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Background: Adrenergic receptor (ADR) genotypes are 
associated with heart failure (HF) and β-blocker response in 
adults. We assessed the influence of ADR genotypes in children 
with dilated cardiomyopathy (DCM).
Methods: Ninety-one children with advanced DCM and 44 
with stable DCM were genotyped for three ADR genotypes 
associated with HF risk in adults: α2cdel322-325, β1Arg389, 
and β2Arg16. Data were analyzed by genotype and β-blocker 
use. Mean age at enrollment was 8.5 y.
Results: One-year event-free survival was 51% in advanced 
and 80% in stable DCM. High-risk genotypes were associated 
with higher left ventricular (LV) filling pressures, higher systemic 
and pulmonary vascular resistance, greater decline in LV ejec-
tion fraction (P < 0.05), and a higher frequency of mechanical 
circulatory support while awaiting transplant (P = 0.05). While 
β-blockers did not reduce HF severity in the overall cohort, in 
the subset with multiple high-risk genotypes, those receiving 
β-blockers showed better preservation of cardiac function and 
hemodynamics compared with those not receiving β-blockers 
(interaction P < 0.05).
Conclusion: Our study identifies genetic risk markers that 
may help in the identification of patients at risk for developing 
decompensated HF and who may benefit from early institution 
of β-blocker therapy before progression to decompensated HF.

Dysregulation of the adrenergic system can contribute to 
the development and progression of heart failure (HF) 

through altered signaling of pre- and postsynaptic α- and 
β-adrenergic receptors (ADRs). Presynaptic α2C ADRs inhibit 
norepinephrine (NE) release, cardiac β1 ADRs are targets for 
NE-induced chronotropy and inotropy, and β2 ADRs mediate 
vascular smooth muscle relaxation (1–4). Activation of ADRs 
initially promotes maintenance of cardiac output but ultimately 
acts to accelerate HF progression (5). This forms the basis for 
the use of sympathetic antagonists such as β-blockers in the 

management of HF with reduced ejection fraction (HFREF) 
(6). Unlike in adults, β-blockers have not shown symptomatic 
or survival benefit in pediatric HFREF in the only prospective, 
placebo-controlled clinical trial to date (7). Lack of effective 
therapies contributes to poor outcomes with ~50% of children 
with dilated cardiomyopathy (DCM) either dying or requiring 
a heart transplant within 5 y of diagnosis (8).

Single-nucleotide polymorphisms (SNPs) in the ADR genes 
have been implicated in the progression of HFREF in adults. 
These polymorphisms include α2Cdel322-325 (associated with 
increased NE release) (5,9–11), β1Arg389 (associated with 
increased receptor sensitivity to NE) (12), and β2Arg16 (associ-
ated with receptor downregulation and impaired vasorelaxation) 
(13–16). Furthermore, homozygosity for both α2Cdel322-325 
and β1Arg389 genotypes is associated with higher risk of HF in 
African Americans compared with Caucasians (17,18). Overall, 
the presence of genetic variations that increase cardiac sympa-
thetic tone and/or peripheral vasoconstriction may increase the 
risk of HF progression by increasing cardiac work, myocardial 
oxygen consumption, and myocyte loss (4,19–25). The asso-
ciation of ADR polymorphisms with response to β-blockers is 
however conflicting (4,13,26–29). While the response to meto-
prolol and carvedilol, the most commonly used β-blockers in 
adult HFREF patients, was independent of ADR genotype, 
survival benefit with bucindolol was limited to the subset of 
patients carrying the β1Arg389 and α2Cdel322-325 genotype via 
downregulation of NE release (30–32).

Despite the role of these genetic variations in adult HFREF, 
their role in HF progression and response to β-blocker ther-
apy in children is not known. Given widespread empiric use of 
β-blockers despite negative results of the pediatric carvedilol HF 
trial (7), knowledge of genetic markers that predict β-blocker 
response is particularly important since it would allow target-
ing of β-blockers only to potential responders and avoid futile 
therapy in nonresponders. However, this requires a pediatric-
focused study since adult ADR genotype associations may not 
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be reproducible in children since there are differences in ADR 
receptor subtype density, calcium transients, contractile force, 
and relaxation velocity (33). The objective of this study was 
to determine if variants in ADRA2c (α2Cdel322-325), ADRB1 
(β1Arg389), and ADRB2 (β2Arg16) genes increase HF severity 
and influence β-blocker response in children with DCM.

RESULTS
Allele Frequencies
The frequency of α2cdel322-325, β1Arg389, and β2Arg16 geno-
types was similar in the 91 advanced HF patients (21, 48, and 
48%, respectively) and 44 stable HF patients (22, 42, and 35%, 
respectively) and was comparable to previous studies in healthy 
adults (26,34,35). All genotypes were in Hardy–Weinberg 
equilibrium. Individual genotype assays did not yield results in 
five patients in the advanced HF cohort.

Clinical Characteristics
Clinical characteristics at enrollment are shown in Table 1. 
Demographic characteristics were similar in the two cohorts. 
There was no difference in age, gender, and etiology of HF at 

presentation among patients in the different genotype groups 
with 61% having sporadic idiopathic DCM, 19% familial, 
and 20% other causes including burnt out viral myocarditis  
(n = 8), neuromuscular disorder (n = 2), maternal lupus  
(n = 1), anthracycline cardiomyopathy (n = 3), and metabolic 
disease (n = 4). In the advanced HF group, the LV end-diastolic 
volume z score was 5.2 ± 2.6, and the shortening fraction was 
13.1 ± 5.8%. Detailed echocardiographic data were available in 
the stable HF group as part of the ventricular volume variabil-
ity (VVV) study (Table 2). Baseline clinical and echocardio-
graphic characteristics of patients in this genetic substudy were 
comparable to the parent VVV patient cohort from which this 
subset was derived (data not shown).

Genotype Association With Hemodynamics, Outcomes, and 
Response to β-Blocker Therapy (Advanced HF)
During follow-up, 57 of the 91 patients in the advanced HF 
cohort underwent cardiac catheterization to assess HF sever-
ity. Median time from diagnosis to cardiac catheterization was 
3 mo reflecting a cohort presenting in advanced HF. Average 
hemodynamic measurements at cardiac catheterization were 
central venous pressure, 7 ± 4 mm Hg; pulmonary capillary 
wedge pressure, 19 ± 8 mm Hg; indexed pulmonary vascular 
resistance, 3.7 ± 2.5 mm Hg/l/min/m2, indexed systemic vas-
cular resistance, 24 ± 10 mm Hg/l/min/m2, and cardiac index, 
3.1 ± 1.5 l/min/m2. There was a significant association between 
ADR genotypes and hemodynamic severity of HF manifested 
by higher pulmonary capillary wedge pressure, indexed pul-
monary vascular resistance, and indexed systemic vascular 
resistance in patients with a higher number of ADR high-risk 
genotypes. There was an additive effect of multiple high-risk 
genotypes with a linear increase in central venous pressure, 
pulmonary capillary wedge pressure, indexed pulmonary vas-
cular resistance, and indexed systemic vascular resistance with 
increasing number of high-risk genotypes (Figure 1). Since 
factors like age, use of general anesthesia, or oxygen supple-
mentation during catheterization can independently influence 
cardiac hemodynamics, we analyzed but found no influence of 
these factors on the association between ADR genotype and 
hemodynamic severity of HF. Forty percent of patients were 

Table 1.  Clinical characteristics at enrollment

Advanced HF 
cohort (n = 91)

Stable HF 
cohort (n = 44) P value

Males (%) 53 60 0.58

White/black/
other (%)

41/27/32 51/20/29 0.36

Etiology (%) 0.08

  Idiopathic 61 77

  Familial 19 23

  Other causes 20 0

Age at diagnosis 
(years)

6.3 ± 6.7 5.3 ± 6.4 0.41

Age at enrollment 
(years)

8.5 ± 10.0 9.3 ± 5.9 0.62

Age at follow-up 
(years)

11.4 ± 9.0 10.9 ± 5.8 0.74

Duration of follow-
up (years)

2.2 ± 3.3 0.8 ± 0.3 0.006

NYHA class III/IV (%) 66 2 <0.001

LVEDD z-score 8.2 ± 4.2 4.9 ± 2.3 <0.001

LVEF (%) 26.0 ± 5.6 40.5 ± 11.3 <0.001

Medications (%) β-blocker: 40 
(92% carvedilol)

β-blocker: 66 
(96% carvedilol)

0.006

ACE inhibitors: 81 ACE inhibitors: 86 0.63

1-y event-free 
survival (%)

51 80 0.001

Cardiac  
transplant, n (%)

26 (29) 7 (16) 0.14

ECMO/VAD, n (%) 18 (20) 1 (2) 0.001

Deaths, n (%) 0 (0) 1 (2) 0.33

ACE, angiotensin-converting enzyme; ECMO, extracorporeal membrane oxygenation; 
HF, heart failure; LVEDD, left ventricular end-diastolic diameter; LVEF, left ventricular 
ejection fraction; NYHA, New York Heart Association; VAD, ventricular assist device.

Table 2.  Echocardiographic characteristics at enrollment in the 
stable HF cohort (n = 44)

Left ventricular end-diastolic volume z 4.4 ± 4.1

Left ventricular end-systolic volume z 4.5 ± 2.1

Ejection fraction (%) 40.5 ± 11.3

Ejection fraction z −4.5 ± 2.2

Left ventricular mass z 2 ± 1.8

Left ventricular mass/volume z −1.3 ± 1

Mitral: early deceleration time (msec) 151.3 ± 75.2

Mitral: peak early velocity (E) (cm/s) 99 ± 22

Mitral: peak early/late velocity (E/A) 2 ± 0.7

Average E/e′ (septal + lateral wall) 12.1 ± 5.9

HF, heart failure.
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receiving β-blockers at enrollment (92% carvedilol; mean dose: 
0.57 ± 0.53 mg/kg/d). The subset of patients with the high-
risk genotype receiving β-blockers showed an improvement 

in their hemodynamics compared with those not receiving 
β-blockers (genotype group × β-blocker use, interaction P 
values ≤ 0.05; Figure 2). There was no significant difference 
in freedom from transplantation between the two genotype 
groups (hazard ratio: 0.88; 95% confidence interval: 0.52–1.46; 
Figure 3a). There was, however, a lower freedom from ven-
tricular assist device/extracorporeal membrane oxygenation 
in listed patients with ≥2 ADR high-risk genotypes awaiting 
transplantation (hazard ratio: 2.57; 95% confidence interval: 
1.05–7.23; Figure 3b).

Genotype Association With Change in LV Systolic and Diastolic 
Function Stratified by β-Blocker Therapy (Stable HFREF)
To assess the influence of ADR genotypes in earlier stages of 
HF, we enrolled 44 patients with stable HF. Sixty-six percent 
were receiving β-blockers at enrollment (96% carvedilol; mean 
dose: 0.44 ± 0.28 mg/kg/d). There was no association between 
ADR genotypes and New York Heart Association/Ross HF 
severity score. Regression analyses were performed to assess 
association of ADR genotypes with change in ventricular sys-
tolic and diastolic function on serial echocardiograms in 35 
stable HF patients in whom serial echocardiographic data were 
available. Figure 4 shows the change in echocardiographic 
measurements during follow-up for each additional ADR 
risk genotype stratified by β-blocker use. There was a greater 
decline in LV ejection fraction for every additional ADR risk 
genotype, but this association was not seen in patients receiv-
ing β-blockers (genotype group × β-blocker use, interaction P 
= 0.003 vs. those not receiving β-blockers). There was a greater 
increase in LV end-systolic volume z-score for every additional 
ADR risk genotype, and this association was seen independent 

Figure 1.  Cumulative effect of multiple adrenergic risk genotypes on 
cardiac hemodynamics (advanced HF cohort). The squares represent the 
point estimates from regression models, and the solid bars represent the 
95% confidence interval around that estimate (n = 57). A higher number 
of adrenergic high-risk genotypes were associated with (a) higher CVP (P = 
0.02), (b) higher PCWP (P = 0.06), (c) higher PVRI (P = 0.004), and (d) higher 
SVRI (P = 0.005). The gray zones represent normal hemodynamic ranges, 
i.e., CVP, 1–5 mm Hg; PCWP, 4–12 mm Hg; PVRI, 0.25–1.6 mm Hg/l/min/m2; 
and SVRI, 9–20 mm Hg/l/min/m2. ADR, adrenergic receptor; CVP, central 
venous pressure; PCWP, pulmonary capillary wedge pressure; PVRI, indexed 
pulmonary vascular resistance; SVRI, indexed systemic vascular resistance.
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Figure 2.  Interaction between adrenergic genotype and hemodynamic response to β-blockers (advanced HF cohort). The markers represent the point 
estimates (red: not on β-blockers, n = 27; black: on β-blockers, n = 28) from regression models, and the solid bars represent the 95% confidence interval  
around that estimate. Patients not receiving β-blockers showed (a) higher CVP (P = 0.02), (b) higher PCWP (P = 0.004), (c) higher PVRI (P = 0.0003), and 
(d) higher SVRI (P = 0.009) for every additional high-risk genotype. This increase in filling pressures and resistances was either blunted (CVP) or absent 
(PCWP, PVRI, and SVRI) in patients with high-risk genotypes receiving β-blockers. There was a significant interaction between ADR genotype and 
β-blocker therapy for PCWP (interaction P = 0.05), PVRI (interaction P = 0.03), and SVRI (interaction P = 0.02). Red, no β-blocker, black; β-blocker. The gray 
zones represent normal hemodynamic ranges, i.e., CVP, 1–5 mm Hg; PCWP, 4–12 mm Hg; PVRI, 0.25–1.6 mm Hg/l/min/m2; and SVRI, 9–20 mm Hg/l/min/m2.  
ADR, adrenergic receptor; CVP, central venous pressure; HR, high-risk genotype numbers; PCWP, pulmonary capillary wedge pressure; PVRI, indexed 
pulmonary vascular resistance; SVRI, indexed systemic vascular resistance.
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of β-blocker use (interaction P = 0.12). There was a greater 
decline in peak mitral E wave velocity and in early diastolic 
tricuspid annular velocity for every additional ADR risk 
genotype, but this association was not seen in patients receiv-
ing β-blockers (interaction P < 0.001 vs. those not receiving 
β-blockers). Interaction of individual ADR genotypes with 
β-blockers was not assessed due to the small sample size. 
Overall, these results suggest that patients with a higher num-
ber of ADR high-risk genotypes show more rapid progression 
of systolic and diastolic dysfunction but that this progression 
may be prevented by β-blocker therapy with an improvement 
or stabilization in LV size and function.

DISCUSSION
DCM is the most common form of cardiomyopathy and the 
leading indication for transplantation in adults and children. 
Almost 50% of children with DCM either die or require a heart 
transplant within 5 y of diagnosis (3,8). Carvedilol is widely 
used but has failed to show clinical benefit in one of the largest 
clinical trials of pediatric HF to date, although the trial did not 
evaluate response by genotype (7). Our study identifies genetic 

risk markers that may help in the identification of patients at 
risk for developing decompensated HF who may benefit from 
early institution of β-blocker therapy before progression to 
decompensated HF.

An important finding of our study is the association of 
high-risk ADR genotypes with hemodynamic severity of HF 
in patients with advanced DCM. Those with a higher number 
of ADR high-risk genotypes had higher left- and right-sided 
filling pressures and higher systemic and pulmonary vascu-
lar resistance, faster progression of LV systolic and diastolic 
dysfunction, as well as a higher incidence of acute decom-
pensation requiring mechanical circulatory support during 
follow-up. The combined physiologic effects of these geno-
types are most likely related to an increase in the release and 
responsiveness to NE as well as a decrease in the sensitivity 
of β-ADRs which can contribute to impaired myocardial con-
tractility, impaired peripheral vasodilation, and progression of 
cardiac dysfunction (5,18). Our results suggest that genotyping 
for ADR polymorphisms may help in the early identification of 
patients at risk for decompensated HF who may benefit from 
closer monitoring and timely listing for transplantation before 
hemodynamic decompensation.

Figure 3.  Adrenergic genotype and event-free survival (advanced HF 
cohort). (a) Time to transplantation during follow-up was not different 
between patients with <2 (black, n = 48) vs. ≥2 (red, n = 43) ADR high-
risk genotypes (hazard ratio: 0.88; 95% confidence interval: 0.52–1.46). 
(b) Patients listed for transplantation with ≥2 ADR high-risk genotypes 
(n = 28) showed lower freedom from mechanical circulatory support 
(VAD/ECMO) as a bridge to transplantation compared with those with <2 
risk genotypes (n = 33) despite similar waiting times (hazard ratio: 2.57; 95% 
confidence interval: 1.05–7.23). Number of patients remaining at each time 
point are shown in black for patients with <2 high-risk genotypes and in red 
for patients with ≥2 high-risk genotypes. ADR, adrenergic receptor; ECMO, 
extracorporeal membrane oxygenation; VAD, ventricular assist device.
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Figure 4.  Adrenergic genotype and change in ventricular systolic and dia-
stolic dysfunction (stable HF cohort). Regression analyses were performed 
to assess association of ADR genotypes with change in ventricular systolic 
and diastolic function on serial echocardiograms in 35 stable HF patients. 
Graphs show parameter estimate of change in echocardiographic measure-
ments for each additional ADR risk genotype stratified by β-blocker use. 
Red, on no β-blockers; black, on β-blockers. There was a greater decline in 
LV ejection fraction for every additional ADR risk genotype, but this  
association was not seen in patients receiving β-blockers (interaction  
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not receiving β-blockers (interaction P = 0.12). There was a greater decline 
in peak mitral E wave velocity for every additional ADR risk genotype, but 
this association was not seen in patients receiving β-blockers (interaction 
P < 0.001 vs. those not receiving β-blockers). There was a greater decline 
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We further evaluated the pharmacogenetic interactions 

between the ADR genotypes and response to β-blocker ther-
apy. Although our numbers are small, we found results simi-
lar to the carvedilol trial—patients receiving β-blockers did 
not show improvement in HF severity in the overall cohort. 
However, when stratified by ADR risk genotypes, β-blocker 
therapy was associated with better hemodynamic adaptation 
in the high-risk genotype groups. This suggests that the benefit 
of β-blocker therapy in pediatric DCM may be seen primar-
ily in those in whom disease progression is mediated by dys-
regulated ADR signaling likely due to variant ADR genotypes. 
This is consistent with the findings by Liggett et al. (31) who 
showed that the β-blocker, bucindolol, a sympatholytic agent, 
was effective in improving HF survival only in adults with the 
β1Arg389 genotype, not in those with the β1Gly389 genotype.

In light of the observable benefit of β-blocker therapy in 
advanced HF patients with high-risk genotypes, we analyzed if 
β-blocker therapy would show a similar benefit in patients with 
earlier stages of DCM. We found that patients with high-risk 
genotypes showed a decline in ejection fraction and diastolic 
function during follow-up but that this decline was attenuated, 
and even improved, in high-risk genotype patients receiving 
β-blockers. These findings suggest that β-blocker therapy in the 
subset of stable HF patients with high-risk genotypes may not 
only prevent decline in function but may also lead to recovery of 
ventricular function and reverse remodeling. This exciting find-
ing highlights the importance of early institution of β-blocker 
therapy in this high-risk subset to prevent disease progression. 
This finding is particularly important in light of the results of 
the only randomized trial with β-blockers in children with HF 
that failed to reproduce the benefits seen in adult HF (7). Our 
findings suggest that while not all pediatric DCM patients ben-
efit from β-blocker therapy, the subgroup of patients with high-
risk ADR genotypes may show benefit. Although genotype did 
not influence carvedilol response in adult studies, children may 
be more catecholamine dependent compared to adults, and 
therefore, the impact of receptor genotype may be greater than 
that in adults. Given the considerable phenotypic heterogene-
ity in sporadic as well as inherited DCM where considerable 
intrafamilial variability exists, knowledge of disease modifiers 
may enable better risk prediction not only in sporadic but also 
in familial cases and, more importantly, facilitate risk modifi-
cation strategies by targeting therapies to potential responders.

Limitations
Since patients were not always enrolled at the time of initial 
diagnosis of DCM, this may introduce a survivor bias in our 
cohort. The study was not powered to analyze the effect of 
underlying genetic mutation type on HF severity and progres-
sion. The study was also limited by the relatively short mean 
follow-up of 0.8 y in the stable HF cohort; therefore, longer-
term outcomes were not assessed. Although results from our 
study show a difference in rates of acute decompensation 
requiring mechanical circulatory support between the two 
genotype risk groups, these results require further validation 
in a larger patient cohort.

Conclusions
The characterization of the ADR genotype may aid in risk 
stratifying patients with DCM who are more likely to prog-
ress to decompensated HF. The preferential responsiveness of 
patients with high-risk genotypes to β-blocker therapy high-
lights the importance of early institution of β-blocker therapy 
in genetically susceptible patients while avoiding futile therapy 
in those unlikely to respond. Prospective, randomized, geno-
type-guided trials of β-blocker therapy in this high-risk subset 
are needed to validate these observations and develop pharma-
cogenetic-guided therapies in this vulnerable cohort.

METHODS
Study Population
The study included patients with advanced DCM from a single US 
institution and patients with stable DCM from a multi-institutional 
North American cohort. The advanced DCM group consisted of 91 
DCM patients aged <21 y, who were on medical therapy with symp-
tomatic HF and undergoing evaluation for transplantation at the 
Columbia University Medical Center (2002–2005). The stable DCM 
group included 44 DCM patients with stable HFREF enrolled in a 
multicenter Pediatric Heart Network observational study of DCM, 
the VVV study (accrual 2005–2007; Clinical Trials Registration: 
#NCT00123071). Detailed design of the Pediatric Heart Network 
study has been previously published (36). The inclusion criteria for 
the VVV study from which this stable HF cohort was derived were 
pediatric DCM patients, disease duration >2 mo, on outpatient medi-
cal therapy, no hemodynamic instability, and not being assessed or 
listed for transplant (due to the intent to assess longitudinal natural 
history). Patients were enrolled across eight North American centers 
and followed with serial echocardiography for 18 mo. Four of eight 
VVV sites participated in a genetic substudy and provided DNA sam-
ples from enrolled patients—Columbia University Medical Center, 
Children’s Hospital Boston, Children’s Hospital of Philadelphia, 
and Hospital for Sick Children, Toronto. In both cohorts, children 
with active myocarditis, hypertrophic or restrictive cardiomyopa-
thy, or congenital heart disease were excluded. Informed consent 
was obtained from the parents and assent from older subjects. The 
study was approved by the local Institutional Review Boards of all 
participating sites—Columbia University Medical Center, Children’s 
Hospital Boston, Children’s Hospital of Philadelphia, and Hospital for 
Sick Children, Toronto.

Clinical Data
Age at presentation, gender, race, ethnicity, New York Heart 
Association or Ross HF class at presentation, medications, echocar-
diographic variables at enrollment, hemodynamic data on cardiac 
catheterization (advanced HF cohort only), frequency of ventricular 
assist device or extracorporeal membrane oxygenation implantation, 
and cardiac transplantation or death during study period were ana-
lyzed in high- and low-risk genotype groups. Echocardiograms in 
the advanced HF group were performed using a standardized clini-
cal protocol. Hemodynamic data included central venous pressure, 
pulmonary capillary wedge pressure, indexed pulmonary vascular 
resistance, indexed systemic vascular resistance, and cardiac index. 
For patients in the stable HF cohort, centralized clinical data collec-
tion was done by the New England Research Institute (Watertown, 
MA), and all echocardiograms were acquired using a standardized 
protocol with central analysis by a single reviewer at the echocardio-
graphic core laboratory at Children’s Hospital Boston. Only patients 
with at least two echocardiograms, a minimum of 3 mo apart, were 
included in the final echocardiographic analysis. The following vari-
ables were assessed: LV end-diastolic diameter and volume z-score, 
LV end-systolic diameter and volume z-score, LV shortening frac-
tion, LV ejection fraction, and peak early and late diastolic filling 
velocities. While inflow velocities are not reliable markers for clinical 
deterioration, they provide incremental predictive power for cardiac 
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mortality compared with clinical data and LV ejection fraction alone 
in adult studies with only limited tissue Doppler data available in chil-
dren with DCM (37). The interpreters of the echocardiograms were 
blinded to the genotype data (36).

Candidate Genes and SNP Selection
Three candidate ADR genes (ADRA2c, ADRB1, and ADRB2) were 
selected based on their role in modulating sympathetic tone and asso-
ciation with adult HF (5,9,12,14,16). Genotypes previously associated 
with HF in adults were defined as high-risk genotypes for the pur-
pose of this study (α2Cdel322-325-ADRA2c, β1Arg389-ADRB1, and 
β2Arg16-ADRB2; Table 3) and evaluated for association with echo-
cardiographic evidence of disease progression, hemodynamic param-
eters, and clinical outcomes (4,5,15,34,38).

Genotyping
Genomic DNA was isolated from whole blood (Gentra Systems, 
Minneapolis, MN). ADRA2c SNP was genotyped by end-labeling 
primers (Table 4) with γ-32P-ATP (PerkinElmer Life Science, Boston, 
MA) using T4 polynucleotide kinase (Promega, Madison, WI) and 
using PCR to amplify the genomic fragment. The PCR products were 
resolved on an 8% nondenaturing polyacrylamide gel to resolve the 
size difference. ADRB1 and ADRB2 SNPs were genotyped individu-
ally using pyrosequencing (PSQ96; Biotage, Westborough, MA) with 
a vacuum system with streptavidin sepharose beads (Amersham 
Biosciences AB, Uppsala, Sweden). PCR reactions consisted of 5 pmol 
of each of the appropriate forward and reverse primers (Table 4), 1 U 
AccuPrime GC-Rich DNA polymerase (Invitrogen, Carlsbad, CA), 
1× buffer A, and 30 ng of genomic DNA in a 25 ml reaction volume 
for 30 cycles at an annealing temperature of 62 °C for ADRA2c and 
ADRB2 and touch-down from 65 to 50 °C for ADRB1. Each assay was 
performed in duplicate to ensure accuracy.

Statistical Analysis
Hardy–Weinberg equilibrium was determined using Pearson χ2 analy-
sis of actual and predicted genotypes. Presence of a single risk allele 
was defined as a high-risk genotype. Data are reported as means with 
SDs, median with minimum and maximum and frequencies as appro-
priate. The combined effect of multiple high-risk genotypes on echo-
cardiographic and hemodynamic variables was assessed in a univariate 
regression model using maximum likelihood estimates and appropri-
ate mathematical transformations to normalize the distribution of the 
response variable. Regression models adjusted for repeated measures 
through a compound symmetry covariance structure were used to 
determine the effect of ADR genotypes on serial echocardiographic 

measurements and on hemodynamic measures. The associations 
between high-risk genotype and outcomes were also tested in multi-
variable models including an interaction variable between genotype 
and β-blocker use at enrollment. Age and time since diagnosis were 
also included in the model. HF progression was defined as worsening 
hemodynamics and/or echocardiographic progression of LV dilation 
and dysfunction. β-Blocker responsiveness was defined as an improve-
ment or stabilization in LV size and function. Event-free survival, i.e., 
freedom from heart transplantation and freedom from extracorpo-
real membrane oxygenation/ventricular assist device while listed for 
transplantation was modeled using Kaplan–Meier nonparametric esti-
mates, and distributions of time to event were compared using the log-
rank test. Follow-up time was censored at death or transplant when 
analyzing time to extracorporeal membrane oxygenation/ventricular 
assist device initiation. All statistical analyses were performed using 
SAS Statistical Software v9.1 (The SAS Institute, Cary, NC).
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