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SUMMARY
When pluripotency factors are removed, embryonic stem cells (ESCs) undergo spontaneous differentiation, which, among other line-

ages, also gives rise to cardiac sublineages, including chamber cardiomyocytes and pacemaker cells. Such heterogeneity complicates

the use of ESC-derived heart cells in therapeutic and diagnostic applications. We sought to direct ESCs to differentiate specifically into

cardiac pacemaker cells by overexpressing a transcription factor critical for embryonic patterning of the native cardiac pacemaker (the

sinoatrial node). Overexpression of SHOX2 during ESC differentiation upregulated the pacemaker gene program, resulting in enhanced

automaticity in vitro and induced biological pacing upon transplantation in vivo. The accentuated automaticity is accompanied by

temporally evolving changes in the effectors and regulators of Wnt signaling. Our findings provide a strategy for enriching the cardiac

pacemaker cell population from ESCs.
INTRODUCTION

Since their first derivation (Thomson et al., 1998), embry-

onic stem cells (ESCs) have been validated to faithfully

recapitulate early cardiogenesis (Boheler et al., 2002; Van

Vliet et al., 2012) and touted for their potential as an unlim-

ited source of de novo cardiomyocytes for replacement of

diseased myocardium (Kehat et al., 2001). While the most

commonly pursued therapeutic goal has been to boost

contractile function, ESC-derived cardiac cells may also

be useful as alternatives to electronic pacemakers (Cho

andMarbán, 2010); we and others have exploited the auto-

maticity of ESC-derived cardiomyocytes to create biological

pacemakers (Kehat et al., 2004; Xue et al., 2005). The risk of

teratoma may be diminished by technical refinements to

increase general yield of ESC-derived cardiomyocytes (Du-

bois et al., 2011; Kattman et al., 2011; Nunes et al., 2013)

and by attaining a ‘‘pure’’ cardiomyocyte population post-

differentiation (Dubois et al., 2011; Hattori et al., 2010).

An outstanding issue, however, remains in the innate het-

erogeneity of ESC-derived (or any pluripotent stem cell)

cardiac cells. The action potential (AP) profiles of de novo

cardiomyocytes vary considerably from ventricular/atrial

myocyte-like to nodal/Purkinje-like (He et al., 2003; Kolos-

sov et al., 2005; Maltsev et al., 1993; Zhang et al., 2009).

Such heterogeneity could result in unpredictable biological

pacemakers, as reported in a subset of spontaneously

contracting embryoid bodies (EBs) in which the beating

rate either ceased or accelerated over time (Mandel et al.,

2012).
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We set out to develop a way to instruct the ESCs to differ-

entiate into a cardiac pacemaker subtype with a factor

relevant to embryonic pacemaker development. Native

cardiac pacemaker cells are anatomically confined in the

sinoatrial node (SAN), a diminutive structure comprising

just a few thousand genuine pacemaker cells (Bleeker

et al., 1980). During embryonic development, cardiac pace-

maker cells originate from a subset of progenitors distinct

from the first (marked by Nkx2.5) and second (marked by

Isl1) heart fields not only in their geneticmakeup (Christof-

fels et al., 2010; Wiese et al., 2009), but also in their

anatomic location (Bressan et al., 2013). However, an area

of Hcn4-positive primordial SAN is reported to express

Isl1 (Mommersteeg et al., 2007), suggesting that second

heart field progenitors may also contribute to the devel-

oping SAN. We have recently demonstrated that postnatal

re-expression of an embryonic transcription factor, Tbx18,

converts ventricular cardiomyocytes to pacemaker cells,

recapitulating morphological as well as electrophysiolog-

ical hallmarks of genuine SAN pacemaker cells (Kapoor

et al., 2013). Elsewhere, transgenic overexpression of

Tbx3 has been shown to elicit ectopic rhythm in mouse

atrial myocardium (Bakker et al., 2012). Noting the power-

ful capacity of embryonic transcription factors in deter-

mining the fate of cardiac cell subtype, we hypothesized

that overexpression of a SAN-specific transcription factor

may steer ESC differentiation toward pacemaker cell

subtype. Here, we report that heterologous expression

of SHOX2 during early stages of mouse ESC (mESC) differ-

entiation strongly favors a SAN-specific gene program,
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Figure 1. Shox2 Is Specific to the Developing Mouse SAN
(A) A schematic diagram of cardiac differentiation protocol. mESCs were dissociated into single cells on day 1(D1) and cultured in sus-
pension for 2 days in hanging drops and then 3 days on a nonadhering culture plate. On D6, the cells were plated on an adherent plate. The
differentiating cells were characterized 4, 7, and 14 days from D6.
(B) Transcript expression levels of the transcription factors that govern cardiac pacemaker cell specification were quantified by real-time
RT-PCR from microsurgically isolated SAN tissues from ED 18 mouse hearts (top). The bottom illustrates the gene expression level at ED
15.5. Expression analysis of RA was not performed at ED 15.5 because the tissue was too small to be reliably separated from the SAN. Purity
of the SAN preparation is validated by robust Hcn4 expression limited to the SAN (second from left). Data are represented as mean ± SEM.
All experiments were performed in three independent biological replicates.
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leading to enhanced pacemaker cell specification. The

differentiated cells exhibit greater automaticity in vitro

and perform biological pacemaker function when injected

into the rat heart in vivo.
RESULTS

Shox2 Is Specific to Embryonic Development of the

Cardiac SAN

mESCs were differentiated to form EBs by culturing them

in suspension media for 6 days and then transferring
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them to adherent media (Wobus et al., 1991). The EBs

were analyzed at three time points, based on the time

course of electrophysiological maturation of mESC-

derived cardiomyocytes (Maltsev et al., 1994): 4 days after

transfer to adherent culture as an early time point of

differentiation (D6+4), 7 days afterward (D6+7) as the

mid phase of differentiation, and 14 days afterward

(D6+14) as the terminal phase of differentiation (Fig-

ure 1A). A few transcription factors figure prominently in

embryonic development of the SAN, notably the T box

transcription factors Tbx18 and Tbx3 (Wiese et al., 2009),

as well as the homeodomain transcription factor Shox2
hors
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Figure 2. Exogenous Expression of Hu-
man SHOX2 Increases Endogenous Shox2
Expression
(A) Quantitative measurements of endoge-
nous mouse Shox2 expression throughout
the differentiation stages indicate that its
expression is at the lowest during the first
6 days of differentiation. In SHOX2-treated
group, the differentiating cells are trans-
duced with an adenoviral vector expressing
human SHOX2 on D3, D6, and D6+1 (D7) in
order to maximize adenoviral somatic gene
transfer. Experiments were performed on six
independent mouse ESC cultures (i.e., six
biological replicates).
(B) Human SHOX2-specific, quantitative PCR
measurements of SHOX2 over time. No PCR
product was detected in the GFP-EB group,
indicating the specificity of human SHOX2
PCR primers.
(C) The level of endogenous Shox2 expres-
sion is higher in the SHOX2-EB group
compared with control in all three time
points. Data are represented as mean ± SEM.
All experiments were performed on three
independent biological replicates.
See also Figure S1.
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(Espinoza-Lewis et al., 2009). We reasoned that overex-

pression of one of these transcription factors could steer

ESCs to differentiate into cardiac pacemaker cells. To this

end, we sought to identify a gene highly specific to the

developing mouse SAN. Quantitative measurements of

the mRNA levels of these transcription factors reveal that

Shox2 expression is most specific to, and significant in,

the SAN compared with the right atrium (RA), left atrium

(LA), and left ventricle (LV) of the mouse heart at mouse

embryonic day (ED) 18 (Figure 1B, top). The SAN-specific

expression of Shox2 closely follows that of Hcn4, a marker

of SAN pacemaker cells. Initially, we anticipated that

Tbx18 expression might be the most specific to the SAN

since mice deficient for Tbx18 fail to form sinus horns

(Christoffels et al., 2006), bolstered by our recent demon-

stration that Tbx18 re-expression converts ordinary ven-

tricular myocytes to native SAN-like induced pacemaker

cells in vitro and in vivo (Kapoor et al., 2013). Yet, the pre-

sent data indicate that Tbx18 is comparably expressed be-

tween the SAN and all major chambers, including the

right atrium (RA), left atrium (LA), and left ventricle (LV)

at ED 18 (Figure 1B, top). This may be due to the abun-

dance of Tbx18+ proepicardial progenitor cells in the em-

bryonic heart (Cai et al., 2008; Christoffels et al., 2009).

Likewise, our data indicate that Tbx3 is comparably ex-

pressed in the SAN and LV (Figure 1B), which may be

due to its expression in ventricular conduction system
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(Bakker et al., 2008). Analogous results were obtained at

an earlier embryonic development time point (ED 15.5;

Figure 1B, bottom). Guided by these insights, we selected

Shox2 as the most SAN-specific transcription factor so as

to boost SAN pacemaker cell-specific differentiation of

the ESCs.
Exogenous SHOX2 Expression Activates Endogenous

Shox2

We set out to facilitate the pacemaker-specific gene pro-

gram at a time when endogenous Shox2 expression is low,

from D3 to D7 (Figure 2A). To this end, we transduced

the EBs with an adenoviral vector expressing human

SHOX2 at three time points (D3, D6, and D6+1). The use

of human SHOX2 allows specific transcript detection of

endogenous mouse Shox2 from exogenous human

SHOX2. Human SHOX2 protein shares 98% amino acid

sequence homology with mouse SHOX2 (Figure S1 avail-

able online), signifying likely bioactivity of human

SHOX2 in a mouse context. The somatic gene transfer

resulted in rapid expression of SHOX2, which waned

steeply with time (Figure 2B), as expected from the tran-

sience of adenoviral vector-mediated somatic gene transfer

(Michou et al., 1997; Tripathy et al., 1996). Importantly,

exogenous SHOX2 expression increased endogenous

Shox2 expression throughout the differentiation phases
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(Figure 2C), suggesting stimulation of the pacemaker cell

gene expression program.

SHOX2-EBs Exhibit Greater Automaticity with

Concurrent Upregulation of Electrogenic Gene

Program

We examined genes that play decisive roles for sponta-

neous diastolic depolarization aswell as genes that underlie

the propagation of electrical signals from cell to cell. Hyper-

polarization-activated cyclic nucleotide-gated channel 4

(HCN4) is the molecular correlate of If in the SAN, which

directly contributes to the linear rise of spontaneous depo-

larization during phase 4 of an AP (DiFrancesco, 2010;

Yamamoto et al., 2006). Immunostaining of the whole

EBs demonstrates that SHOX2 expression heightens

HCN4 channel expression compared with control (Fig-

ure 3A). Total HCN4 protein expression was twice higher

in SHOX2-EBs compared with control throughout the

stages of differentiation (Figure 3B, left and middle). Na+-

Ca2+exchanger (NCX) couples spontaneous intracellular

Ca2+ release events to voltage oscillations in SA nodal pace-

maker cells (Lakatta and DiFrancesco, 2009). The NCX1

protein level increased 4-fold in SHOX2-EBs at the later

stages of differentiation (Figure 3B, right; Figure S2).

The space constant at the core of the SAN is significantly

lower than that of the neighboring atrial myocardium

or the ventricles (<500 mm versus 1–2 mm, respectively)

(Bonke, 1973). The high intercellular electrical resistance

in the SAN allows its automaticity to propagate into the

right atrium, which due to its highly hyperpolarized mem-

brane potential would otherwise dissipate the electrogenic

signals from the SAN (Joyner and van Capelle, 1986). The

weak electrical coupling in the SAN pacemaker cells is

mediated by a low-conductance gap junction protein,

CX45, while the chamber myocardium predominantly

expresses a large-conductance gap junction, CX43 (Jansen

et al., 2010). SHOX2 overexpression increased the tran-

script level of Gja7, the gene that encodes CX45,

throughout the differentiation phases. This is comple-

mented by an�4-fold increase in CX45 protein expression

(Figure 3C). Conversely, SHOX2 overexpression decreased

CX43 expression at the transcript (33% ± 5%, p < 0.05)

and protein (30% ± 10%, p < 0.05) levels compared with

control (Figure 3D). In order to gauge the extent of total car-

diac myocyte differentiation, we examined the expression

levels of pan-cardiac myocyte markers, cardiac troponin T

(Tnnt2), and cardiac actin (Actc1), as well asNkx2-5, a nega-

tive marker of SAN but positive for ventricular and atrial

cardiomyocytes. Quantitative RT-PCR data demonstrate

that the expression level of Nkx2-5 is lower in SHOX2-

EBs, while that of the pan-cardiac myocyte genes remains

similar (Figure S3). The data indicate that the total cardiac

differentiation efficiency remains similar in SHOX2-EBs
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and EBs transduced with a green fluorescent protein

(GFP-EBs). Furthermore, the increased automaticity in

SHOX2-EBs is likely to be a direct result of heightened

pacemaker cell differentiation at the expense of dimin-

ished ventricular cardiomyocyte content. Thus, exogenous

SHOX2 expression upregulates a number of electrophysio-

logical hallmarks of SAN pacemaker cells during cardiac

differentiation of ESCs.

To quantify the automaticity of SHOX2-EBs, we scored

the number of spontaneously beating EBs and the number

of individual beating foci in each EB. At the early stage of

differentiation, the majority of SHOX2-EBs beat sponta-

neously, while the majority of GFP-EBs were quiescent

(83% ± 7% versus 15% ± 6%, respectively, n = 7 indepen-

dent experiments; Figure 4A, left). Over time, most of

the GFP-EBs eventually began to beat (Figure 4A, left).

Still, SHOX2-EBs exhibited more than twice the number

of spontaneously beating foci within each beating EB

comparedwith control, a pattern that persisted throughout

differentiation (Figure 4A, right). The beating rates of the

EBs were analyzed by recording extracellular field poten-

tials (FPs) from the EBs on multielectrode arrays (MEAs)

(Figure 4B). The beating rates of SHOX2-EBs were similar

to those of control at the beginning of differentiation and

then became significantly faster compared with control

beyond the mid phase of differentiation (Figures 4C and

4D). Taken together, the data demonstrate that SHOX2-

EBs develop greater numbers of pacemaker foci with faster

beating rates and that the increased automaticity persists

throughout differentiation.

SHOX2-EBs Function as a Biological Pacemaker after

Transplantation In Vivo

Motivated by the greater automaticity of the SHOX2-EBs,

we tested whether SHOX2-EBs could provide biological

pacemaker function when implanted in vivo. We and

others have previously demonstrated that spontaneously

beating human ESC-derived EBs could electrically couple

with and drive the beating of host myocardium upon im-

plantation in vivo (Kehat et al., 2004; Xue et al., 2005). In

those studies, spontaneously beating areas of several EBs

were microsurgically dissected prior to injection so as to re-

move nonbeating areas, thereby maximizing the propor-

tion of beating cardiac tissue to nonbeating cells. Here,

we tested whether the increased automaticity in SHOX2-

EBs suffices to provide biological pacemaker function

even without microsurgical removal of nonbeating cells.

To this end, 10–12 spontaneously beating GFP-EBs or

SHOX2-EBs were randomly selected at D6+4 and directly

injected into the left ventricular apex of the rat heart

in vivo. Two to 4 days after in vivo transplantation, the

heart was isolated and retrogradely perfused so that its elec-

trical activity could be optically mapped. In sinus rhythm,
hors
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Figure 3. Changes to Ion Channel and Gap Junction Profiles in SHOX2-EBs Favor Automaticity
(A) Immunostaining images of GFP-EB (left) and SHOX2-EB (middle and right) with an antibody against HCN4 channel proteins. DAPI
(blue), nuclear staining.
(B) Quantitative measurements of HCN4 (left and middle) and NCX1 (right) protein levels. D6+14 for NCX1.
(C) Transcript (left) and protein (right) level measurements of Cx45 in GFP-EBs and SHOX2-EBs. Protein level was determined with D6+14
samples.
(D) Transcript (left) and protein (right) level measurements of Cx43 in GFP-EBs and SHOX2-EBs. The protein level was determined
with D6+14 samples. Data are represented as mean ± SEM. All experiments were performed on three independent biological rep-
licates.
See also Figures S2 and S3.
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Figure 4. SHOX2-EBs Exhibit Intensified Automaticity In Vitro and Function as Biological Pacemakers when Implanted In Vivo
(A) The percentages of spontaneously contracting EBs were measured at D6+4 and D6+14 (left) by direct visualization. More than one
beating focus could be detected in some EBs, and thus, the number of spontaneously beating foci per EB was measured at the same time
points (right).
(B) The spontaneous beating rates were measured by culturing the EBs in MEAs and measuring the extracellular FPs from the GFP-EBs and
SHOX2-EBs. Shown is a six-well MEA (left) in which two to three EBs were cultured per well (right).
(C) The average beating rates were measured at five time points by recording the spontaneous FPs for 20 min at 37�C in normal Tyrode’s (n >
10 for each data point).
(D) Representative raw FP traces are shown for a GFP-EB and a SHOX2-EB at D6+14.
(E) Whole-heart optical mapping recordings were performed on the rat hearts injected with GFP-EBs or SHOX2-EBs in vivo 2–3 days prior to
the heart harvest. Raw AP traces reported as di-8-ANNEPS signal from one photodiode (123) are shown before (baseline) and after

(legend continued on next page)
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hearts injected with either GFP-EBs or SHOX2-EBs ex-

hibited similar heart rates at room temperature (Figure 4E,

‘‘baseline’’). Then complete heart block was implemented

by surgically disrupting both the SA and atrioventricular

nodes to unleash potential biological pacemaker activity.

Afterward, control hearts injected with GFP-EBs exhibited

slow junctional rhythms of 34 ± 2 beats per minute

(bpm) (n = 4). In contrast, the SHOX2-EB-injected hearts

exhibited a significantly higher ventricular rate (44 ±

3 bpm, n = 4, p < 0.05). Since the SHOX2-EBs were injected

in the ventricular myocardium, heartbeats initiated from

the injection site are expected to propagate more slowly

than a junctional rhythm, which travels via the fast sec-

ondary conduction system. Under sinus rhythm, conduc-

tion velocities from hearts implanted with SHOX2-EBs

were comparable to those from the hearts injected with

GFP-EBs, with rapid spreading of the depolarization wave

front. After the induction of complete heart block, conduc-

tion velocity slowed significantly in the SHOX2-EB-in-

jected hearts, as anticipated for a wave front propagating

through nonspecialized myocardium (Figures 4F and 4G;

Movies S1 and S2). In contrast, the conduction velocity

of GFP-EB-injected hearts did not change in complete heart

block (Figure 4H, bar graphs). Electrical coupling between

the donor and the host myocardium is evidenced by the

presence of gap junction proteins at the interface between

SHOX2-EBs and the rat ventricularmyocardium (Figure S4).

Taken together, the data indicate that SHOX2-EBs, but not

GFP-EBs, function as biological pacemakers when the EBs

were randomly selected and injected into the left ventricu-

lar apex of the rat heart.

Electrophysiology of Single Cells Isolated from

SHOX2-EBs

In order to investigate the pacemaker phenotype of

SHOX2-EBs at the single-cell level, we characterized APs

from freshly isolated, spontaneously beating cells from

SHOX2-EBs or GFP-EBs. The majority (62%) of single cells

isolated from SHOX2-EBs exhibit a pacemaker-like AP pro-

file, while 74% of the single cells isolated from GFP-EBs
complete heart block. Upon complete heart block, the hearts injec
compared to control (right).
(F) Optically recorded isochronal maps superimposed on the whole-he
indicates the EB implantation site, and the aorta is positioned at the b
face the CMOS camera. Note the differences in the time scale of the iso
heart and SHOX2-heart, respectively.
(G) Frame-by-frame analysis of the optical mapping exhibiting AP pro
heart block in the hearts injected with SHOX2-EBs compared with c
measures to a small area of about 8 mm2 on the heart.
(H) The conduction velocity of SHOX2-EB injected hearts was signific
block. Data are represented as mean ± SEM. All experiments were per
See also Figure S4 and Movies S1 and S2.
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exhibit ventricular/atrial-like APs (Figures 5A and 5B). Sin-

gle cells from SHOX2-EBs also fired APs at a higher rate than

control cells (Figure 5C, left). Themean amplitude of spon-

taneous APs was lower in SHOX2-EB cells (Figure 5C, sec-

ond from left), consistent with the lower INa density in

genuine SAN pacemaker cells (Kapoor et al., 2013). Action

potential duration (APD) was shorter, and each AP was pre-

ceded by faster phase 4 depolarization in SHOX2-EB cells

compared with control (Figure 5C, right two panels). The

density of If, a key contributor to spontaneous phase 4 de-

polarization (Lakatta and DiFrancesco, 2009), was signifi-

cantly higher in SHOX2-EB cells compared with control

(Figures 5D and 5E). Thus, SHOX2-EB cells more often

display SAN-like AP parameters. Furthermore, the sponta-

neously beating single cells from both groups responded

predictably to adrenergic stimulation and muscarinic chal-

lenge (Figures 5F and 5G), demonstrating their responsive-

ness to neurohumoral input.
DISCUSSION

Shox2 is indispensable for proper formation and develop-

ment of the SAN. Shox2 null/null mouse embryos exhibit

severe hypoplasia of the SAN accompanied by an aberrant

expression of chamber cardiomyocyte-specific markers in

the SAN (Blaschke et al., 2007; Espinoza-Lewis et al.,

2009). Mouse Shox2 is first detected at ED8.5 in the poste-

rior region of the developing heart tube, and its expression

terminates by ED 13.5, being restricted to the cardiac con-

duction system (Blaschke et al., 2007; Espinoza-Lewis et al.,

2009). Genetic ablation of Shox2 results in slowed contrac-

tion rate in mESC-derived EBs (Hashem et al., 2013). Here,

we demonstrate that transient and heterologous expres-

sion of SHOX2 greatly increases the percentage of sponta-

neously beating EBs, the number of beating foci in each

EB, and the EB contraction rate comparedwith control (Fig-

ures 4A–4D). The enhanced automaticity correlates directly

with more HCN4+ cells present in SHOX2-EBs compared

with control (Figure 3A). Direct injection of SHOX2-EBs
ted with SHOX2-EBs demonstrated significantly higher heart rate

art injected with GFP-EBs (left) or SHOX2-EBs (right). A white circle
ottom of the image. The anterior side of the heart was positioned to
chronal map; 16 and 27 ms for end-to-end AP propagation for GFP-

pagation. The data illustrate slower AP propagation upon complete
ontrol. Each hexagonal frame, recorded with a photodiode array,

antly slower than that from the control heart upon complete heart
formed on three independent biological replicates.
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Figure 5. Single-Cell Electrophysiology of SHOX2-EBs Demonstrate SAN Pacemaker Cell-like Electrophysiology
(A) Representative raw traces of APs recorded from spontaneously-beating single cells from GFP-EBs (left) or SHOX2-EBs (right).
(B) Percentage of cells with pacemaker-like, atrial-like, or ventricular-like APs in GFP (n = 23) and SHOX2 (n = 21) groups.
(C) Comparison of AP parameters (from left to right): spontaneous beating rate, amplitude of the AP upstroke, spontaneous phase 4
diastolic depolarization rate, and ratio of AP duration at 20% repolarization (APD20) to 80% repolarization (APD80). *p < 0.05.
(D) Representative HCN ionic currents (If) recorded from a GFP-EB cell (left) and a SHOX2-EB cell (right). Lower panels show the inhibition
of time-dependent currents upon addition of 10 mM ivabradine in the bath solution. HCN currents were recorded in normal Tyrode’s so-
lution containing 1 mM BaCl2 in order to block contaminating inward rectifier K+ currents. The If currents were elicited with a family of
voltage steps from �135 mV to +35 mV for 1.5 s with 10 mV increment from a holding potential of �35 mV.

(legend continued on next page)
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into the rat left ventricular apex created ectopic automa-

ticity indicative of induced biological pacing at a rate faster

than the junctional escape rhythm observed in hearts

injected with GFP-EBs (Figure 4E). The enhanced automa-

ticity is accompanied by increased expression of automa-

ticity-promoting genes and gene products such as HCN4,

NCX1, and CX45 (Figure 3).

As rationale for the timing of SHOX2 overexpression, it

may have been more logical to base it when Shox2-positive

progenitors exist. In this regard, Shox2 expression is de-

tected as early as day 6 of differentiation (Hashem et al.,

2013) in anmESC-derived EB system. This largely coincides

with the time points of exogenous SHOX2 overexpression

(D3, D6, D7) in our study. It is notable that the beating rates

of the GFP-EBs rise and then recede between D6+9 and

D6+11 (Figure 4C). The majority of embryonic cardiac my-

ocytes have the tendency to beat spontaneously but

become more quiescent as they mature electrophysiologi-

cally (Pelleg et al., 1980). Likewise, the rapid decrease in

the beating rates of GFP-EBs may be due to changes in their

electrophysiological components, similar to the swift in-

crease in INa density in differentiating, mESC-derived EBs

(Maltsev et al., 1994). In contrast, the spontaneous beating

rates remain high in SHOX2-EBs (Figure 4C), further sup-

porting the notion that the superior automaticity of

SHOX2-EBs is due to enhanced differentiation to pace-

maker cells rather than to nonspecific deterioration of

chamber cardiomyocytes.

Cardiac derivatives from ESCs consist of cardiomyo-

cytes of atrial and ventricular phenotypes as well as pace-

maker-like cells (Wobus et al., 1995). Because of the

absence of specific extracellular epitopes, no live cell sort-

ing method exists to purify pacemaker, ventricular, or

atrial myocytes without genetic tagging. As such, the

inherent heterogeneity of pluripotent stem cell-derived

cardiomyocytes poses a critical impediment to therapeu-

tic/diagnostic applications. For biological pacemaker ap-

plications, contaminating ventricular/atrial myocytes in

the newly derived cardiac derivatives may compromise

pacemaking activity from the implanted cells. Conversely,

the presence of pacemaker cells may be arrhythmogenic if

ESC-derived cardiomyocytes were to replace a large mass

of damaged myocardium. Although implantation of hu-

man ESC-derived cardiomyocytes in the guinea pig hearts

was shown to be antiarrhythmic (Shiba et al., 2012), de-

livery of the same cells in nonhuman primates resulted

in premature ventricular contractions and ventricular
(E) Current density-voltage relationships of GFP (black, n = 4) and SH
(F) Representative APs of a GFP cell (top row) and a SHOX2 cell (b
(Iso, 1 mM, middle) or acetylcholine (ACh, 50 nM, right).
(G) Summary of beating rate responses before and after treatment with
All experiments were performed on three independent biological repl
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tachycardia in all experimental animals (Chong et al.,

2014).

As an in vitro diagnostic tool, induced pluripotent stem

cell-derived cardiac myocytes have been proposed as an

in vitro platform for drug screen for arrhythmic diseases

such as Long QT syndrome (Itzhaki et al., 2011). How-

ever, the inherent heterogeneity of these cells, compli-

cated by the fact that the derived cardiomyocytes are

largely immature (Mummery et al., 2010; Mummery

et al., 2012), may result in erroneous index of how a pu-

tative drug may react in atrial or ventricular myocardium.

These concerns underscore the need for attaining sub-

type-specific populations of cardiomyocytes. Previous

work by others has tried to address this by inducing

pluripotent stem cells to cardiac pacemaker-like cells

with various pharmacological agents (Kleger et al.,

2010; Müller et al., 2012; Wiese et al., 2011). Here,

we demonstrate that SHOX2-mediated pacemaker cell

potentiation leads to heightened automaticity in the

EBs and that the SHOX2-EBs provide biological pace-

maker function upon transplantation into the rat

myocardium in vivo. Implantation of the SHOX2-EBs

was performed without microsurgical excision of non-

beating areas of the EBs, further highlighting the

intensified automaticity in the SHOX2-EBs. The long-

term potential of ESC-derived EBs as durable biological

pacemakers is an important step toward clinical realiza-

tion (Jung et al., 2014). However, we do not offer the pre-

sent findings as a direct prelude to long-term biological

pacing tools, but rather as insights into the progression

of pacemaker cell development as they are reflected in

the EB system.

Because embryonic development of the SAN occurs

concurrently with the looping of the linear heart tube

(Christoffels et al., 2004), major signaling motifs may

impart a unique signature on the developing SAN from

the general myocardium. Wnt signaling is indispensable

for embryonic heart development (Schneider andMercola,

2001) and can bemanipulated to enrich the cardiomyocyte

population from human ESCs (Lian et al., 2012; Willems

et al., 2011). Since canonical Wnt signaling is necessary

for maintaining mesenchymal precursors that later form

the sinus horn (Norden et al., 2011), we looked for differen-

tial expression of Wnt ligands and regulators in SHOX2-

EBs. On day 6+4 expression of noncanonical Wnt, ligands

are mostly suppressed, while that of Wnt inhibitors are

higher in SHOX2-EBs compared with control (Figure S5A),
OX2 (red, n = 5) groups. *p < 0.05.
ottom row) before (left) and after treatment with isoproterenol

isoproterenol or acetylcholine. Data are represented as mean ± SEM.
icates.
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but the expression pattern reverses later at D6+14 (Figures

S5B and S5C). Inhibition of endogenousWnt generally po-

tentiates cardiac differentiation of ESCs (Kattman et al.,

2011; Paige et al., 2010). In contrast, the expression of clas-

sical Wnt inhibitors such as Dkk1, Sfrp4, andWif1 is signif-

icantly downregulated in SHOX2-EBs at D6+4 (Figure S5C).

The data point to antagonistic effects of Wnt signaling on

cardiac myocyte subtype specification, manipulation of

whichmay steer the ESCs to differentiate into a specific car-

diac cell type.
EXPERIMENTAL PROCEDURES

Mouse ESC Culture
The mESC line, R1 (ATCC) was cultured in KnockOut Dulbecco’s

modified Eagle’s medium supplemented with 15% KnockOut

Serum Replacement, 2 mM L-glutamine, 50 units/ml penicillin,

50 mg/ml streptomycin, 1% MEM nonessential amino acids, and

b-mercaptoethanol. The mESCs were kept undifferentiated by

culturing them on confluent monolayers of mitomycin C-treated

primary mouse embryonic fibroblasts (Millipore) and by adding

purified recombinant mouse leukemia inhibitory factor (ESGRO,

1,000 units/ml; Millipore). Cells were maintained at 37�C in a hu-

midified atmosphere of 5% CO2.
Molecular Cloning and Adenovirus Purification
The human SHOX2 gene with a C-terminal myc/FLAG tag was

excised from pCMV6-Tbx18 (Origene) by digestion with FseI and

SalI and then subcloned into a NotI- and XhoI-digested lentiviral

expression vector with the desired reporter gene, pLVX-IRES-

ZsGreen1 (Clontech) to create pLV-Tbx18-IRES-ZsGreen. The re-

combinant target gene was then introduced to an adenovirus

vector backbone by Gateway recombination cloning using

Gateway-adapted vectors (Invitrogen). LR recombination reaction

was performed between the entry clone and the destination vector,

pAd/CMV/V5-DEST, to generate the desired adenoviral expression

construct, pAd-CMV-SHOX2-IRES-ZsGreen. Positive constructs

were verified to have the correct target gene by DNA sequencing

(Laragen). The expression constructs were digested with PacI to

expose inverted terminal repeats before transfecting into 293A

cells to produce adenoviral stocks. Adenoviruses were amplified

and affinity-column-purified using Adenopure kit (Puresyn) and

stored at �80�C.
Differentiation of mESCs and Adenoviral

Transduction
The cardiac differentiation media are composed of Iscove’s

modified Dulbecco’s medium with Glutamax, ESC qualified fetal

bovine serum (Embryomax, 20%), minimal essential media

nonessential amino acids (1%), penicillin (50 units/ml), strepto-

mycin (50 mg/ml), and b-mercaptoethanol (0.1 mM). On day 1,

mESCs were dissociated with 0.05% trypsin-EDTA. Single ESCs

were cultured in hanging drops (at 400 cells per 20 ml) to form

EBs for 2 days. On day 3, the EBs were transferred to ultra-low-

attachment dishes (Corning) and transduced either with an
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adenoviral vector expressing SHOX2 (Ad-SHOX2-IRES-GFP) or a

control vector (Ad-GFP) at a multiplicity of infection (MOI) of

500. At day 6, control and treated EBs were plated onto gelatin-

coated culture dishes. The EBs were transduced again at day 6

and D6+1 with the same MOI as at day 3 in order to maximize so-

matic gene transfer.

Scoring the Beating EBs
The numbers of spontaneously beating EBs and of beating foci per

EBwere counted under a bright-lightmicroscope in a temperature-

and CO2-controlled chamber. The position of each beating cluster

was marked to avoid double counting.

RNA Extraction, Quantitative Real-Time PCR, and

Wnt PCR Array
Total RNA was extracted from the embryonic mouse heart tissues

with RNeasy Mini Kit (QIAGEN) followed by DNase treatment.

RNA concentration was assessed by spectrophotometry (Nano-

Drop; Thermo Scientific). Real-time quantitative PCR was per-

formed with the Taqman One Step PCR kit (Applied Biosystems)

according to the manufacture’s recommended protocol. Primers

used for quantitative RT-PCR were all from Applied Biosystems.

Housekeeping genes such as glyceraldeyde-3 phosphate dehydro-

genase and Hydroxymethylbilane synthase (HMBS) were em-

ployed as internal control. For PCR array analyses, total RNA

(1 mg) was reverse transcribed into cDNA using the RT2 First Strand

Kit (SA Biosciences). The resulting cDNA was analyzed using the

Wnt Pathway PCR Array (catalog number PAMM-043; SA Biosci-

ences). All quantitative PCR reactions were performed on an ABI

7900 HT fast Real-Time PCR System (Applied Biosystems). All ex-

periments were performed in triplicates with three biological repli-

cates. All primer sets used for quantitative RT-PCR (qRT-PCR) were

purchased from Applied Biosystems (Table 1).

Western Blot Analysis
Whole-cell lysates were harvested with RIPA Buffer (Thermo

Scientific) containing protease inhibitors (HALT Protease

Cocktail; Pierce). Protein concentrations were determined with

bicinchoninic acid protein assay (MicroBCA Kit; Pierce).

Samples were loaded onto 12% SDS-PAGE, and the separated

proteins were transferred to a polyvinylidine fluoride membrane.

Blots were incubated overnight at 4�Cwith the primary antibodies

against HCN4 (Abcam), Connexin-45(CX45; Invitrogen), Con-

nexin-43 (CX43; Sigma-Aldrich), and Na+/Ca2+ exchanger

(NCX1; Abcam). The primary antibodies were detected using

horseradish peroxidase-conjugated secondary antibodies raised

in appropriate species, followed by chemiluminescence detection

(Pico Chemiluminescence Substrate; Pierce). Protein loading was

controlled by reprobing the membranes with monoclonal anti-

b-actin antibody (Sigma-Aldrich).

Immunocytochemistry
Whole EBs were fixed using 4% paraformaldehyde, washed with

PBS, and permeabilized with 0.1% Triton X-100. Fixed cells were

blocked with 5% normal donkey serum overnight at 4�C. The
EBs were then incubated with primary antibodies for HCN4 (Ab-

cam) and a secondary antibody conjugated with Alexa Fluor 488
hors



Table 1. Primer Sets for Quantitative PCR

Catalog
Identification

Interrogated Sequence
(RefSeq) NCBI Chromosome Location Exon Boundary Amplicon Length

Human SHOX2 Hs00243203_m1 NM_001163678.1 chromosome 3: 157813800–157823952 2–3 129

Mouse Shox2 Mm00443183_m1 NM_013665.1 chromosome 3: 66973266–66981771 1–2 97

Mouse Tbx3 Mm01195726_m1 NM_011535.3 chromosome 5: 119670669–119684601 7–8 65

Mouse Tbx18 Mm00470177_m1 NM_023814.4 chromosome 9: 87702800–87731260 6–7 64

Mouse Nkx2.5 Mm00657783_m1 NM_008700.2 chromosome 17: 26838665–26841565 1–2 117

Mouse Actc1 Mm01333821_m1 NM_009608.3 chromosome 2: 114047289–114052811 3–4 62

Mouse TnnT2 Mm01290256_m1 NM_001130174.2 chromosome 1: 135836386–135852261 8–9 110

Mouse Hmbs Mm01143545_m1 NM_001110251.1 chromosome 9: 44336348–44344228 6–7 81
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at 1:500 dilution for 1 hr at room temperature. Nuclei were coun-

terstained with 40,6-diamidino-2-phenylindole (DAPI).

In Vivo Injection and Ex Vivo Optical Mapping
All animal procedures were reviewed and approved by the Institu-

tional Animal Care and Use Committee of the Cedars-Sinai Medi-

cal Center. For testing of biological pacemaker function in animals

implanted with the EBs in vivo, 10–12 whole SHOX2-EBs or GFP-

EBs were randomly selected and injected with a 24G needle sube-

picardially into the left ventricular anterior wall of adult Sprague

Dawley female rats upon thoracotomy. At 24 to 48 hr after injec-

tion, heart was harvested and retrogradely perfused with normal

Tyrode’s solution containing 10 mM blebbistatin for 30 min in or-

der to uncouple excitation-contraction, thereby minimizing mo-

tion artifacts (Fedorov et al., 2007). The heart was then perfused

with di-4-ANEPPS (2 mM; Molecular Probes) for 15 min. Perfusion

was made through the aorta, and temperature was continuously

maintained at 37�C ± 1�C. During mapping, the heart was posi-

tioned in a transparent chamber filled with Tyrode’s solution

with the injected site facing the optical light path, and the optical

signals were recorded from a 5 3 5 mm area at baseline (sinus

rhythm) and after complete heart block. Heart block was achieved

by mechanically excising the SAN and the AV node. The fluores-

cence changeswere recorded on a 496-diode arraymapping system

(WuTech).

Single-Cell Electrophysiology
To examine the electrophysiological properties of individual cardi-

omyocytes derived from mESC, EBs at D6+14 were dispersed into

single cells with a protocolmodified from a previous report (Zhang

et al., 2002). EBs were digested with a nominally calcium-free solu-

tion (in mM: NaCl 140, KCl 5.4, KH2PO4 1.2, MgCl2 0.5, HEPES 5,

taurine 50, glucose 5.5 [pH = 6.9] with NaOH) containing collage-

nase B (Roche, 0.5mg/ml) at 37�C for 50min followed by digestion

with Liberase (Roche, 75 mg/ml) at 35�C for 20 min. Single, whole-

cell AP and ionic current measurements were carried out using

standard microelectrode whole-cell, patch-clamp technique with

an Axopatch 200B amplifier (Molecular Devices) with a sampling

rate of 20 kHz and low-pass Bessel-filtered at 5 kHz. Experiments

were performed at 33�C ± 1�C. Cells were perfused with a normal
Stem Ce
Tyrode’s solution containing (mM: NaCl 138, KCl 5, CaCl2 1.8,

MgCl2 0.5, glucose 10, and HEPES 10 [pH = 7.4]) with NaOH.

Pipette solution contained (mmol/l) K-glutamate 98, KCl 50,

MgCl2 1.0, HEPES 10, EGTA 2, and K-ATP 5 (pH = 7.2) with

KOH. Microelectrodes had tip resistances of 2–4 MU when filled

with the internal recording solution. Spontaneous APs were re-

corded with I = 0 mode. Effects of adrenergic and cholinergic

agonists onAP firing ratewere tested by perfusing cells with Tyrode

solution containing isoproterenol (1 mM, Sigma) or acetylcholine

(50 nM; Sigma). Data were corrected for the estimated liquid junc-

tion potentials (�12.5 mV). The diastolic depolarization rate was

determined from the slope of a 20-ms segment after themaximum

diastolic potential. Funny currents (If) were recorded in a voltage-

clamp mode with cells bathed in normal Tyrode’s solution con-

taining 1 mM BaCl2 in order to block contaminating inward

rectifier K+ currents (IK1). Holding potential was set at �35 mV,

and a family of voltage steps from �135 mV to +35 mV for 1.5 s

with 10 mV increment was applied to elicit If. The If was identified

by their time-dependent activation and their sensitivity to ivabra-

dine (10 mM; Sigma-Aldrich).

Similar to the criteria adopted in the human ESC-derived cardio-

myocytes (He et al., 2003), the APs were designated ventricular-,

atrial- and pacemaker-like cells based on the AP duration and the

slope of spontaneous phase 4 depolarization rate. Ordinary ven-

tricular cardiomyocytes exhibit prominent plateau phase, reflected

by their slow early repolarization rate (i.e., longAPD20) and fast late

repolarization rate (short APD80). Accordingly, cells with APD20/

APD80 >3.0 were categorized to ventricular-like cells. Pacemaker-

like APs were designated to cells with fast phase 4 diastolic depolar-

ization rate (>0.04 V/s) and short APD (APD20/APD80%3.0). Atrial-

like APs were designated to cells with short APD (APD20/APD80 %

3.0) and slow phase 4 diastolic depolarization (%0.04 V/s).
Curve Fitting
The time course of endogenous Shox2 expression data was pro-

cessed by nonlinear curve fitting (Figure 2A) with amplitude

version of Gaussian peak function with an equation, y = y0 +

A*exp(�0.5 3 ((x � xc)/w)^2). Levenberg Marquardt algorithm

was used for iteration. The final values for each parameter at the

end of the iteration are provided in Table 2.
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Table 2. Parameters for the Nonlinear Curve Fitting of the Data
in Figure 2A

Value SE

y0 1.88621 0.12281

xc 5.0783 0.23033

w 3.34034 0.3499

A �1.904 0.13304

Full width at half maximum 7.86591 0.82396

Area �15.9422 2.2425

Number of points 10

Degrees of freedom 6

Reduced chi squared 1.28641

Adjusted R square 0.96031
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Statistical Analysis
All data are represented as mean ± SEM. Statistical significance was

calculated with an unpaired Student’s t test. A confidence of p %

0.05 was considered significant.
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