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In this review, we describe research findings on the effects of alcohol exposure on two major catabolic
systems in liver cells: the ubiquitin–proteasome system (UPS) and autophagy. These hydrolytic systems
are not unique to liver cells; they exist in all eukaryotic tissues and cells. However, because the liver is the
principal site of ethanol metabolism, it sustains the greatest damage from heavy drinking. Thus, the focus
of this review is to specifically describe how ethanol oxidation modulates the activities of the UPS and
autophagy and the mechanisms by which these changes contribute to the pathogenesis of alcohol-in-
duced liver injury. Here, we describe the history and the importance of cellular hydrolytic systems,
followed by a description of each catabolic pathway and the differential modulation of each by ethanol
exposure. Overall, the evidence for an involvement of these catabolic systems in the pathogenesis of
alcoholic liver disease is quite strong. It underscores their importance, not only as effective means of
cellular recycling and eventual energy generation, but also as essential components of cellular defense.

& 2014 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Contents
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Importance of intracellular catabolic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Alcoholic liver disease (ALD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Ethanol and intracellular catabolic systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Basal macroautophagy in eukaryotic cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Autophagy in cultured cells after ethanol exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Evidence that ethanol decreases lipophagy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Ethanol and autophagy in vivo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
The ubiquitin–proteasome system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Ethanol consumption and the UPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Ethanol exposure and the 20S proteasome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Proteasome activity and alcoholic-induced steatosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Summary and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Conflicts of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
n open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

rvice (151), Omaha Veterans Affairs Medical Center, 4101 Woolworth Avenue, Omaha, NE 68105, USA.
ue, Jr.).

www.sciencedirect.com/science/journal/22132317
www.elsevier.com/locate/redox
http://dx.doi.org/10.1016/j.redox.2014.10.006
http://dx.doi.org/10.1016/j.redox.2014.10.006
http://dx.doi.org/10.1016/j.redox.2014.10.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.redox.2014.10.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.redox.2014.10.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.redox.2014.10.006&domain=pdf
mailto:tdonohue@unmc.edu
http://dx.doi.org/10.1016/j.redox.2014.10.006


T.M. Donohue, Jr., P.G. Thomes / Redox Biology 3 (2014) 29–3930
Introduction

Importance of intracellular catabolic systems

During the 20th century, the biomedical literature emphasized
cellular anabolic processes, including, DNA replication, RNA tran-
scription, protein synthesis, and the assembly of complex lipids
and carbohydrates. In contrast, scientific interest in macro-
molecular catabolism was low, partly because of the erroneous
notion that once such macromolecules are synthesized, they be-
come permanent, irreplaceable cellular fixtures. Other scientists
believed that one or more cellular degradation systems existed but
it/they had minor physiological importance. In the late 1930s and
early 1940s, definitive isotope studies by Schoenheimer and col-
leagues [1] demonstrated that cellular constituents are dynamic,
as they continuously undergo breakdown and replenishment. This
discovery prompted more research effort into catabolic systems. In
the 1950s and 1960s, groundbreaking work by De Duve, using
subcellular fractions from rat liver, revealed that lysosomes are
distinct cellular organelles, containing acid hydrolases that cata-
lyze the breakdown of all macromolecular forms [2–4]. De Duve
and colleagues also found that liver cells use lysosomes to digest
their own contents, a process he named autophagy or “self eating”
[5,6]. Numerous studies of protein catabolism in the late 1960s and
early 1970s, reported that the in vivo half-lives of individual pro-
teins are essentially constant but are quite distinct from each
other, ranging widely from several minutes to several days. From
each protein's half-life, one can estimate its synthesis rate, which
is balanced with its rate of degradation [7]. Investigators examined
the reasons for such diverse catabolic rates. They revealed that the
primary sequence, particularly a protein's NH2-terminal amino
acid, its native conformation, and its size all strongly influence its
rate of degradation [8,9]. These investigations laid the groundwork
that led to the discovery in the late 1970s and early 1980s, of the
soluble, proteolytic pathway now known as the ubiquitin–pro-
teasome system (UPS) [10,11]. The UPS is now considered the
principal proteolytic pathway in all eukaryotic cells. While the
discoveries of lysosomes, autophagy and the UPS were in-
dependent events that, like other major biomedical discoveries,
were first met with skepticism by other scientists, their impact has
been far-reaching. It is now clear that disturbances of autophagy or
the UPS are directly linked to the causes, exacerbation, and even
the alleviation of disease. In fact, both catabolic pathways have
become therapeutic targets. Liver disease that is caused by the
hereditary disorder, alpha-1-antitrypsin (α-1AT) deficiency, in
which the mutated form of α-1-AT accumulates and aggregates in
liver cells, is ablated in animal models after treatment with the
anti-seizure drug, carbamazepine, which reportedly accelerates
autophagy [12]. Others report that in vivo treatment with a gene
vector that expresses the transcription factor EB (TFEB), an im-
portant regulator of autophagy and lysosome biogenesis [13], also
activates the autophagic pathway to enhance α-1AT removal. The
proteasome inhibitor, bortezomib (Velcades) is used with other
anti-cancer drugs as an effective treatment for the hematological
malignancy, multiple myeloma [14–16]. In the absence of disease,
autophagy and the UPS maintain normal cell function by degrad-
ing larger molecules to smaller ones, which are further broken
down to generate ATP. Both catabolic pathways are cytoprotective
because they remove damaged proteins and dysfunctional orga-
nelles thereby preventing interference with normal cell function.
While autophagy and the UPS occupy distinct cellular locations,
they exhibit overlap in function by degrading some of the same
protein substrates [17–19]. For example, when proteins aggregate,
they become less recognizable substrates for and resistant to
proteolysis by the proteasome. Such aggregates are more readily
degraded by autophagy [20], probably because the acidic interior
of the lysosome (�pH 4.7) [21] denatures such proteins for
eventual digestion by the diverse array of proteases (cathepsins)
that reside in that organelle. However, should the functions of the
UPS and autophagy falter simultaneously, the potential for pa-
thology increases significantly. In the liver, chronic, heavy alcohol
consumption impedes both pathways. Such disturbances are
linked to the pathogenesis of alcohol-induced liver injury.

Alcoholic liver disease (ALD)

Alcoholic beverages have been used and abused for centuries. It
is likely that liver injury caused by heavy drinking is one of the
oldest liver ailments known to humans [22]. Because the liver is
the principal site of ethanol oxidation, it sustains the greatest in-
jury after alcohol abuse. The severity of ALD ranges from steatosis
(fatty liver) to decompensated cirrhosis. Despite many decades of
investigation into the causes of and the treatments for ALD, the
disease still remains difficult to manage in the clinic [22]. Current
standards of care that include abstinence, nutrition therapy and
corticosteroid treatment have had marginal success [23,24]. This is
partly because patients who present with alcoholic hepatitis have
end-stage or near end-stage liver disease after years of heavy
drinking.

Hepatic ethanol oxidation proceeds by two major pathways:
alcohol dehydrogenase (ADH), which resides in the cytosol and
cytochrome P450 2E1 (CYP2E1), which is a component of the
endoplasmic reticulum (a.k.a. the microsome fraction). Both en-
zymes oxidize ethanol to generate acetaldehyde. CYP2E1 is unique
because it also catalyzes the oxidation of other compounds that
are chemically and functionally distinct from ethanol. These in-
clude the industrial solvent, carbon tetrachloride [25], the anti-
pyretic, acetaminophen [25,26], and the anesthetic, halothane
[27]. Furthermore, heavy ethanol consumption consistently in-
creases the hepatic content of the CYP2E1 apoenzyme. A major
mechanism for its induction is that ethanol stabilizes CYP2E1 by
protecting it from degradation by the proteasome [28]. From a
toxicological standpoint, CYP2E1 induction is very important
when one considers the dangers of heavy drinking combined with
simultaneous exposure to any or all of the aforementioned sub-
strates. For example, when hepatic CYP2E1 enzyme levels increase
after excessive alcohol consumption, the hepatotoxicity of acet-
aminophen is intensified because the drug is more rapidly con-
verted to its toxic metabolite, N-acetyl-p-benzoquinone imine
(NAPQI) by elevated levels of CYP2E1.

Here, we document research on how ethanol-elicited oxidant
stress, generated mostly by ethanol oxidation, affects the UPS and
autophagy during alcohol-induced liver injury. It is clear that both
catabolic pathways are vital for maintaining a healthy liver. Evi-
dence strongly indicates that disruption of autophagy and UPS by
oxidants derived from ethanol metabolism contribute significantly
to the development of steatosis and proteopathy that occur during
the course of ALD pathogenesis. Here, we describe both catabolic
systems and the changes that occur in each after ethanol exposure.
Ethanol and intracellular catabolic systems

Basal macroautophagy in eukaryotic cells

During macroautophagy (i.e. autophagy), all macromolecules
(proteins, nucleic acids, complex carbohydrates and triglycerides)
and organelles (dysfunctional organelles, including damaged mi-
tochondria) are degraded to smaller molecules (e.g. amino acids
and glucose) to generate usable energy, and to eliminate poten-
tially toxic cellular waste [29]. In the liver, enhanced autophagy is
generally regarded as cytoprotective [30]. Autophagy in liver is
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normally activated by elevated glucagon levels, nutrient depriva-
tion (e.g. fasting), metabolic (oxidant) stress, and exposure to
pharmacologic agents such as rapamycin. Conversely, autophagy is
suppressed by insulin or exposure to adequate nutrients. In well-
nourished cells, the mammalian target of rapamycin complex 1
(MTORC1) suppresses macroautophagy. MTORC1 is a high mole-
cular weight kinase, which is activated by nutrients or insulin and
prevents the formation of the downstream Atg1–Atg17–Atg13
complex shown in Fig. 1[31], thereby blocking autophagy. When
MTORC1 activity is suppressed by starvation or by rapamycin
treatment, autophagy induction (step 1, Fig. 1) proceeds. It begins
with autophagosome (AV) formation. Two ubiquitin-like proteins,
Atg12 and Atg8 (a.k.a. pro-LC3 in Fig. 1) and their conjugation
systems are active during the elongation and expansion of the AV
membrane precursor called the phagophore. Atg12 is conjugated
to Atg5 in a reaction catalyzed by Atg7 and Atg 10, which are E1-
and E2-like enzymes, respectively. The Atg12–Atg5 conjugate then
interacts with Atg16 to form a larger complex, Atg–12–5–16, that
is localized to the phagophore. Through the participation of Beclin-
1 and Atg14, the class III phosphoinositide-3-kinase (PI3K) com-
plex directs the initiation of autophagosome formation. The
C-terminal fragment of Atg8/pro-LC3 is removed by Atg4, gen-
erating the microtubule-associated light chain-3, type 1 (LC3-1),
containing a C-terminal glycine, which is then conjugated to the
phospholipid, phosphatidylethanolamine (PE) by the action of
Atg7 and the E2-like enzyme, Atg3. The lipidated LC3, now known
as LC3-II, is then attached to the phagophore membrane and
completes its closure to form an autophagosome. LC3II is con-
sidered a standard biomarker for detection and quantification of
AVs, which enclose parcels of cytoplasm containing particulate
(organelles) and soluble substrates destined for degradation. After
sequestering its cargo, each AV is trafficked to a lysosome via
microtubules. AV–lysosome docking and fusion (step 3) is fa-
cilitated by the proteins VAMP 8 and Vti1 B [32]. Lysosome-
associated membrane protein 2 (LAMP2) also participates in this
fusion [33], to form an autolysosome, in which AV cargo break-
down (step 4) is catalyzed by lysosomal hydrolases. Lysosome
biogenesis is crucial for maintaining an adequate number of these
organelles for macromolecular turnover. The rate of such biogen-
esis varies in response to physiological conditions [34–37]. Lyso-
somes also have a key role in two accessory but important
autophagy pathways, microautophagy and chaperone-mediated
autophagy (CMA). These are described in greater detail in a
separate review [38].

Autophagy in cultured cells after ethanol exposure

In a previous investigation, we examined the effects of ethanol
exposure on autophagy in parental HepG2 cells and their re-
combinants. HepG2 cells express neither ADH nor CYP2E1. Their
recombinants were generated by transfecting HepG2 cells with
vectors that stably express CYP2E1 and/or mouse ADH-1. VA-13
cells synthesize ADH but not CYP2E1 while E-47 cells express
CYP2E1 but not ADH. VL17A cells produce both ADH and CYP2E1.
Descriptions of the development and characterization of these cell
lines are published [39,40].

Our autophagy studies revealed that exposure of VL-17A cells
(ADHþ/CyP2E1þ) to ethanol increases the content of LC3B mRNA
and the AV protein marker, LC3II. The magnitude of the rise in
LC3II correlates positively with the ethanol concentration to which
the cells are exposed. Furthermore, LC3II induction requires
ethanol oxidation to acetaldehyde catalyzed by ADH, as it only
occurs in VA-13 cells (ADHþ/CYP2E1̄) and in VL-17A cells, both of
which express the ADH enzyme. We confirmed this by blocking
ethanol oxidation with 4-methylpyrazole and saw no enhance-
ment of LC3II content. Conversely, we found LC3-II induction after
direct exposure of all 4 cell lines to 100 or 300 mM acetaldehyde.
Induction of LC3II by ethanol is closely associated with a nearly
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three-fold rise in AV numbers and a two-fold augmentation in
their average size. These findings clearly indicate that acet-
aldehyde generated by ADH induces autophagosome content.

To assess whether the ethanol-induced rise in LC3II reflects an
enhancement of autophagosome formation or an inhibition of
their transit to lysosomes, we conducted autophagic flux mea-
surements using bafilomycin, which blocks lysosomal proteolysis.
These measurements [41] revealed that 24 h of ethanol exposure
both enhances LC3-II synthesis and decreases LC3 degradation in
VL-17A cells. We confirmed these findings in subsequent experi-
ments which demonstrated that the ethanol-induced rise in LC3-II
is similar to that induced by the microtubule inhibitor, nocodazole,
which blocks trafficking of AVs to lysosomes. Additionally, ethanol
exposure causes a significant rise in intracellular P62/SQSTM1
(P62), a scaffolding protein that is also a marker of lysosomal
proteolysis. Elevated P62 levels usually indicate its accumulation
due to obstruction of P62 degradation [42,43]. To confirm this
finding we also observed that ethanol-exposure inhibits the ac-
tivities of lysosomal cathepsins B and L. The latter finding is linked
to a two-fold reduction in lysosome numbers. These results in-
dicate that ethanol exposure decreases lysosome biogenesis in
ethanol-oxidizing cultured cells, a finding we reported previously
in vivo [37]. Thus, in recombinant HepG2 cells that express ADH,
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[45]. Fig. 2 presents our interpretation of the aforementioned re-
sults with parental and recombinant HepG2 cells and our view of
how autophagy is affected after acute and chronic ethanol
exposure.

Evidence that ethanol decreases lipophagy

Alcohol-induced steatosis (fatty liver) develops in 90% of heavy
drinkers [22]. Steatosis was formerly believed to develop ex-
clusively from a decreased cellular redox (NAD/NADH ratio) gen-
erated during sequential oxidations of ethanol and acetaldehyde
by ADH and aldehyde dehydrogenase 2 (ALDH2) in the cytosol and
mitochondria, respectively [46]. The latter redox change caused
accelerated fatty acid synthesis and decelerated fatty acid oxida-
tion. Subsequent investigations have since revealed that such
changes are governed by specific transcription factors [47–49].
However, the seminal report that autophagy regulates lipid me-
tabolism [29], stimulated interest in ascertaining whether alcohol
exposure influences lipophagy, the autophagosomal engulfment
and lysosomal degradation of lipid droplets. Wu, et al. examined
whether CYP2E1 expression influences lipid accumulation and
autophagy in ethanol-exposed CYP2E1-expressing E47 cells [50].
They detected higher levels of steatosis in ethanol-treated E-47
cells than in identically-treated CYP2E1-deficient C34 cells. Inter-
estingly, these workers observed that ethanol induces autophagy
in C34 cells but not in E-47 cells. In fact, in E47 cells, ethanol ex-
posure elevates the content of P62/SQSTM1, a sign of obstructed
autophagy. Thus, in alcohol-treated E-47 cells, elevated CYP2E1
expression enhances oxidant production, which impairs autop-
hagy, causing lipid accumulation, which, likely reflects decelerated
lipophagy. The latter results are consistent with other reports
demonstrating that the accumulation of certain fatty acids im-
pedes autophagy, which likely also reflects slower degradation of
lipid droplet cargo [29].

Ethanol and autophagy in vivo

In experimental alcohol-fed rats, hepatic proteopathy (protein
accumulation) occurs within 12 days after the commencement of
chronic ethanol feeding [51]. Proteopathy reflects disrupted pro-
tein metabolism. As described earlier, intracellular breakdown of
long-lived proteins occurs principally by autophagy in lysosomes
[29,51,52]. We demonstrated that chronic ethanol administration
slows the degradation of such proteins by inhibiting lysosome
function [52] caused in part by a disruption of lysosome biogenesis
[21,37,53]. Lysosomes degrade the contents of AVs during autop-
hagy (Fig. 1). A detailed electron microscopy study confirmed that,
compared with perfused livers of control rats, autophagy was
impeded in ethanol-fed rats, showing lower numbers of auto-
lysosomes (i.e. the products of AV–lysosome fusions) and lower
rates of valine release, a sign of reduced proteolysis [54].

Other reports on the status of hepatic autophagy after ethanol
exposure are controversial. Some conflict with each other and with
the aforementioned findings. Ding et al. showed that acute (binge)
ethanol administration, (using four equally-divided gavages in 20-
min intervals) enhances autophagy [45], while Wu et al used a
longer ethanol binge regimen (i.e. twice daily for 4 days) and re-
ported decreased liver autophagy [55]. After 4 weeks of chronic
ethanol feeding to mice, Lin et al. described enhanced hepatic
autophagy in these animals [56]. Similarly, a recent immuno-
electron microscopy (IEM) study concluded that livers of 10-week
ethanol-fed rats had elevated AVs and a higher incidence of AV–
cathepsin co-localization. They concluded that livers of ethanol-
fed rats had enhanced autophagy [57]. Thus, the aforementioned
chronic studies show contrasting findings to suggest that that this
area of investigation is still unsettled. In recent unpublished work,
we compared autophagy in livers of mice subjected to both acute
and chronic ethanol administration. In addition to measuring
standard autophagy parameters, we tested whether the nuclear
content of transcription factor EB (TFEB), which controls autop-
hagy, is differentially affected by acute versus chronic ethanol
administration. In acute studies we gavaged transgenic mice that
express green fluorescent protein (GFP) that is fused with LC3
(GFP–LC3) with a single dose of ethanol or PBS and measured
autophagic parameters 3 or 12 h later. In chronic studies, we fed
GFP–LC3 mice control or ethanol liquid diet (29.2%) ethanol as
calories for several weeks. Compared with PBS-gavaged control
mice, acute ethanol-treated mice exhibited greater AV numbers, a
higher frequency of AV–lysosome co-localization and elevated le-
vels of free GFP (a measure of endogenous GFP–LC3 hydrolysis). All
the latter parameters indicated enhanced autophagy and they
correlated closely with higher TFEB levels in hepatic nuclear
fractions of acutely-treated, ethanol-gavaged mice. Livers from
chronically ethanol-fed mice also exhibited higher AV numbers
than controls. However, their livers exhibited significantly lower
lysosome numbers, a lower frequency autophagosome–lysosome
co-localization, higher P62/SQSTM1 levels and lower free GFP le-
vels than pair-fed controls. The latter findings were associated
with lower nuclear TFEB levels in ethanol-fed mice. Thus, acute
ethanol gavage enhanced autophagy, associated with a higher
nuclear content of TFEB. In contrast, chronic ethanol feeding im-
peded hepatic autophagy and was closely associated with lower
levels of nuclear TFEB. Our findings indicate that acute and chronic
ethanol administration exert differential effects on autophagy in
the liver, as judged not only by autophagic markers but also by the
nuclear content of transcription factor EB, which controls both
autophagy and lysosome biogenesis. These findings not only con-
firmed our earlier reports [51] but they were also consistent with
the properties of TFEB [58–61].

The ubiquitin–proteasome system

The 26S proteasome is a large (2000 kDa) non-lysosomal,
multicatalytic (i.e. it possesses multiple catalytic sites) protease
that acts in concert with a small (8.5 kDa) polypeptide called
ubiquitin (Ub) and three enzymes, E1, E2, and E3 that catalyze
attachment of Ub to proteins by a stepwise process called ubi-
quitylation. E1 is the Ub activating enzyme. E2 is the Ub con-
jugating enzyme and E3 is the Ub–protein ligase. In mammalian
cells there is only one or two forms of E1 that catalyze the acti-
vation step, which is relatively nonspecific and requires E1, Ub, and
ATP to form an Ub–adenylate intermediate. E1 transfers the acti-
vated (adenylated) Ub to an E2 isoenzyme, which then carries
activated Ub to the protein substrate. Together with an E3 iso-
zyme, (which has the greatest substrate specificity) the E2–E3
scaffold covalently joins the COOH-terminal glycine of Ub with the
ε-NH2 group of an internal lysine of the substrate protein, forming
an isopeptide linkage. Alternatively, Ub can form a peptide bond
with the α-NH2 group at the substrate protein's NH2-terminus.
Thus, the three ubiquitylation enzymes act sequentially and spe-
cifically to covalently join multiple ubiquitin moieties into a chain,
(most often linked together via the lysine 48 residue of each
ubiquitin molecule in the chain; called the “K48 polyubiquitin
configuration”), which is recognized as a substrate by the 26S
proteasome. Prior to its degradation, the polyubiquitylated protein
undergoes de-ubiquitylation (ubiquitin removal) by the 19S reg-
ulatory complex of the 26S proteasome. The de-ubiquitylated
protein substrate then enters the cylindrical 20S core, where it is
hydrolyzed by multiple peptidases located on the β subunits of the
core, generating peptides, which are subsequently degraded to
their constituent amino acids. The UPS is depicted in Fig. 3, which



Fig. 3. The ubiquitin–proteasome system. Details are provided in the text.
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also illustrates the equilibrium between the 26S and the 20S forms
of the proteasome.

Proteins degraded by the UPS are typically characterized by
their relatively short half-lives. Many of them have critical func-
tions in cell cycle regulation, apoptosis, tumor suppression, signal
transduction, and transcription [62,63]. It is also noteworthy that
the cylinder-shaped 20S catalytic core of the 26S proteasome can
dissociate from the larger complex and is itself catalytically active,
degrading proteins in the absence of ATP and ubiquitin. In fact, the
20S proteasome is the predominant enzyme form in most mam-
malian cells [64] and rather selectively degrades oxidized, mis-
folded and covalently modified proteins [65,66]. Such degradation
is critical as a means of cellular detoxification, as damaged pro-
teins are potentially harmful because they can become entangled
into protein aggregates. Such aggregates are resistant to de-
gradation by the proteasome and require removal by autophagy
[20,67]. Accumulation of such aggregates into cellular compart-
ments called aggresomes is a survival mechanism in cells, but their
over-accumulation in cells is believed to compromise cell survival.
In liver, such aggresomes are known as alcoholic hyaline or Mal-
lory-Denk (M-D) bodies. These are considered by some to be his-
tological signatures of ALD, but are reportedly associated with
other types of liver disease as well [20,68].

Ethanol consumption and the UPS

Heavy alcohol consumption by humans affects the levels of
ubiquitin and its protein conjugates. Serum concentrations of both
free ubiquitin (the unconjugated 8.5 kDa polypeptide) and poly-
ubiquitin chains are higher in patients with cirrhosis than in
normal subjects or in patients with milder forms of alcoholic liver
disease [69]. This is related to the finding that in hepatocytes of
alcoholics, M-D bodies contain large amounts of ubiquitin as well
as the cytokeratins 8 and/or 18, and P62. The latter proteins and
polypeptides are believed to be essential components for M-D
formation [70]. M-D bodies also contain the heat shock proteins
70, 90 and 25 as well as specific subunits of the 26S proteasome
[71], to suggest that M-D body formation represents a failed at-
tempt by the UPS to degrade the protein components of M-D
bodies. Evidence also indicates that in ethanol-exposed HepG2 (E-
47) cells, that over-express CYP2E1, oxidant generation by CYP2E1
stimulates formation of M-D body-like aggresomes that contain
immunoreactive cytokeratin. Formation of such aggregates in
these cells correlates with an ethanol-elicited decline in protea-
some activity [72].

When ethanol, as part of a liquid diet, is continuously infused
into rats by intragastric intubation, it causes greater liver damage
than that produced after chronic oral ethanol administration. Both
methods of ethanol feeding induce the levels of immunoreactive
free ubiquitin and ubiquitin–protein conjugates in the liver. When
ethanol is orally administered for one or five weeks, ubiquitin le-
vels rise to a greater extent after 1 week than after 5 weeks of oral
feeding, to suggest that part of the early rise in ubiquitin is a stress
response akin to heat shock, which enhances hepatic ubiquitin
production [73]. Five weeks of oral ethanol administration also
causes ubiquitin to rise, probably due to reduced proteolysis by the
26S proteasome. Chronic oral ethanol administration does not
affect the activities of hepatic ubiquitylation enzymes [73].

Ethanol exposure and the 20S proteasome

Compared with rats intragastrically-fed with control diet, in-
tragastric ethanol administration causes a 35–40% reduction of
three major peptidases, the chymotrypsin-like, the trypsin-like
and the peptidyl-glutamyl peptide hydrolase activities of the 20S
proteasome [74]. The reduction in proteasome activity after such
treatment correlates inversely with increased hepatic content of
lipid peroxides, indicating that ethanol-induced oxidant stress
negatively influences proteasome activity [75]. Furthermore, re-
duced proteasome activity causes accumulation of both native and



Fig. 4. Inverse correlation between hepatic proteasome activity and serum ethanol
levels in ethanol-fed rats. Data are derived from four separate studies in which rats
were fed liquid control or ethanol diets for four to six weeks. Each data point is the
proteasome chymotrypsin-like activity in one ethanol-fed rat, expressed as percent
of the same activity of its pair-fed control rat. Data points are plotted as a function
of the serum ethanol concentration in each animal. The plot was drawn by linear
regression and statistically analyzed.
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damaged (e.g. oxidized) proteins in the liver. The loss in protea-
some activity and to some degree, the extent of such protein ac-
cumulation are associated with the severity of ethanol-induced
liver injury [76].

The aforementioned studies clearly show that 20S proteasome
peptidase activities are significantly reduced after intragastric
ethanol administration. However, our initial studies compared
intragastric with oral ethanol feeding. They showed that oral
ethanol feeding causes no such decline in proteasome activity. In
fact, the chymotrypsin-like and the peptidyl-glutamyl-peptide
hydrolase activities of the 20S enzyme in livers of orally ethanol-
fed rats tend to be higher than those of pair-fed controls [74].
However, after we compiled the results of several subsequent oral
feeding studies, we found that oral ethanol feeding indeed in-
creases the chymotrypsin-like peptidase activity of the protea-
some, but it also decreases this peptidase activity, depending upon
the serum ethanol concentration at the time of sacrifice. Thus,
proteasome activity correlates inversely with the serum ethanol
concentration (Fig. 4). However, we believe that ethanol oxidation
in the liver, rather than ethanol itself, causes this dose-dependent
decline in enzyme activity. This is because separate in vitro studies
revealed that proteasome activity is elevated after exposure to
relatively low concentrations (10–100 mM) of peroxynitrite
(OONO�; PN), which is a secondary metabolite of ethanol, gen-
erated by the reaction between superoxide (O2

�), derived from
mitochondrial oxidation and CYP2E1 catalysis and nitric oxide
(NO), generated by the inducible nitric oxide synthase. Conversely,
exposure of the proteasome to higher (1 mM) PN inhibits or even
abolishes its chymotrypsin-like activity. The latter in vitro data
were confirmed by in vivo experiments in which we injected an-
imals with molsidomine, an agent that is metabolized to SIN-1, a
donor of NO, which subsequently reacts with O2

� to form PN [77].
In other work, we made similar observations of differential sen-
sitivity of the proteasome to oxidants. Proteasome activity in-
creases in cultured Huh-7 cells that constitutively express the
hepatitis C virus core protein, which itself generates low levels of
oxidants. Proteasome chymotrypsin-like activity is elevated by
CYP2E1-derived oxidant generation in L-14 cells, but its activity
decreases when the same cells are exposed to ethanol, indicating
that proteasome activity is elevated by low levels of HCV core-
induced oxidants but is inhibited by higher levels of oxidants
generated by ethanol metabolism [78]. The implications of these
latter findings are important, as liver and hepatoma cells express
the immunoproteasome (IP), allowing these cells to process anti-
gens [79,80]. The IP contains distinct β-subunits that enable the
enzyme to cleave antigens to peptides of more uniform sizes than
those produced by the constitutive proteasome [81]. Such peptides
interact with the major histocompatibility complex class 1 (MHC
class 1), and are then presented on the cell surface. There, they are
recognized by cytotoxic T cells, which kill antigen-bearing hepa-
tocytes. Work in our laboratory using VL-17A (ADHþ/CYP2E1þ)
cells demonstrated that ethanol-induced oxidant stress sup-
pressed proteasome activity, thereby impeding the cleavage of
peptides for presentation by these cells in the context of MHC class
1 [82]. These same cells respond well to interferon gamma (IFN-Ɣ)
treatment, which enhances proteasome activity. However, ethanol
exposure blocks both IFN-Ɣ signaling and proteasome induction
[83]. We observed similar results in hepatocytes and in HepB5
cells, an immortalized line of cells stably transfected with CYP2E1
plasmid and in which the ethanol-elicited reduction in proteasome
activity also suppresses MHC-1 restricted antigen presentation on
their surfaces [84].

Proteasome activity and alcoholic-induced steatosis

The UPS and the 20S proteasome each degrade native, da-
maged and regulatory proteins. The latter group includes tran-
scription factors and cytokines that enhance hepatic lipogenesis.
These include the sterol regulatory element binding protein 1C
(SREBP-1C), early growth response-1 (Egr-1) and tumor necrosis
factor-alpha (TNF-α). We demonstrated in vivo that Egr-1 partially
regulates ethanol-induced steatosis after acute alcohol adminis-
tration[85].

We also examined Egr-1 regulation in ethanol-exposed VL-17A
cells. Egr-1 promoter activity and mRNA levels increase after 1 h of
ethanol exposure, followed by a rise in Egr-1 protein, which pre-
cedes an ethanol-induced rise in triglyceride accumulation. Ele-
vated Egr-1 protein is sustained in part by accelerated Egr-1
synthesis and by an ethanol-induced decrease in proteasome ac-
tivity, the latter of which stabilizes Egr-1. Knockdown of Egr-1
expression with siRNA only partially blocks ethanol-induced Egr-1
and triglyceride accumulation, providing further evidence that
reduced proteasome activity stabilizes Egr-1. Such stabilization
maintains Egr-1 at significantly higher levels even without its ac-
celerated synthesis. This results in sustained cellular steatosis. The
decline in proteasome activity is associated with higher CYP2E1
levels that would generate more oxidants to inhibit the protea-
some [71,72,86]. However, we found that ethanol-exposed E-47
cells, which express CYP2E1 but not ADH, exhibit no Egr-1 in-
duction, even though their CYP2E1 levels rise nearly two-fold. In
contrast, Egr-1 levels increase 1.6-fold in ethanol-exposed VA-13
cells, which express ADH but not CYP2E1. These latter findings
clearly show that ADH has a larger role than CYP2E1 in both the
acceleration of Egr-1 synthesis and the oxidant-induced decline in
proteasome activity, which causes Egr-1 stabilization. Thus etha-
nol-induced inhibition of proteasome activity requires ethanol
oxidation, implying that acetaldehyde and oxidants derived from
CYP2E1 catalysis are involved in Egr-1 stabilization. It is note-
worthy that other genes involved in alcoholic liver injury, includ-
ing platelet-derived growth factor (PDGF), transforming growth
factor-beta (TGF-β), fibroblast growth factor (FGF), TNF-α and
SREBP-1C each has an Egr-1 binding site on its promoter region
[87,88–90]. Thus, elevated levels of Egr-1, which are sustained by
proteasome inhibition, likely function in sustaining alcohol-in-
duced lipid accumulation. In addition, the temporal regulation of
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the aforementioned genes by Egr-1 is a molecular basis for the
progression from steatosis to more severe forms of alcoholic liver
injury.
Summary and future work

The foregoing review has described the effects of ethanol ex-
posure on two major catabolic pathways, autophagy and the UPS
in the liver. From the results described, it is clear that ethanol
oxidation by both ADH and CYP2E1 is the principal means by
which ethanol modulates the activity of each catabolic pathway.
Furthermore, it is noteworthy that the end result of ethanol ex-
posure on these pathways is not always their down-regulation, as
acute ethanol treatment enhances autophagy but has no effect on
the proteasome [45,85]. These and other results described herein,
strongly imply that autophagy is the more sensitive of the two
hydrolytic pathways. The simplest explanation for this difference
is that autophagy involves a greater number of “moving parts”,
which are more sensitive than those of the UPS (Fig. 1). Further-
more, besides Atg proteins, autophagy depends on other protein
factors and molecular motors, including tubulin, which is sensitive
to ethanol metabolites because it readily reacts with and forms
adducts with acetaldehyde [91]. Thus, the same oxidant levels
derived from ethanol metabolism that activate the proteasome
may inhibit autophagy. However, with continued heavy drinking it
is likely that both pathways are negatively affected. As always, the
findings summarized here prompt more questions, such as: why
does acute ethanol stimulate autophagy, while chronic ethanol
suppresses it? One explanation is that acute ethanol administra-
tion (i.e. a single ethanol gavage) causes rapid, (490%) hepatic
mitochondrial depolarization, which depends on ethanol oxida-
tion in hepatocytes. Such an occurrence likely stimulates an
equally rapid autophagic (perhaps mitophagic) response to the
burst of superoxide release from depolarized mitochondria, most
of which are repolarized within 24 h after ethanol administration
[92]. In contrast, chronic ethanol exposure produces nearly con-
stant ethanol oxidation, during which reactive oxygen/nitrogen
species are continuously produced and eventually overwhelm the
liver cell's ability to remove damaged proteins and dysfunctional
organelles. While further investigation is necessary to validate this
hypothesis, existing data mentioned herein, strongly support it.
Another critical question is: What is the status of autophagy and
the UPS during the more severe stages of alcoholic liver disease,
including fibrosis and cirrhosis? Animal studies would suggest
that both catabolic pathways are down-regulated. However, such
studies are limited because rodents are generally resistant to liver
damage beyond steatosis and rather heroic experimental manip-
ulations (e.g. intragastric feeding) are required to achieve severe
alcohol-induced liver injury in rats and mice. Thus, carefully con-
ducted studies are warranted, using surgically- or biopsy-derived
liver tissue from human donors to determine the status of these
hydrolytic systems in alcoholic patients. If the activities of both the
UPS and autophagy are indeed down-regulated in livers of such
patients, there are safe and approved compounds currently avail-
able that reportedly accelerate autophagy. Two of these are car-
bamazepine and caffeine [12,93,94]. In fact, coffee, which contains
caffeine, and is classically regarded as an antidote for a hangover,
is now recommended for patients with fibrotic liver disease [95].
However, it should be emphasized that autophagy and the UPS,
while very important in cellular waste management, are only two
parts of a larger picture of defensive maneuvers employed by liver
cells to maintain their viability. Nevertheless, these hydrolytic
pathways appear to have evolved mostly for the purpose of liver
cell survival. Their burgeoning importance in disease processes
continues to be an active area of investigation.
Finally, it is important to note that alcohol abuse damages ex-
trahepatic tissues, most notably the brain. Are the UPS and au-
tophagy similarly affected in neural tissue as they are in hepatic
tissue? Brain ethanol metabolism differs from that in liver, as the
majority of neural ethanol oxidation is catalyzed by the perox-
isomal enzyme, catalase which uses hydrogen peroxide and
ethanol as the substrates to form acetaldehyde and water. Ad-
ditionally, CYP2E1 is expressed in brain and contributes to neural
ethanol oxidation [96,97]. Acute studies with ethanol-treated de-
veloping mice revealed that the brains of these animals exhibit
enhanced autophagy. This response is replicated in cultured neu-
roblastoma cells exposed to ethanol in vitro [98]. Investigators
believe that autophagy induction in the brain is a protective re-
sponse to the sudden burst of ethanol-elicited oxidant stress, si-
milar to that which occurs in the liver. Recent studies also revealed
that chronic ethanol administration causes significant accumula-
tion of polyubiquitylated proteins in the mouse cerebral cortex.
The latter findings are associated with a decline in the levels of the
constitutive 20S proteasome subunits, α2 and β5, to suggest an
ethanol-induced down-regulation of proteasome activity. Con-
currently, in the same ethanol-fed animals, there is an activation of
brain MTORC1, the negative regulator of autophagy. This is asso-
ciated with a decline in autophagy components, including the ly-
sosomal protease, cathepsin B and Atg5, and Atg12, two proteins
involved in autophagosome formation, (see Fig. 1) [99]. These re-
sults imply that, despite differences in the enzymes that catalyze
ethanol oxidation in the liver and brain, autophagy and the UPS
are similarly affected in both organs by acute and chronic ethanol
administration. Acute ethanol treatment activates brain autop-
hagy, while chronic ethanol suppresses it as well as the protea-
some. Thus, it is likely that these effects are initially caused by the
formation of acetaldehyde and are subsequently exacerbated by
CYP2E1 catalysis, which forms Ach but also participates in the
production of secondary oxidants.
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