Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Jan 18;91(2):509–513. doi: 10.1073/pnas.91.2.509

The parasitophorous vacuole membrane surrounding intracellular Toxoplasma gondii functions as a molecular sieve.

J C Schwab 1, C J Beckers 1, K A Joiner 1
PMCID: PMC42978  PMID: 8290555

Abstract

The obligate intracellular protozoan parasite Toxoplasma gondii creates and enters into a unique membrane-bounded cytoplasmic compartment, the parasitophorous vacuole, when invading mammalian host cells. By microinjecting polar fluorescent molecules into individual T. gondii-infected fibroblasts, we show here that the parasitophorous vacuole membrane (PVM) surrounding the parasite functions as a molecular sieve. Lucifer yellow (457 Da) displayed free bidirectional flux across the PVM and distinctly outlined the parasites, which did not take up the dye, within the vacuole. This dye movement was not appreciably delayed by pretreatment of cells with 5 mM probenecid or chilling the monolayer to 5 degrees C, suggesting that dye movement was due to passive permeation through a membrane pore rather than active transport. Calcein, fluo-3, and a series of fluorescein isothiocyanate-labeled peptides up to 1291 Da crossed the PVM in a size-restricted fashion. A labeled peptide of 1926 Da and labeled dextrans and proteins (> or = 3000 Da) failed to transit the PVM. This putative channel in the PVM therefore allows exchange of molecules up to 1300-1900 Da between the host cell cytoplasm and the parasitophorous vacuolar space.

Full text

PDF
509

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achbarou A., Mercereau-Puijalon O., Sadak A., Fortier B., Leriche M. A., Camus D., Dubremetz J. F. Differential targeting of dense granule proteins in the parasitophorous vacuole of Toxoplasma gondii. Parasitology. 1991 Dec;103(Pt 3):321–329. doi: 10.1017/s0031182000059837. [DOI] [PubMed] [Google Scholar]
  2. Bannister L. H., Dluzewski A. R. The ultrastructure of red cell invasion in malaria infections: a review. Blood Cells. 1990;16(2-3):257–297. [PubMed] [Google Scholar]
  3. Benz R. Porin from bacterial and mitochondrial outer membranes. CRC Crit Rev Biochem. 1985;19(2):145–190. doi: 10.3109/10409238509082542. [DOI] [PubMed] [Google Scholar]
  4. Desai S. A., Krogstad D. J., McCleskey E. W. A nutrient-permeable channel on the intraerythrocytic malaria parasite. Nature. 1993 Apr 15;362(6421):643–646. doi: 10.1038/362643a0. [DOI] [PubMed] [Google Scholar]
  5. Dubremetz J. F., Achbarou A., Bermudes D., Joiner K. A. Kinetics and pattern of organelle exocytosis during Toxoplasma gondii/host-cell interaction. Parasitol Res. 1993;79(5):402–408. doi: 10.1007/BF00931830. [DOI] [PubMed] [Google Scholar]
  6. Endo T., Sethi K. K., Piekarski G. Toxoplasma gondii: calcium ionophore A23187-mediated exit of trophozoites from infected murine macrophages. Exp Parasitol. 1982 Apr;53(2):179–188. doi: 10.1016/0014-4894(82)90059-5. [DOI] [PubMed] [Google Scholar]
  7. Graessmann M., Graessmann A. Microinjection of tissue culture cells. Methods Enzymol. 1983;101:482–492. doi: 10.1016/0076-6879(83)01033-2. [DOI] [PubMed] [Google Scholar]
  8. Haldar K. Lipid transport in Plasmodium. Infect Agents Dis. 1992 Oct;1(5):254–262. [PubMed] [Google Scholar]
  9. Haldar K., Uyetake L. The movement of fluorescent endocytic tracers in Plasmodium falciparum infected erythrocytes. Mol Biochem Parasitol. 1992 Jan;50(1):161–177. doi: 10.1016/0166-6851(92)90253-g. [DOI] [PubMed] [Google Scholar]
  10. Joiner K. A., Fuhrman S. A., Miettinen H. M., Kasper L. H., Mellman I. Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor-transfected fibroblasts. Science. 1990 Aug 10;249(4969):641–646. doi: 10.1126/science.2200126. [DOI] [PubMed] [Google Scholar]
  11. Jones T. C., Yeh S., Hirsch J. G. The interaction between Toxoplasma gondii and mammalian cells. I. Mechanism of entry and intracellular fate of the parasite. J Exp Med. 1972 Nov 1;136(5):1157–1172. doi: 10.1084/jem.136.5.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Krug E. C., Marr J. J., Berens R. L. Purine metabolism in Toxoplasma gondii. J Biol Chem. 1989 Jun 25;264(18):10601–10607. [PubMed] [Google Scholar]
  13. Linder E., Thors C., Edberg F., Haglund S., von Bonsdorff C. H. Generation of antibodies against Toxoplasma gondii antigen associated with dense granules and the parasitophorous vacuole of the host cell. Parasitol Res. 1992;78(2):175–178. doi: 10.1007/BF00931663. [DOI] [PubMed] [Google Scholar]
  14. Minta A., Kao J. P., Tsien R. Y. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem. 1989 May 15;264(14):8171–8178. [PubMed] [Google Scholar]
  15. Mittman S., Flaming D. G., Copenhagen D. R., Belgum J. H. Bubble pressure measurement of micropipet tip outer diameter. J Neurosci Methods. 1987 Dec;22(2):161–166. doi: 10.1016/0165-0270(87)90010-0. [DOI] [PubMed] [Google Scholar]
  16. Moulder J. W. Comparative biology of intracellular parasitism. Microbiol Rev. 1985 Sep;49(3):298–337. doi: 10.1128/mr.49.3.298-337.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nathanson M. H., Burgstahler A. D. Coordination of hormone-induced calcium signals in isolated rat hepatocyte couplets: demonstration with confocal microscopy. Mol Biol Cell. 1992 Jan;3(1):113–121. doi: 10.1091/mbc.3.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nichols B. A., Chiappino M. L., O'Connor G. R. Secretion from the rhoptries of Toxoplasma gondii during host-cell invasion. J Ultrastruct Res. 1983 Apr;83(1):85–98. doi: 10.1016/s0022-5320(83)90067-9. [DOI] [PubMed] [Google Scholar]
  19. Paine P. L., Moore L. C., Horowitz S. B. Nuclear envelope permeability. Nature. 1975 Mar 13;254(5496):109–114. doi: 10.1038/254109a0. [DOI] [PubMed] [Google Scholar]
  20. Peters R. Fluorescence microphotolysis to measure nucleocytoplasmic transport and intracellular mobility. Biochim Biophys Acta. 1986 Dec 22;864(3-4):305–359. doi: 10.1016/0304-4157(86)90003-1. [DOI] [PubMed] [Google Scholar]
  21. Pouvelle B., Spiegel R., Hsiao L., Howard R. J., Morris R. L., Thomas A. P., Taraschi T. F. Direct access to serum macromolecules by intraerythrocytic malaria parasites. Nature. 1991 Sep 5;353(6339):73–75. doi: 10.1038/353073a0. [DOI] [PubMed] [Google Scholar]
  22. Saffer L. D., Mercereau-Puijalon O., Dubremetz J. F., Schwartzman J. D. Localization of a Toxoplasma gondii rhoptry protein by immunoelectron microscopy during and after host cell penetration. J Protozool. 1992 Jul-Aug;39(4):526–530. doi: 10.1111/j.1550-7408.1992.tb04844.x. [DOI] [PubMed] [Google Scholar]
  23. Sam-Yellowe T. Y., Shio H., Perkins M. E. Secretion of Plasmodium falciparum rhoptry protein into the plasma membrane of host erythrocytes. J Cell Biol. 1988 May;106(5):1507–1513. doi: 10.1083/jcb.106.5.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schwartzman J. D., Pfefferkorn E. R. Toxoplasma gondii: purine synthesis and salvage in mutant host cells and parasites. Exp Parasitol. 1982 Feb;53(1):77–86. doi: 10.1016/0014-4894(82)90094-7. [DOI] [PubMed] [Google Scholar]
  25. Sibley L. D., Weidner E., Krahenbuhl J. L. Phagosome acidification blocked by intracellular Toxoplasma gondii. 1985 May 30-Jun 5Nature. 315(6018):416–419. doi: 10.1038/315416a0. [DOI] [PubMed] [Google Scholar]
  26. Simpson I., Rose B., Loewenstein W. R. Size limit of molecules permeating the junctional membrane channels. Science. 1977 Jan 21;195(4275):294–296. doi: 10.1126/science.831276. [DOI] [PubMed] [Google Scholar]
  27. Spack E. G., Jr, Packard B., Wier M. L., Edidin M. Hydrophobic adsorption chromatography to reduce nonspecific staining by rhodamine-labeled antibodies. Anal Biochem. 1986 Oct;158(1):233–237. doi: 10.1016/0003-2697(86)90614-7. [DOI] [PubMed] [Google Scholar]
  28. Steinberg T. H., Newman A. S., Swanson J. A., Silverstein S. C. Macrophages possess probenecid-inhibitable organic anion transporters that remove fluorescent dyes from the cytoplasmic matrix. J Cell Biol. 1987 Dec;105(6 Pt 1):2695–2702. doi: 10.1083/jcb.105.6.2695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stewart W. W. Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell. 1978 Jul;14(3):741–759. doi: 10.1016/0092-8674(78)90256-8. [DOI] [PubMed] [Google Scholar]
  30. Sáez J. C., Connor J. A., Spray D. C., Bennett M. V. Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2708–2712. doi: 10.1073/pnas.86.8.2708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. de Carvalho A. C., Tanowitz H. B., Wittner M., Dermietzel R., Roy C., Hertzberg E. L., Spray D. C. Gap junction distribution is altered between cardiac myocytes infected with Trypanosoma cruzi. Circ Res. 1992 Apr;70(4):733–742. doi: 10.1161/01.res.70.4.733. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES