatory 
cytokines in human gingival epithelial cells. We found that peptidoglycan, a constituent of gram- 
positive bacteria and an agonist of toll-like receptor 2, increases intracellular calcium in a concentra-
tion-dependent manner. Peptidoglycan-induced calcium signaling was abolished by treatment with 
blockers of phospholipase C (U73122), inositol 1,4,5-trisphosphate receptors, indicating the release of 
calcium from intracellular calcium stores. Peptidoglycan-mediated interleukin-8 expression was blocked 
by U73122 and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl 
ester). Moreover, interleukin-8 expression was induced by thapsigargin, a selective inhibitor of the 
sarco/endoplasmic reticulum calcium ATPase, when thapsigargin was treated alone or co-treated with 
peptidoglycan. These results suggest that the gram-positive bacterial toxin peptidoglycan induces 
calcium signaling via the phospholipase C/inositol 1,4,5-trisphosphate pathway, and that increased 
interleukin-8 expression is mediated by intracellular calcium levels in human gingival epithelial cells.
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INTRODUCTION

  The oral cavity is continuously exposed to elements of 
both the internal and external environments, and is popu-
lated by beneficial commensal microorganisms as well as 
many pathogens. Human gingival epithelial cells are the 
first line of defense against exogenous stimuli such as bac-
terial toxins, allergens, thermal change, and osmotic mole-
cules. The gingival epithelial barrier is adjacent to various 
cells of the immune system such as T cells, dendritic cells, 
neutrophils, macrophages, and mast cells, ready to initiate 
an immune response [1]; furthermore, the oral epithelium 

secretes cytokines in response to harmful microorganisms 
[2-4]. When microorganisms invade, the innate immune 
system of the host recognizes pathogens through pattern- 
recognition receptors [5] such as toll-like receptors (TLRs) 
on epithelial cells, neutrophils, monocytes, dendritic cells, 
and fibroblasts [6-8]. It is important to maintain an appro-
priate balance between commensal bacterial colonization 
and local immune responses in the oral cavity.
  The main etiological feature of periodontal disease is the 
presence of anaerobic gram-negative bacteria in the sub-
gingival area such as Actinobacillus actinomycetemcomi-
tans, Porphyromonas gingivalis, Prevotella intermedia, and 
Tannerella forsythensis [9]. Lipopolysaccharide (LPS) pro-
duced by gram-negative bacteria appears to contribute to 
the progression and severity of periodontal disease [10]. 
Furthermore, gram-positive as well as gram-negative bac-
teria have been shown to induce oral inflammation [11,12]. 
Lipoteichoic acid, found in gram-positive bacteria, contrib-
utes to E. faecalis-induced periodontitis [11], and high lev-
els of the gram-positive bacteria E. nodatum and S. exigua 
have been associated with clinical indicators of periodontal 
disease [12].
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  In gram-positive bacteria, peptidoglycan (PGN) makes up 
as much as 90% of the bacterial cell wall, which is the out-
ermost structure recognized by TLR2 [5,13]. Like LPS, PGN 
is an important bacterial component with respect to perio-
dontal disease. TLRs, which are expressed on oral epithelial 
cells and several immune cells, including macrophages, 
dendritic cells, and B cells, play a crucial role in the de-
tection of microbial infection in mammals and insects 
[3,14]. To date, ten TLR family members have been identi-
fied in the human genome, and several TLRs activate the 
early innate immune response [13]. TLR2 signaling is medi-
ated by adaptor proteins such as myeloid differentiation 88 
(MyD88) and Toll/interleukin-1 (IL-1)-receptor (TIR)-do-
main and used in the signaling cascade [13,15]. TLR2 is 
also involved in the secretion of pro-inflammatory chemo-
kines and other cytokines. PGN-induced TLR2 activation in-
duces interleukin-6 (IL-6) and interleukin-8 (IL-8) [16-18]; 
however, the exact intracellular mechanism of TLR2 activa-
tion has yet to be elucidated.
  Intracellular calcium ([Ca2+]i) plays an important role in 
cellular functions that regulate gene expression, growth, 
differentiation, apoptosis, muscle contraction, memory, and 
learning. Moreover, Ca2+ signaling controls target gene acti-
vation and induces downstream immune responses and in-
flammation [19-22]. Research has shown that PGN in-
creases [Ca2+]i through recruitment of phosphatidylinosi-
tide 3-kinase (PI3K) and phospholipase Cγ2 (PLCγ2) to 
affect the release of Ca2+ from intracellular stores in macro-
phages and dendritic cells [23,24]. Moreover, activation of 
Ca2+ signaling induces the secretion of IL-8, indicating that 
the inflammatory response is directly affected by a wide 
range of activation pathways [23,25].
  When gingival epithelium is exposed to pathogens, it is 
unknown whether bacterial PGN triggers Ca2+ release, and 
if so, from which Ca2+ store. In the present study, we inves-
tigate the direct effect of PGN on Ca2+ signaling and IL-8 
expression in human gingival epithelial cells.

METHODS

Reagents

  Keratinocyte basal medium-2 (KBM-2) was purchased 
from Lonza (Walkersville, MD). Collagenase A and dispase 
II were obtained from Roche (Mannhein, Germany) and 
U73122, U73344, PGN, and LPS were the products of 
Sigma (St. Louis, MO). Thapsigargin (Tg) was obtained 
from Alexis Biochemical (San Diego, CA). Fetal bovine se-
rum (FBS), fura-2-acetoxymethyl ester (fura-2,AM), and 
Pluronic F-127 were purchased from Invitrogen (Carlsbad, 
CA). All other chemicals were purchased from Sigma.

Cell culture

  All experimental protocols were reviewed and approved 
by the Research Ethics Committee of Yonsei University Co-
llege of Dentistry and Dental Hospital. Informed consent 
was obtained from all patients according to the require-
ments of the Institutional Review Board. Human gingival 
epithelial cells were cultured from the explant tissues of 
healthy donors who underwent third molar extraction at 
Yonsei University Dental Hospital. The gingival epithelium 
was gently separated from connective tissues by treatment 
with collagenase A and dispase II, and then cultured in 

KBM-2 containing 10% FBS and 1% antibiotics in a 5% car-
bon dioxide (CO2) incubator at 37oC. All experiments were 
carried out with 3 to 4 passages of the human gingival cells.

Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

Total RNA was prepared using Trizol reagent (Invitrogen) 
according to the manufacturer’s instructions. RNA concen-
trations were determined by measuring the amount of UV 
absorption at 260 and 280 nm. Total isolated RNA was am-
plified according to the manufacturer’s protocol using 
AccuPowerⓇ RT PreMix (Bioneer, Seoul, Korea). Samples 
subjected to amplification without reverse transcriptase 
served to verify the absence of genomic DNA. The cDNA 
was amplified by PCR with HiPi™ Thermostable DNA pol-
ymerase (Elpis, Seoul, Korea). Primers used were as fol-
lows: for GAPDH (307 bp), 5'-CGG AGT CAA CGG ATT 
TGG TCG TAT-3'(forward), 5'-AGC CTT CTC CAT GGT 
GGT GAA GAC-3'(reverse); for IL-8 (292 bp), 5'ATG ACT 
TCC AAG CTG GCC GTG GCT-3'(forward), 5'-TCT CAG 
CCC TCT TCA AAA ACT TCT-3'(reverse). The PCR pro-
gram began with a 5-min denaturation at 95oC, followed 
by 35 cycles of 95oC/1 min, 58oC/1 min, 72oC/1 min. PCR 
samples were electrophoresed on 1.2% agarose gels in TAE 
(tris-acetate-ethylenediaminetetraacetic acid electrophore-
sis) buffer. The quantity of PCR-generated DNA fragments 
was estimated relative to DNA ladder standards.

Measurement of [Ca2+]i

  Human gingival epithelial cells were cultured on colla-
gen-coated cover-slipped slides. Cells were loaded with 5 
μM fura-2-AM in the presence of 0.05% Pluronic F-127 for 
30 min in physiological salt solution (PSS). PSS composi-
tion was as follows: 140 mM sodium chloride, 5 mM potas-
sium chloride, 1 mM magnesium chloride, 10 mM 4-(2-hy-
droxyethyl)-1-piperazineethanesulfonic acid, 1 mM calcium 
chloride, and 10 mM glucose, titrated to pH 7.4 with sodium 
hydroxide and with an osmolarity of 310 mOsm. Changes 
in [Ca2+]i were measured by means of fura-2-AM fluo-
rescence with excitation wavelengths of 340 and 380 nm 
and an emission wavelength of 510 nm. The emitted fluo-
rescence was monitored with a charge-coupled device cam-
era and analyzed with a MetaFluor system (Molecular 
Devices, PA). Fluorescence images were obtained at 2-sec 
intervals. Background fluorescence was subtracted from the 
raw signals of background at each excitation wavelength 
before calculating the fluorescence ratio as F340/F380 as de-
scribed previously [26].

Statistical analyses

  Data from at least three independent experiments were 
expressed as mean±standard error (SE). Statistically sig-
nificant differences between groups were determined using 
the paired student’s t-test.

RESULTS

PGN induces Ca2+ signaling in a concentration-depen-
dent manner and increases IL-8 mRNA expression in 
human gingival epithelial cells

  To investigate Ca2+ signaling evoked by PGN, [Ca2+]i was 
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Fig. 1. PGN-induced Ca2+ responses in human gingival epithelial cells. (A) Changes in [Ca2+]i induced by concentrations of PGN ranging 
from 1 to 125 μg/ml (n=3). (B) Analysis of concentration-dependent changes in the peak of fluorescence based on the F340/F380 ratio. (C) 
Human gingival epithelial cells were stimulated with LPS (100 μg/ml) and PGN (50 μg/ml). Total mRNA was extracted from the cells, 
and IL-8 mRNA expression was measured (n=3). Data are presented as mean±SE. *p＜0.05; **p＜0.01 versus control.

measured at PGN concentrations ranging from 1 to 125 μg/ 
ml. PGN induced increases in [Ca2+]i in a concentra-
tion-dependent manner (Fig. 1A). The amplitude of the 
peak was affected by PGN concentration from the basal line 
across the test concentration range of 1 to 125 μg PGN/ml, 
with a half maximal effective concentration (EC50) of 22.45 
μg PGN/ml (Fig. 1B). LPS and PGN treatment induced ty-
rosine phosphorylation of phospholipase Cγ-2 in bone mar-
row-derived macrophages and dendritic cells [23]. Cells 
were treated with LPS and PGN for 24 hr and 1 hr, re-
spectively, and IL-8 mRNA expression levels were 
measured. Compared with control cells, PCR analysis re-
vealed 1.6- and 1.8-fold higher IL-8 mRNA expression in 
LPS- and PGN-treated cells, respectively (Fig. 1C).

PGN induces Ca2+ release from the endoplasmic reti-
culum (ER), and PGN-induced IL-8 expression is regu-
lated by the phospholipase C/ inositol 1,4,5-trispho-
sphate (PLC/ IP3) pathway in human gingival epi-
thelial cells

  Ca2+ signaling is mediated by several Ca2+ sources. To 
determine the source(s) of PGN-induced [Ca2+]i release, 50 
μg/ml PGN was added to the Ca2+-free extracellular me-
dium and chelated with 10 mM ethylene glycol tetraacetic 
acid. PGN induced [Ca2+]i increases in the absence of ex-
tracellular Ca2+ (Fig. 2A), suggesting that the increased 
[Ca2+]i originates from intracellular Ca2+ stores, most prob-
ably from ER. The ER Ca2+ stores can be depleted by Tg, 
a specific inhibitor of the sarco/endoplasmic reticulum Ca2+ 
ATPase (SERCA) pump. Accordingly, cells were pretreated 
with PGN for 7 min and the Ca2+ store was depleted with 
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Fig. 2. Characterization of PGN-induced Ca2+ signaling. (A) Effect of removal of extracellular Ca2+ on PGN-induced increase in [Ca2+]i (n=3). 
(B) Effect of Tg (1 μM) on PGN-induced [Ca2+]i increases in the absence of extracellular Ca2+ (n=3). (C) Effect of U73122 (10 μM) and 
U73343 (10 μM) on PGN-induced increase in [Ca2+]i (n=3). Ionomycin was used as a positive control. (D) Effect of 2APB (75 μM) on 
PGN-induced increase in [Ca2+]i (n=3). (E) Oral gingival epithelial cells were treated with U73122, U73343, or BAPTA-AM for 20 min 
and stimulated with PGN for 1 h and then total RNA was extracted from the cells. Data are presented as mean±SE. *p＜0.05; **p＜0.01 
versus control.

the addition of 1 μM Tg in a nominally Ca2+-free medium. 
After depletion of the Tg-sensitive Ca2+ store, PGN failed 
to evoke a Ca2+ signal (Fig. 2B, left). Furthermore, after 
depletion of Ca2+ stores by PGN, Tg treatment failed to 
evoke a Ca2+ signal (Fig. 2B, right). In addition, to de-
termine the role of the PLC/IP3 pathway in PGN-induced 
[Ca2+]i increases, cells were pre-treated with 10 μM 
U73122, a specific blocker of PLC, or its inactive analog, 
10 μM U73343 for 5 min. U73122 effectively blocked PGN- 
induced [Ca2+]i increases (Fig. 2C, left) whereas U73343 
produced no effect (Fig. 2C, right), suggesting that PGN 
increases [Ca2+]i by Ca2+ release from the ER through the 
PLC pathway. Cells also were treated with the IP3 receptor 
(IP3R) blocker, 2-aminoethoxydiphenyl borate (2APB, 75 μM), 
to determine whether PGN-induced [Ca2+]i increase is medi-
ated by IP3R. As shown in Figure 2D, treatment with 2APB 

during PGN stimulation inhibited [Ca2+]i increase, suggest-
ing that PGN increases [Ca2+]i by promoting Ca2+ release 
from the ER through the PLC/IP3 pathway. Furthermore, 
we examined the effects of PGN on IL-8 mRNA expression 
following pre-treatment with U73122 or 1,2-bis (2-amino-
phenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis-AM 
(BAPTA-AM). PGN-induced IL-8 mRNA expression was de-
creased following U73122 or BAPTA-AM treatment 
(0.6-fold decrease) (Fig. 2E). These results suggest that 
PGN-induced IL-8 expression is regulated by the PLC/IP3 
pathway.

Ca2+ signaling significantly increases IL-8 mRNA ex-
pression

  The main source of PGN-induced Ca2+ release is the ER. 
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Fig. 3. Effect of Ca2+ signaling on 
IL-8 mRNA expression. Oral epi-
thelial cells were stimulated with Tg 
and PGN for 1 h and then total RNA 
was extracted from the cells. Data 
are presented as mean±SE of values 
from four independent experiments. 
Data are represented as mean±SE.
**p＜0.05; ***p＜0.01 versus cont-
rol.

Intracellular Ca2+, especially store-operated Ca2+ moveme-
nts, mediates long- and short-term inflammation and cyto-
kine release [27,28]. To assess whether levels of pro-infla-
mmatory cytokines such as IL-8 increase with increasing 
Ca2+, gingival cells were treated with 1 μM Tg for 1 h and 
IL-8 mRNA expression levels were measured. Figure 3, 
shows that IL-8 mRNA expression in cells treated with Tg 
was 1.4-fold higher than in controls. Additionally, co-treat-
ment with Tg and PGN increased IL-8 mRNA expression 
(non-additively, however). These results indicate that PGN 
induces the increase of IL-8 mRNA expression mediated by 
intracellular Ca2+ levels through the Tg-sensitive ER store 
in human gingival epithelial cells.

DISCUSSION

  Periodontal disease results from interactions between 
pre-disposed host tissue and bacterial plaque. Human gin-
gival epithelial cells, as a susceptible host, represent the 
first line of defense against exogenous stimuli. The human 
mouth is continuously occupied by a complex array of mi-
croorganisms, including Gram bacteria, fungi, and viruses 
[29]. Gram-negative bacteria in particular are considered 
one of the major contributors to periodontal diseases. 
Studies have also revealed that gram-positive bacteria play 
a significant role in periodontal disease [3,12]. It is un-
known whether cytokine secretion in response to gram-pos-
itive bacteria affects the inflammation of oral gingival epi-
thelial cells.
  PGN fragments have been shown to be a natural ligand 
for the nucleotide-binding oligomerization domain-contain-
ing protein 2 (NOD2) receptor in immune cells [30]. NOD2- 
mediated activation of dendritic cells with polymeric PGN 
is dependent on TLR2 co-stimulation [31]. It is still unclear 
whether PGN interacts with TLR2; however, stimulation 
of mouse keratinocytes with PGN from Staphylococcus aur-
eus SA113 resulted in co-localized TLR2 and NOD2 re-
ceptors and induced host immune responses [32]. Still, the 
role of PGN, its potent receptors, and their effects in gin-
gival epithelial cells are unclear.
  In the present study, we demonstrated for the first time 
that PGN increases [Ca2+]i in human gingival epithelial 
cells in a concentration-dependent manner via intracellular 
Ca2+ release (Fig. 1A and B). The peptidoglycan caused 
many pathological changes demonstrated by disruption of 
alveoli walls, edema, and degeneration of cells lining the 

bronchioles. Peptidoglycan was used 37×104 μg/ml to com-
pare the pathological effect of 1×109 cfu/ml bacterial sus-
pension for an injection to the mouse [33]. We demonstrated 
that peptidoglycan increases [Ca2+]i in human gingival epi-
thelial cells and those concentration ranges of peptidogly-
can induced an increased proinflammatory cytokine IL-8 
mRNA expression. Based on the Fig. 1B, those concen-
tration ranges can be considered with physiological and 
pathological condition. PGN induced Ca2+ release from Tg- 
sensitive ER stores (Fig. 2). These results are consistent 
with previous studies that have shown that PGN induced 
tyrosine phosphorylation of PLCγ2, leading to intra-
cellular free Ca2+ mobilization in macrophages and den-
dritic cells [23]. We also showed that PGN stimulated the 
expression of pro-inflammatory cytokine IL-8. IL-8 is a po-
tent chemo-attractant produced by macrophage and other 
cell types such as epithelial cells, fibroblasts, and endothe-
lial cells [34]. We found that PGN-induced expression of 
IL-8 mRNA is inhibited PLC/IP3 pathway antagonists (Fig. 
2E). Previous research has shown that, in PLCγ2-knock-
down cells, PGN-induced phosphorylation of nuclear factor 
of kappa light polypeptide gene enhancer in B-cells in-
hibitor, alpha (IκB-α) and p38 activation were reduced 
[23]. Pro-inflammatory signals such as nuclear factor kap-
pa-light-chain-enhancer of activated B cells (NF-κB) sig-
naling plays a central role in inflammation [21,35]. PGN-in-
duced activation of the TLR2/MyD88 main pathway acti-
vates NF-κB signaling [13,15]; PGN-induced increases in 
[Ca2+]i can also activate NF-κB signaling [23,24]. Further-
more, previous studies have shown that NF-κB activation 
is regulated by intracellular Ca2+ concentrations [21]. To 
investigate whether intracellular Ca2+ can regulate cyto-
kine expression, we measured IL-8 mRNA expression after 
Tg stimulation (which has been shown to elevate intra-
cellular Ca2+ concentrations in various cell types), and 
found that Tg induced increases in IL-8 mRNA expression 
(Fig. 3A). Previous research has reported that store-oper-
ated Ca2+ channels (SOCs) play an essential role in the 
short- and long-term regulation of the inflammatory proc-
ess [27]. IP3R releases Ca2+ from the ER; depletion of Ca2+ 
in the ER stores also activates SOCs. The transcriptional 
regulation of IL-8 expression in epithelial cells is complex 
and involves many other factors such as nuclear factor NF-
κB, NF-IL 6, and activator protein (AP)－1 [36]. We have 
confirmed direct effects of peptidoglycan on IL-8 mRNA 
expression. Moreover peptidoglycan-induced IL-8 mRNA 
expression was decreased following U73122 or BAPTA-AM 
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treatment. Thus IL-8 mRNA expression level is sufficient 
to explain the direct effect of peptidoglycan as recom-
mended with/without several modulators of calcium sig-
nals. We suggest a correlation between intracellular Ca2+ 
and cytokine expression in human gingival epithelial cells.
  In the present study, we show that PGN induced in-
creases in [Ca2+]i through the PLC/IP3 pathway and con-
sequently increased IL-8 mRNA expression. Furthermore, 
IL-8 mRNA expression was dependent on intracellular Ca2+ 
levels in human gingival epithelial cells. Therefore, the de-
velopment and use of inhibitors of intracellular Ca2+ might 
provide new modalities for the treatment of periodontal 
disease.
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