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SUMMARY

Many tumors are hierarchically organized with a minority cell population that has stem-like properties and enhanced ability to initiate
tumorigenesis and drive therapeutic relapse. These cancer stem cells (CSCs) are typically identified by complex combinations of cell-sur-
face markers that differ among tumor types. Here, we developed a flexible lentiviral-based reporter system that allows direct visualization
of CSCs based on functional properties. The reporter responds to the core stem cell transcription factors OCT4 and SOX2, with further
selectivity and kinetic resolution coming from use of a proteasome-targeting degron. Cancer cells marked by this reporter have the
expected properties of self-renewal, generation of heterogeneous offspring, high tumor- and metastasis-initiating activity, and resistance
to chemotherapeutics. With this approach, the spatial distribution of CSCs can be assessed in settings that retain microenvironmental

and structural cues, and CSC plasticity and response to therapeutics can be monitored in real time.

INTRODUCTION

The cancer stem cell model proposes that the parenchymal
cells of tumors are hierarchically organized (Clevers, 2011;
Magee et al., 2012). At the apex of the hierarchy are cells
that are uniquely capable of initiating and sustaining
tumorigenesis, a property that is tightly linked to their abil-
ity to self-renew. These are the cancer stem cells (CSCs),
which give rise to the phenotypically diverse and more
differentiated, but nontumorigenic, offspring that make
up the bulk of the tumor. Thus, cancer can be viewed as a
caricature of normal development (Pierce and Speers,
1988). With some notable exceptions, such as melanoma,
there is evidence supporting this model for many tumor
types (Magee et al., 2012), and a hierarchical structure is
even maintained to some extent in established tumor cell
lines cultured in vitro (Locke et al., 2005).

CSCs are thought to play a major role in driving disease
recurrence, due to the intrinsically enhanced therapeutic
resistance that results from high expression of multidrug
transporters, enhanced DNA damage checkpoint activa-
tion and repair mechanisms, and altered cell-cycle kinetics
in CSCs (Alison et al., 2012). Thus, understanding CSC
biology will be critical to the development of more effective
cancer therapies. CSCs are most commonly identified by
fluorescence-activated cell sorting (FACS) analysis, through
combinations of cell-surface markers that enrich for cell
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populations with enhanced tumor-initiating activity
in vivo (Magee et al., 2012). However, the optimal marker
combinations are very dependent on the tissue and specific
cell of origin of the tumor, and even well-established
markers such as CD44*CD24 /° for breast cancer and
CD133" for brain tumors do not robustly distinguish
tumorigenic from nontumorigenic cells in all patient sam-
ples (Magee et al., 2012; Visvader and Lindeman, 2012).
Importantly, identification of CSCs by cell-surface marker
phenotype cannot readily be used to monitor CSCs
in situ in the tumor, with all the extrinsic microenviron-
mental cues intact. Furthermore, this approach cannot be
used for real-time assessment of CSC behavior at a single-
cell rather than a population level. These limitations have
impeded characterization of CSCs in preclinical models,
where the ability to observe the CSC directly, and monitor
the behavior of individual cells in time and space, would
give new insights into CSCs properties and their response
to therapy.

To address this need, we have developed a functional
imaging approach for CSC identification. The stem cell
phenotype in embryonic stem cells (ESCs) is maintained
by a central triad of master transcriptional regulators,
OCT4, SOX2, and NANOG, which promote stemness by
upregulating genes involved in pluripotency and self-
renewal while suppressing genes involved in differentia-
tion (Young, 2011). Indeed, ectopic expression of just three
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factors, OCT4, SOX2, and KLF4, is sufficient to induce
pluripotency and stem-like characteristics in differentiated
somatic cells (Schmidt and Plath, 2012), suggesting that
reactivation of stem cell transcription factors might be
an efficient mechanism for transformed cells to acquire
the ability to self-renew. We therefore hypothesized that
OCT4 and SOX2, the two most upstream regulators of
the stem cell phenotype, would be active in CSCs and could
be used to drive a reporter construct that would mark the
CSCs. In support of this hypothesis, embryonic stem-like
gene expression signatures are found to be enriched in
many aggressive tumors (Ben-Porath et al.,, 2008), and
myeloid leukemia stem cells have been shown to employ
a transcriptional program that is more similar to embryonic
than adult stem cells (Somervaille et al., 2009). Promoter-
reporter constructs based on portions of the promoters of
OCT4, SOX2, or NANOG have been widely used in moni-
toring the reprogramming of somatic cells to the induced
pluripotent state (Hotta et al., 2009) but have had only
limited application in identifying CSCs (Levings et al.,
2009), where expression levels of these transcription fac-
tors are likely to be much lower. In addition, the relatively
large promoter regions used in such constructs invariably
contain response elements for additional transcription
factors, which may reduce reporter specificity.

To overcome these problems of sensitivity and speci-
ficity, we have generated a flexible, lentiviral-based stem-
cell reporter system in which six tandem repeats of a
composite OCT4/SOX2 response element are used to drive
expression of a fluorescent protein reporter. We show that
this reporter identifies a cell population in human breast
cancer cell lines and primary human tumor samples that
has the expected characteristics of CSCs, including enrich-
ment for tumor-initiating ability and increased resistance
to chemotherapeutics in vitro and in vivo. With this
approach, the CSCs can be directly imaged in tumors and
monitored by time-lapse photography for properties such
as phenotypic plasticity and response to therapeutics.

RESULTS

The SORE6 Reporter Marks a Minority Tumor Cell
Population that Is Enriched for Stem Cell
Transcription Factors

We designed a modular lentiviral reporter construct in
which six concatenated repeats of a composite SOX2/
OCT4 response element (SORE6) from the proximal hu-
man NANOG promoter (Kuroda et al., 2005) were coupled
to a minimal cytomegalovirus (CMV) promoter and used
to drive expression of reporter genes (Figure 1A). The
construct was designed using flexible Gateway multisite
recombinational cloning, so that a variety of different fluo-
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rescent proteins or other genes of interest can rapidly be
introduced into the construct if Attl-2 entry clones are
available. The majority of our experiments used a destabi-
lized copepod GFP-based reporter construct (SORE6-GFP),
in which the destabilization of the fluorescent reporter is
predicted to result in greater temporal resolution. Further-
more, since stem cells have lower-than-normal 26S protea-
somal activity (Vlashi et al., 2009), the destabilization
sequence adds further specificity for the stem cell. Where
indicated, we used destabilized mCherry as an alternative
reporter in cells that already constitutively expressed GFP.

To validate the approach, we first introduced the SORE6-
GFP reporter into mouse embryonic stem cells (mESCs),
which express SOX2 and OCT4 at high levels (Young,
2011). Although transduction efficiency was not high
in these unselected cultures, a significant fraction of the
mESCs showed strong expression of the reporter, which
was greatly reduced by 2 days of treatment with retinoic
acid to induce mESC differentiation (Figure 1B). Thus the
reporter behaved as expected in ESCs. We then showed
that two commonly used human breast cancer cell
lines (MCF7 and MCF10Calh) express detectable levels of
SOX2 and OCT4 mRNA in bulk culture, though the level
was two to four orders of magnitude lower than is seen in
the human teratocarcinoma line NT2 (Figure 1C). It should
be noted that the OCT4 primer pair we used does not detect
the OCT4 pseudogenes that can confound this type of
analysis (Atlasi et al., 2008; Lengner et al., 2008).

To determine whether such low levels of SOX2 and OCT4
were sufficient to drive reporter expression, we transduced
the MCF10Calh breast cancer cell line with the SORE6
reporter. Following selection with puromycin to ensure
the presence of reporter construct in all cells, we found
the SORE6-GFP reporter to be expressed in a minority pop-
ulation of cells in the culture (SORE6" cells), ranging from
~7%-15% depending on culture conditions (Figure 1D). A
construct with the minimal CMV promoter, but lacking the
SORE®6 element, was used as a gating control. Experimental
overexpression of SOX2 and OCT4 in the MCF10CA1lh
cells showed that the reporter can respond to either factor
individually, but strongest expression is seen when both
are present (Figure 1E). Conversely, simultaneous knock-
down of endogenous SOX2 and OCT4 with small inter-
fering RNA (siRNA) gave a greater reduction in reporter
expression than knockdown of either individually (Figures
S1A and S1B available online). On a single-cell level,
all cells that were positive for the SORE6-GFP reporter
expressed OCT4 (Figure S1C). As expected, SORE6+ cells
recovered by FACS sorting from MCF10Calh cells trans-
duced with SORE6-GFP showed substantial enrichment
(7- to 26-fold) for transcripts of the core stem cell transcrip-
tion factors OCT4, SOX2, and their downstream target
NANOG (Figure 1F). We next compared expression of the
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Figure 1. The SORE6 Reporter Marks a Minority Cell Population that Is Enriched for Stem Cell Genes

(A) Schematic of the lentiviral stem cell reporter. AttB1,B2,B4,B5 represent AttB sites for modular Gateway recombinational cloning. SORE
is the SOX2/0CT4 composite response element. For details of other elements, see Supplemental Experimental Procedures.

(B) FACS analysis showing activity of SORE6-GFP reporter in mouse ESCs with and without treatment with retinoic acid (RA) for 2 days to
induce differentiation.

(C) Quantitative RT-PCR assessing the expression of stem cell transcription factors in bulk culture of breast cancer cell lines, compared with
the human teratocarcinoma line NT2 as a positive control. Results are normalized to PPIA and to the lowest-expressing cell line for each gene.
(D) FACS analysis showing that the SOREG6 reporter identifies a minority population in cultures of MCF10Ca1h cells. SSC, side scatter.
(E) FACS analysis showing effect on SORE6 reporter activity of overexpressing 0CT4 and/or SOX2 in MCF10Calh cells.

(F) Quantitative RT-PCR to assess expression of master stem cell transcription factors in FACS-sorted SORE6™ and SORE6 ™ cells, normalized
to sham-sorted cells as the control. Results are mean + SEM (n = 3 technical replicates).

(G) Representation of SORE6™ cells in breast cancer cell lines of increasing malignancy. Results are mean + SEM of three independent
experiments. *p < 0.05; **p < 0.01; ****p < 0.0001, Student’s t test.

See also Figure S1.
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Figure 2. SORE6" Cells Are Enriched for the Ability to Self-Renew, Generate Heterogeneous Offspring, Undergo Asymmetric
Division, and Generate Tumorspheres

(A) FACS plots showing that sorted SORE6™ MCF10Ca1h cells can regenerate SORE6™ cells in culture. P1, first passage after sort; P2, second
passage.

(legend continued on next page)
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reporter in several breast cancer cell lines representing
different degrees of malignancy. The relatively well-differ-
entiated, estrogen-receptor-positive breast cancer cell lines
MCF7 and MCF10Calh had ~10% SORE6" cells, while the
more malignant MCF10Cala and the highly aggressive
MDA-MB-231 cells had an increasingly higher representa-
tion of SORE6™ cells in the culture (Figure 1G). SOX2 and
OCT4 mRNA levels were correspondingly higher in the
more malignant cell lines (Figure S1D). Thus, despite the
low expression of stem cell transcription factors in bulk
culture, the SORE6 reporter is capable of identifying a
minority population of cells that express these factors in
several breast cancer cell lines.

The SORE6" Population Can Self-Renew, Give Rise to
Phenotypically Heterogeneous Offspring, Divide
Asymmetrically, and Form Tumorspheres In Vitro

A central tenet of the CSC hypothesis is that CSCs can self-
renew and give rise to more committed daughter cells,
while the regeneration of CSCs from more differentiated
daughter cells is a much lower frequency event (Magee
et al., 2012). To address this issue, MCF10Calh cells were
sorted into SORE6" and SORE6~ populations and placed
in culture. The SORE6" population rapidly regenerated
a SORE6™ cell population, which increased with passage
in culture until the original equilibrium state was restored
by passage ~2-3 (Figures 2A and 2B). In contrast, SORE6—
cells were largely incapable of regenerating a SORE6* pop-
ulation (Figure 2B). MCF10Calh tumors have differenti-
ated luminal and myoepithelial components, consistent
with the CSC having arisen from a bipotential progenitor
(Santner et al., 2001). As expected, the SORE6™ daughters
arising from SORE6" cultures expressed the differentiated
luminal marker cytokeratin 8 (CK8) or the basal marker cy-
tokeratin 14 (CK14), while the SORE6" cells were negative

for these markers but showed some positivity for CKS
(Figure 2C), a marker of more primitive progenitors (Kabos
et al., 2011). Thus, the SORE6" cells themselves are rela-
tively undifferentiated but can give rise to differentiated
offspring of both mammary epithelial lineages. Time-
lapse videomicroscopy clearly showed the appearance
of SORE6™ cells in colonies that grew from SORE6" cells
(Figure 2D; Movie S1).

In somatic stem cells, self-renewal is often associated
with the ability to undergo asymmetric cell divisions, in
which one daughter cell retains the property of stemness,
while the other is committed to differentiate (Magee
et al., 2012). Asymmetric division with respect to cell fate
can involve asymmetric segregation of newly synthesized
DNA strands (Conboy et al., 2007), and this type of asym-
metric division has been phenotypically associated with
a hierarchical organization and cell fate in lung cancer
models (Pine et al., 2010). By assessing the frequency of
asymmetric distribution of bromodeoxyuridine (BrdU)-
labeled chromatin between mitotic daughters, we showed
that SORE6" cells had a higher frequency of asymmetric
division than SORE6™ or sham-sorted cultures (Figure 2E).
Another property of normal and malignant stem cells
is the ability to proliferate and form large sphere-like
structures under anchorage-independent conditions
(Shaw et al., 2012). We showed that SORE6" cells from
MCF10Calh cultures were enriched for the ability to
form large tumorspheres (Figure 2F) and that each tumor-
sphere contained just one or a few SORE6™ cells (Figure 2G),
consistent with previous observations that such spheres
contain an average of one sphere-forming cell (Shaw
et al., 2012). Proteasomal blockade with MG-132 to slow
degradation of the destabilized GFP reporter moiety
led to an ~2-fold increase in the proportion of SORE6"
cells in MCF7 cultures and a corresponding decrease in

(B) Fluorescent images showing sorted SORE6™ or SORE6™ MCF10Calh cells after 5 days in culture. Cell nuclei are visualized with DAPI
(blue), and SORE6™ cells are green.

(C) MCF10Cat1h culture from (B) immunostained for cytokeratin 5 (CK5), cytokeratin 8 (CK8), or cytokeratin 14 (CK14). Scale bar, 20 pum.
(D) Freeze frames from the time-lapse Movie S1 showing SORE6™ cells generating SORE6— offspring. MCF10Calh cultures enriched for
SORE6™ cells followed by time-lapse videomicroscopy. In frame 1 (t = 6 hr), the single-headed arrow marks a small cluster of SORE6™ cells
(cluster 1) and the double-headed arrow marks a doublet of SORE6™ and SORE6 ™ cells (cluster 2). Frame 2 (t = 78 hr) shows that cluster 1,
after undergoing several symmetric self-renewing divisions, has begun to generate SORE6™ cells around the periphery of the colony.
Cluster 2 has now generated a colony on the right that is predominantly SORE6 ™, suggesting the SORE6™ cells may proliferate faster than
the SORE6™ cells. Frame 3 (t =94 hr) and frame 4 (t =112 hr) show that when cluster 2 expands to contact cluster 1, there is a rapid loss of
SORE6™ cells in cluster 1. The group of predominantly SORE6™ cells marked by the dashed line in the top left of frame 4 has migrated in from
outside of the field. Scale bar, 200 um.

(E) Asymmetric mitoses in FACS sorted SORE6™ and SORE6™ or sham-sorted MCF10Calh cultures. Representative z stack image of asym-
metrically distributed BrdU-labeled DNA in a pair of mitotic daughter cells and quantitation of asymmetric mitoses as % total mitoses.
Results are mean + SEM for three independent experiments, each evaluating 30-50 mitoses/condition. ***p < 0.001; Student’s t test.
(F) Tumorsphere formation by sorted SORE6™ and SORE6 ™ or sham-sorted MCF10Calh cells. Results are mean + SEM (three independent
experiments). Representative phase-contrast images of tumorspheres are shown.

(G) Fluorescent image of large tumorsphere derived from sorted SORE6™ MCF10Ca1h cells. Scale bar, 20 um.

See also Figures S2 and S3 and Movie S1.
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Table 1. In Vivo Limiting Dilution Assay for MCF10Ca1h Cells

No. of Cells Implanted/Site

5,000 2,500 500 100
Cell Population Tumor Incidence T - 1/CSC Frequency 95% CI
Sham sort 5/6 4/6 1/6 1/6 2,343 4,564-1,203
SORE6 ™ 2/6 1/6 0/6 0/6 14,308 44,186-4,633
SORE6* 6/6 5/6 4/6 3/6 722 1,497-438

The indicated number of cells was implanted orthotopically into nude mice, and tumor incidence was assessed after 3 months. CSC frequencies were calcu-

lated using ELDA software. CI, confidence interval.

tumorsphere-forming efficiency of the SORE6* fraction
(Figure S2), confirming that the destabilizing sequence
on the GFP significantly increases the specificity of the
reporter. Overall, the data show that the SORE6 reporter
marks cells that are relatively undifferentiated, with
the ability to self-renew, divide asymmetrically, and give
rise to phenotypically heterogeneous, more differentiated
offspring, all of which are important properties of CSCs.

Breast cancer CSCs have been identified by cell-surface
marker combinations, most commonly CD44*CD24'/~,
as well as by expression of ALDH1 (Visvader and Linde-
man, 2012), so we investigated the status of these CSC
markers in our SORE6* population. We found no enrich-
ment of the CD44°CD24~ marker combination in our
SORE6" fractions and substantial though variable overlap
with the ALDHI1-positive population (Figure S3). The
overlap between the CD44"CD24~ marker combination
and ALDH positivity has previously been shown to be
very low (Ginestier et al., 2007), suggesting that existing
methods for detecting CSCs are not fully concordant.
Furthermore, the CD44*CD24~ phenotype correlated
more closely with basal phenotype than with tumorige-
nicity in breast cancer cell lines (Fillmore and Kuperwasser,
2008). It is becoming apparent that there is heterogeneity
even within stem cell populations (Schober and Fuchs,
2011), so it is possible that the different methods enrich
different subpopulations of CSCs.

SORE6" Cells Are Enriched for Tumor- and
Metastasis-Initiating Activity In Vivo

The gold-standard assay for a CSC is the ability to initiate
and sustain tumorigenesis in vivo. We performed an in vivo
limiting dilution assay in the MCF10Calh model to assess
the relative tumor-initiating ability of SORE6* and SORE6 ™~
cells following orthotopic implantation into nude mice,
and we observed a ~20X enrichment of tumor initiating
capacity in the SORE6" compared with the SORE6™
cell populations (Table 1). Similar enrichment was seen
with two additional breast cancer models, MCF7 cells (es-
trogen-receptor-positive breast cancer) and MDA-MB-231

cells (triple-negative breast cancer) (Table 2). To assess
long-term self-renewal and tumor-initiating ability, cells
were recovered from tumors that arose at each passage
and were resorted into SORE6* and SORE6™ fractions and
reimplanted for the subsequent serial in vivo passage.
SORE6* cells sustained the ability to initiate tumorigenesis
through multiple serial transplant generations in both
the MCF10Calh and MDA-MB-231 models (Figure 3A).
MCF10Calh tumors characteristically show a heteroge-
neous histology with areas of clear cells along with well
differentiated structures and areas of poorly differentiated
pleomorphic cells (Santner et al., 2001; Tang et al., 2003),
and tumors derived from MCF10Calh SORE6" cells
after three serial transplant generations showed the same
histopathology as the parental cell line (Figure 3B). The
occasional small tumors that arose from implantation of
SORE6"°® Lin"®8 cells were invariably found to contain a
small population (0.2%-0.3%) of SORE6" cells, suggesting
either that the FACS sort was not 100% efficient or
that SORE6™ cells may be generated from SORE6™ cells
as a low-frequency event in vivo. Confocal images of
MCF10Calh tumors confirmed that the SORE6" cells
were a minority population in vivo and showed individual
SORE6" cells or small clusters of SORE6" cells scattered
through the tumor parenchyma (Figure 3C). A similar
pattern was seen in MDA-MB-231 tumors, where the
CSCs tended to be localized in clusters (Figure 3D). Note
that for the MDA-MB-231 model, the stem cell reporter is
red (SORE6-dsmCherry), since the tumor cells were already
constitutively marked with GFP.

It has been proposed that a subset of CSCs may be intrin-
sically migratory and/or invasive (Brabletz et al., 2005).
Using a Matrigel invasion assay, we found that SORE6" cells
from the nonmetastatic MCF10CA1h and metastatic MDA-
MB-231 cell lines were significantly more invasive than
SORE6™ or sham-sorted cells (Figure 3E). Furthermore,
SORE6" cells were strongly enriched for the ability to
initiate metastases in the lung in vivo following injection
into the tail vein (Figure 3F). Individual metastases that
formed from SORE6™ cells showed just a small fraction of
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Table 2. Enrichment for Tumor-Initiating Cells in SORE6" Fractions from Three Human Breast Cancer Cell Lines

Cell Line Breast Cancer Subtype CSC Frequency SORE6 ™ (SC Frequency SORE6* Enrichment Factor p Value

MCF7-EP ER+ 1/9,097 >1/430 >21.1 1.2 x 107
MCF10Cath ER+ 1/14,308 1/722 19.8 6.9 x 107
MDA-MB-231 TNBC 1/549 1/58 9.5 4.5 x 107%

Tumor cells at different dilutions were implanted orthotopically into nude mice, and tumor incidence was assessed after 1-3 months, depending on the
model. CSC frequencies were calculated using ELDA software. p value is for chi-square test. ER, estrogen receptor; TNBC, triple-negative breast cancer.

SORE6" cells, with the bulk of the cells in the lesion having
differentiated to a SORE6™ phenotype (Figure 3G). As was
seen with the primary tumors, the rare metastases that
formed from SORE6™ cells also showed the presence of
SORE6" cells, reflecting either incomplete sorting or
phenotypic plasticity. In either case, it appears that the
development of a metastasis is invariably associated with
the presence of SORE6" cells.

SOREG6+ Cells Are Relatively Resistant to
Chemotherapeutics

CSCs are intrinsically more resistant to chemotherapeutics
(Alison et al., 2012). On treatment of MCF10Calh cultures
with doxorubicin (50 nM) or paclitaxel (25 nM) for 2 days,
extensive cell death was observed among SORE6- cells (Fig-
ure 4A; Movies S2 and S3), and the proportion of SORE6"
cells in the culture increased dramatically (Figure 4B).
The effect of paclitaxel was dose dependent, with greater
enrichment of SORE6" cells at higher doses (Figure 4C).
Similar results were seen in vivo, where treatment of mice
bearing MCF10Calh tumors with the chemotherapeutic
Cytoxan led to a substantial increase in the proportion of
SORE6" cells in the tumors after three cycles of treatment
(Figures 4D and 4E).

The SORE6 Reporter Marks a Minority Population of
Cells with Tumor-Initiating Activity in Primary
Human Tumor Cell Cultures

All the experiments to this point were done with well-estab-
lished human breast cancer cell lines. To test whether the
reporter could be used to transduce primary tumor cell cul-
tures, we acquired eight primary human breast cancer sam-
ples of which three successfully generated explant cultures
and patient-derived xenografts. Explanted tumor cell cul-
tures were transduced with SORE6 or minCMVp control
reporters and briefly selected with puromycin. As with the
cell lines, a minority of cells (7%-14%) in the primary cul-
tures were SORE6" (Figure 5A). Sorted SORE6™ cells placed
in culture regenerated a significant population of SORE6™
cells within 3 days, while the SORE6™ cells failed to regen-
erate SORE6" cells (Figure 5B). On implantation in athymic
nude mice, the sorted SORE6" cells were significantly more

tumorigenic than SORE6™ cells for all three primary samples
(Figure 5C). Finally, confocal images of freshly excised xeno-
grafted CBOTO1 tumors arising from SORE6* cells show clus-
ters of SORE6" cells localized primarily at the edge of the tu-
mor (Figures 5D and SE). Overall, the data suggest that the
SORES®6 reporter can identify a subpopulation of tumor cells
that are enriched for CSC-like properties in primary cultures
of human breast cancer as well as in established cell lines.

DISCUSSION

It is increasingly appreciated that a tumor represents
a whole ecosystem of mutually interacting cellular and
acellular components that generate a continually evolving
tumor microenvironment (Quail and Joyce, 2013). Many
aspects of this dynamic and complex microenvironment,
such as hypoxia and inflammation, can modulate CSC
properties and response to therapy (Conley et al., 2012;
Cui et al., 2013; Korkaya et al., 2012) and function in
different spatial contexts within the tumor. Thus, it would
be desirable to observe the behavior of the CSCs in their
native habitat with all microenvironmental cues intact.
Here, we have developed and validated a flexible and
powerful lentiviral-based reporter system for direct visuali-
zation, quantitation, and isolation of the cells with CSC
properties in multiple preclinical tumor models in vitro
and in vivo. Cells detected by this method are relatively un-
differentiated, can self-renew and give rise to phenotypi-
cally heterogeneous offspring, show enhanced asymmetric
division, and are enriched for tumor-initiating and metas-
tasis-initiating ability in vivo. Importantly, the marked
cells are also relatively resistant to chemotherapeutics, sug-
gesting that a highly clinically relevant tumor cell subpop-
ulation is being detected with this reporter.

Our approach depends on the presence of the stemness
transcription factors SOX2 and/or OCT4 in the CSC.
SOX2 is expressed in immature cells of many self-renewing
epithelial tissues in the adult animal (Arnold et al., 2011),
and it has been detected in a variable percentage of cells
in many malignant tissues, some of which clearly depend
on SOX2 for their tumor-initiating ability (Gangemi
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et al., 2009). Detection of OCT4 is complicated by the
existence of alternate transcripts and pseudogenes, and
evidence is convincing that OCT4 is not expressed in adult
somatic stem cells (Lengner et al., 2008). However, ectopic
expression of OCT4 in the intestinal epithelium and
epidermis blocks differentiation and leads to uncontrolled
proliferation of progenitor cells (Hochedlinger et al., 2005),
and forced overexpression of OCT4 in primary breast
epithelial cells generated tumor-initiating cells (Beltran
et al., 2011), suggesting that reactivation of epigenetically
silenced OCT4 would be a parsimonious route to tumor
formation. Ionizing radiation was recently shown to repro-
gram differentiated breast cancer cells into cells with
CSC characteristics associated with reexpression of OCT4
and SOX2, further supporting an intimate connection
between stemness and OCT4/SOX2 expression (Lagadec
et al., 2012). So far, our reporter has identified a minority
cell population in all the primary and established breast
cancer cells we have studied, suggesting that the presence
of functional SOX2/OCT4 in a subpopulation of tumor
cells may be a relatively widespread phenomenon.
Complementary approaches to visualizing the CSCs
have taken advantage of different biological properties of
the tumor hierarchy, such as low expression of 26S protea-
some activity in CSCs (Vlashi et al., 2009) or high expres-
sion of LET7C in differentiated cells (Ibarra et al., 2007).
Our construct uses a tandemly repeated OCT4/SOX2
response element to drive reporter expression, but our
fluorescent protein also incorporates the ornithine decar-
boxylase degron sequence that is targeted by the 26S pro-
teasome (Li et al., 1998), and this feature confers additional
specificity for the CSCs. Despite the relatively low expres-
sion of SOX2 and OCT4 in CSCs, we have shown that
our reporter can be used to detect and localize CSCs in
freshly excised tumors and metastasis-bearing lungs. In
principle, it should be possible to extend the approach to
intravital imaging. Such a strategy will allow further inves-

tigation of the location of CSCs in different tumors, the
nature of CSC niches, interactions between CSCs and their
microenvironment, and longitudinal monitoring of migra-
tion and survival characteristics of CSCs, both in the unper-
turbed state and in response to therapeutic intervention.
Importantly, the tumor cell subpopulation marked by
our reporter is considerably more resistant to conventional
chemotherapy than the bulk population, and the reporter
system has the potential to be adapted to a high throughput
format to screen for drugs that target these resistant cells.
Although the hierarchical organization of normal tissues
is relatively rigid and unidirectional, there is evidence for
greater plasticity in the organizational structure of tumors
(Magee et al., 2012), and this plasticity will pose challenges
for effective therapy if non-CSCs can reacquire CSC attri-
butes. With our reporter system, it will be possible to observe
stem cell plasticity directly, whether driven by intrinsic
mechanisms, such as stochastic fluctuations in gene expres-
sion, or through extrinsic mechanisms, such as induction of
an epithelial-to-mesenchymal transition (Mani et al., 2008),
irradiation (Lagadec et al., 2012), or inflammation (Korkaya
et al., 2011; Schwitalla et al., 2013). The ability to observe
the CSCs directly and in real time as they interact with
neighboring cells or environmental components should
generate new insights and suggest testable hypotheses
regarding the properties of this critically important cell
population in many preclinical cancer model systems.

EXPERIMENTAL PROCEDURES

Cell Culture and Treatment with Chemotherapeutics

The MCF10CA1lh and MCF10Cala cell lines were obtained from
the Karmanos Cancer Institute Cell Line Resource and cultured in
Dulbecco’s modified Eagle’s medium (DMEM)/F12 with 5% horse
serum (Santner et al., 2001). Early-passage MCEF7 cells were ob-
tained from Dr. Michael Brattain and were cultured in Eagle’s min-
imum essential medium, 10% fetal bovine serum (FBS) with 2 mM

Figure 3. SORE6" Cells Are Enriched for Tumor- and Metastasis-Initiating Ability In Vivo and Can Be Visualized In Situ
(A) Tumor-initiating ability of SORE6™ cells is maintained over multiple transplant generations.

(B) H&E-stained sections showing histology of parental MCF10Calh tumors and tumors generated by SORE6™ cells after three serial
passages in vivo. Scale bar, 50 pm.

(C) Confocal z stack image showing spatial localization of SORE6™ cells in freshly excised MCF10Calh tumors. Tumor cells are constitutively
marked in red, and SORE6™ cells are green. Arrows point to SORE6™ cells. Scale bar, 100 pm.

(D) Confocal z stack image showing spatial localization of SORE6™ cells in MDA-MB-231 tumors. Note that here, tumor cells are
constitutively marked in green, while SORE6™ cells are red. Arrows indicate yellow SORE6™ tumor cells. In this image, the red dots are not
associated with nuclei and probably represent dead cell debris. Scale bar, 200 um (left) or 40 um (right).

(E) Matrigelinvasion assays using sorted SORE6™ and SORE6 ™~ and sham-sorted cells from MCF10Calh and MDA-MB-231 cultures. Results are
mean + SEM (n = 3 technical replicates). Representative images are shown for the MDA-MB-231 cells. Scale bar, 100 um.

(F) Lung metastases formed following tail-vein injection of sorted SORE6* and SORE6 ™~ and sham-sorted cells from MDA-MB-231 cultures.
Results are shown as median =+ interquartile range for n = 5 mice/group. *p < 0.05, two-way ANOVA.

(G) Confocal z stack image of a lung metastasis derived from a SORE6™ MDA-MB-231 cell, showing rare yellow cells (some marked by arrows)
that are positive for the SORE6 reporter. The tumor cells are constitutively marked with GFP, while the SORE6 reporter drives dsmCherry.
Scale bar, 200 pum.
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Figure 4. SORE6™ Cells Are Relatively Resistant to Chemotherapeutics
(A) Cultures of MCF10Calh cells after 2 days of treatment with doxorubicin (50 nM) or paclitaxel (25 nM) showing selective killing of

SORE6™ cells. See also Movies S2 and S3. Scale bar, 200 pm.

(B) Effect of treatment with doxorubicin (Dox; 50 nM) or paclitaxel (Pac; 25 nM) on the relative representation of SORE6™ cells in the
MCF10Calh culture assessed by flow cytometry after 48 hr. Results are mean = SEM for three technical replicate determinations.

(C) FACS profile of MCF10Ca1h cells after 4 days of treatment with 25 nM or 50 nM paclitaxel (Pac), together with quantitation of SORE6*
cells by FACS analysis. Results are mean + SEM for three technical replicates.

(D) Schematic for treatment of MCF10Calh tumors with Cytoxan.

(E) The effect of Cytoxan on SORE6™ cell representation in tumors from Cytoxan- or vehicle-treated mice. Results are median + interquartile

range for n = 5-8 mice/group.
See also Movies S2 and S3.

glutamine and 1% nonessential amino acids. MDA-MB-231 cells
from the American Type Culture Collection (ATCC) were cultured
in DMEM with 10% FBS. The mESC line R1/E from ATCC was
cultured in 0.1% gelatin-coated cell culture plates with mESC
growth medium containing KO-DMEM, 15% FBS, and 100 mM
nonessential amino acids, 0.1 mM 2-mercaptoethanol, and 2 mM
L-glutamine plus 1,000 U/ml leukemia inhibitory factor (Milli-
pore). Differentiation of R1/E cells was induced by treatment with
5 pM retinoic acid for 4 days and confirmed by visual assessment

of cell morphology. Where indicated, tumor cells were treated
with 50 nM doxorubicin or 25-50 nM paclitaxel for 2 days prior
to analysis by flow cytometry. Details of primary breast cancer
cultures are given in Supplemental Experimental Procedures.

Generation of Lentiviral Reporter Constructs

A stem cell enhancer minigene was designed, based on the obser-
vation that the proximal NANOG promoter region has highly
conserved composite binding element for SOX2 and OCT4 with
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the sequence 5'-TTTTGCATTACAATG-3’ that is essential for prop-
erly regulated expression of NANOG in ESCs (Ibarra et al., 2007). A
minigene containing six tandem repeats of this composite element
with eight bases of native flanking sequence on either side of the
element, was synthesized by Integrated DNA Technology and
named “SORE6” for SOX2/OCT4 response element x 6. Lentiviral
reporter constructs were generated by Gateway Multisite LR recom-
binational cloning using the manufacturer’s protocols. Individual
entry clones were generated for the SORE6 minigene, a minimal
CMYV promoter (minCMVp), and two destablized fluorescent pro-
teins, dscopGFP and a new destabilized form of the monomeric
Cherry fluorescent protein (dsmCherry) that we constructed
by addition of the PEST destabilization sequence (Corish and
Tyler-Smith, 1999). Entry clones were assembled into pDest-663,
alentiviral destination vector based on the pFUGW lentiviral back-
bone with puromycin selection. A detailed description of minigene
sequence, generation of the Entry clones and the recombinational
cloning strategy is given in Supplemental Experimental Proce-
dures. minCMVp-GFP and minCMVp-mCherry constructs in
which the SORE6 element was omitted serve as matched controls
to allow assessment of background expression of fluorescent pro-
teins due to the minimal CMV promoter alone.

Lentivirus Generation and Cell Transduction
Replication-defective infectious lentivirus was generated using
the pPACK1 Lentiviral Vector Packaging Kit (Systems Biosciences).
For transduction with lentiviral constructs, exponentially growing
target cells were exposed to viral supernatants at an MOI of 1
for 24 hr with 5 pg/ml Polybrene. Transduction efficiency was
typically >80%. Transduced cultures were either selected with
2 pg/ml puromycin for 5 days or the 5% brightest cells in the
SORE6" gate were collected by FACS sorting and put back in culture
to recover the original population equilibrium. Transduced mouse
embryonic stem cells were used without further selection since
puromycin induced differentiation. In vivo experiments were
performed within 2-3 weeks of transduction.

In Vivo Tumorigenesis and Metastasis

All animal studies were done under a protocol (LC-070) approved
by the National Cancer Institute, in accordance with Association
for Assessment and Accreditation of Laboratory Animal Care
guidelines. To determine tumor-initiating capacity in different
cell populations, in vivo limiting dilution assays were performed
and CSC frequency was calculated using extreme limiting dilution
analysis (ELDA) (Hu and Smyth, 2009). Breast cancer cell lines or
primary cultures were sorted, where applicable, and suspended
in serum-free DMEM/F12 medium with 50% of growth factor
reduced Matrigel (BD Bioscience), and 100-5,000 cells were surgi-
cally implanted into the #2 and #7 mammary fat pads of 6- to 8-
week-old female athymic NCr nu/nu mice (Animal Production
Program, Frederick National Laboratory for Cancer Research, Fred-
erick, MD). MCF?7 cells were inoculated into ovariectomized mice
that had been implanted with 1.7 mg slow-release estradiol pellets
(Innovative Research). Tumors were measured weekly with calipers
and all mice on a given experiment were euthanized with CO,
before the tumor diameter of the largest tumor reached 2 cm (typi-
cally 2-3 months for MCF10Calh and MCF7EP tumors and 1-

2 months for MDA-MB-231 tumors). To determine the metastatic
potential of MDA-MB-231 cells, 5-week-old female nude mice
were injected intravenously with 100,000 tumor cells in 0.2 ml
of DMEM in the tail vein. The mice were euthanized 8 weeks after
tumor cell inoculation, and lungs were harvested for fluorescent
imaging or for histologic assessment of metastatic burden on
hematoxylin and eosin (H&E)-stained sections of formalin-fixed
inflated lungs.

Cell Recovery from Xenografted Tumors

Freshly excised tumors were minced with scalpel blades, and
tumor pieces were digested with DMEM/F12 medium containing
5% horse serum, 1 mg/ml collagenase I (Sigma), and 1 mg/ml colla-
genase D (Sigma) for 2 hr at 37°C. Cells were then washed with
Hank’s balanced salt solution (HBSS) (Invitrogen) and suspended
in 0.05% Trypsin/EDTA (Invitrogen) for 5 min at room tempera-
ture (RT). During trypsinization, cells were passed through 18G,
22G, 27G needles followed by passage through a 40 pm cell
strainer (BD Bioscience). Following addition of Trypsin Neutralizer
Solution (Invitrogen), cells were collected by brief centrifugation.
Cell pellets were washed with HBSS, suspended in DMEM/F12
medium, and analyzed by flow cytometry or FACS sorted.

Flow Cytometry and Fluorescence-Activated Cell
Sorting

Subconfluent cultured cells were collected by trypsinization and
cell pellets were washed three times with PBS prior to resuspension
in PBS with 4% fetal bovine serum. Flow cytometry was done on a
FACSCalibur (Becton Dickinson) for GFP expression alone or an
LSRII (BD Biosciences) for detecting mCherry and GFP expression,
and data were analyzed using FlowJo software (Tree Star). Cells
transduced with the minCMVp-GFP or minCMVp-mCherry lenti-
viruses were used as matched negative controls for gating purposes,
and cells were defined as SORE6" if the fluorescence in the FL1
channel exceeded that of 99.9% of the cells transduced with con-
trol virus. For FACS, cells transduced with SORE6-GFP were sorted
using a BD FACS Aria Ilu Cell Sorter (BD Bioscience), while cells
transduced with SORE6-mCherry were sorted using a MoFlo Astrios
High Speed Sorter (Beckman Coulter). Again, minCMVp-GFP or
minCMVp-mCherry were negative controls for gating, and typi-
cally, the top 5% of cells in the SORE6" gate were collected. Cells
recovered from tumors were stained with 20 ul /10° cells of APC
Mouse Lineage Antibody Cocktail (BD Bioscience) for 30 min at
RT, washed with HBSS, and analyzed by flow cytometry or sorted
by FACS as above. For analysis of cell-surface marker profiles, cells
were labeled with allophycocyanin-conjugated-CD44 and phyco-
erythrin-conjugated CD24 antibodies (BD Pharmingen). For all an-
alyses and sorts, dead cells were eliminated by 7AAD staining.

Time-Lapse Videomicroscopy and
Immunofluorescence

A total of 2,500-50,000 cells were seeded in 12-well plates. Nine
images per well were acquired every 2-3 hr for a period of
2-5 days, using the IncuCyte™™® live-cell imaging system (Essen
Instruments) equipped with 20x objective lens, which can take
high-definition phase-contrast and green fluorescence images
in real time. Images were analyzed using IncuCyte Software. For
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immunofluorescent staining, 10,000-20,000 MCF10Calh cells
were plated onto Borosilicate Chambered Coverglass (Lab-Tek)
for 1-5 days in regular growth medium and then fixed and immu-
nostained for cytokeratin markers as detailed in Supplemental
Experimental Procedures.

Asymmetric Division

MCF10Calh transduced with Sore6-GFP were cultured in 1 uM
BrdU (Sigma) containing cell culture medium for 2 weeks to ensure
all cells were labeled with BrdU. Cells were then sorted for GFP-pos-
itive and GFP-negative cells. Sorted cells were cultured for two cell
divisions in the absence of BrdU (the chase) and then collected by
mitotic shake-off for analysis of mitotic pairs with asymmetrically
distributed BrdU label as described previously (Pine et al., 2010),
with more details in Supplemental Experimental Procedures.

Tumorsphere Formation and Cell Invasion Assays

To assess tumorsphere-forming ability, single-cell suspensions of
tumor cells were plated in ultra-low-attachment 24-well plates
(Corning) at 2,500 cells/well in regular growth medium. After 5-
7 days, wells were examined under an inverted microscope at X
40 magnification, and the number of spheres of >100 pm in diam-
eter were counted for a total of 15-20 independent fields per well
and three replicate wells per condition. Confocal images of repre-
sentative tumorspheres were acquired using a Zeiss 710 confocal
microscope (Carl Zeiss). Cell invasion assays were carried out using
the Growth Factor Reduced BD Matrigel Invasion Chamber (8 pm,
BD Biosciences). A total of 5,000 cells were plated in each chamber
in normal growth medium for 3 days. The cells on the upper side of
the membrane were removed while the cells on the lower side were
methanol-fixed and stained with 0.05% crystal violet. The invaded
cells were counted under an inverted microscope at X20 magnifi-
cation, for a total of 20-25 independent fields per well and three
replicate wells per condition.

Confocal Imaging

Confocal imaging of freshly excised tumors and lungs was done
using a Zeiss 780 Confocal microscope setup with 405, 488, and
561nm lasers. Confocal images were sequentially acquired with
Zeiss ZEN software on a Zeiss LSM Confocal system (Carl Zeiss).
For the deeper optical sections (250 pm) in excised tumors, a Zeiss
710 upright confocal microscope was used.

Statistical Analysis
Statistical analyses were done using the statistical tools in Graph-
Pad Prism 5.0 (GraphPad Software). Specific tests used are indicated
in the text. p < 0.05 was considered significant.

Additional methodological details can be found in Supplemental
Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental
Procedures, three figures, and three movies and can be found
with this article online at http://dx.doi.org/10.1016/j.stemcr.
2014.11.002.
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