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Abstract

Purpose—To evaluate if the differential exchange rates with bulk water between amine and 

amide protons can be exploited using chemical exchange saturation transfer magnetic resonance 

(CEST-MR) to monitor the release of glutamate induced by carboxypeptidase G2 (CPG2), an 

enzyme utilized in cancer gene therapy.

Procedures—The CEST properties of glutamate (amine) and the CPG2 substrate (amide), 3,5-

difluorobenzoyl-L-glutamate (3,5-DFBGlu), were evaluated at 11.7T, 37°C and varying pH. The 

ability of CEST-MR to monitor CPG2-mediated release of glutamate was assessed in extracts of 

CPG2-expressing cancer cells and purified solution of CPG2.

Results—The addition of CPG2 to a solution containing 3,5-DFBGlu led to a marked and 

progressively increasing CEST effect (+3ppm), concomitant with the time-dependent release of 

glutamate induced by CPG2.

Conclusion—CEST-MR affords the detection of CPG2 activity in vitro and supports the 

translation of CEST-MRI to assess CPG2-based gene therapy in vivo.
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Introduction

Chemical exchange saturation transfer magnetic resonance imaging (CEST-MRI) exploits 

the direct chemical exchange of metabolite protons with the bulk tissue water, enabling the 

detection of specific tissue metabolites at concentrations that are otherwise below the 

detection limit of conventional 1H MRI [1]. Recently, CEST MRI has been successfully 

utilized to acquire high temporal and spatial resolution images of glutamate (Glu) in the 

human brain, where the neurotransmitter is present at mM concentration [2]. Glutamate 

demonstrates fast amine exchange rates, giving rise to a strong CEST effect at a resonance 

offset of +3 ppm from the water frequency (GluCEST), which is dependent on glutamate 

concentration and pH.

The bacterial enzyme carboxypeptidase G2 (CPG2) (EC 3.4.17.11) is a zinc-dependent 

enzyme which mediates the release of the C-terminal glutamate residue from a wide range 

of N-acylating moieties, including peptidyl, aminoacyl, benzoyl, benzyloxycarbonyl, folyl 

and pteroyl groups (Fig. 1). This unique ability of CPG2 has been exploited to activate 

carboxyl, phenol or aniline mustard prodrugs, in which the DNA alkylating chain has been 

synthetically deactivated through N-substitution of L-glutamate [3]. CPG2 underpins the 

gene-directed enzyme prodrug therapy (GDEPT) strategy due to enter Phase I clinical 

evaluation at the Royal Marsden Hospital (UK) in 2013 [4]. In GDEPT, the gene encoding 

the prodrug-activating enzyme is targeted selectively to the tumor prior to administration of 

the prodrug, resulting in the activation of the cytotoxic drug specifically in the tumor. The 

success of CPG2-based GDEPT relies on the careful optimization of the timing of injection 

of the prodrug following expression of the transgene and the generation of sufficient 

concentrations of CPG2 in the tumor. Non-invasive imaging strategies to monitor the 

prodrug-activating enzyme activity and its bio-distribution would thus be invaluable in 

guiding the successful translation of this promising therapeutic approach to the clinic [5].

In this study, we have exploited the differential exchange rates of amine and amide 

functional groups [2], to dynamically monitor CPG2 activity through the “activation” of the 

concentration-dependent GluCEST signal induced by the CPG2-mediated release of 

glutamate.

Materials and Methods

All studies were performed at 500 MHz on a 11.7T Bruker Avance (Bruker Instruments) 

vertical bore magnet equipped with a 5mm BBO probe. Magnetic field homogeneity was 

optimized on solutions in which 10% D2O was added to provide a lock signal. Experiments 

were subsequently performed unlocked without D2O.

CEST NMR

Glutamic acid (monosodium salt) was obtained from Sigma Aldrich. The in vivo reporter 

molecule of CPG2 activity, 3,5-difluorobenzoyl-L-glutamate (3,5-DFBGlu) was custom-

synthesized as previously described [6]. Z spectra of solutions of 10 mM 3,5-DFBGlu, and 

the products of its CPG2-mediated cleavage, 3,5-difluorobenzoic acid (3,5-DFBA) and 

glutamate, were acquired at 37°C in phosphate buffered saline at pH 5,6,7 and 8, using a 
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series of spectra (16 averages, TR=14 s) with the saturation frequency at different offset 

frequency incremented by 0.2 ppm from −5 ppm to 5 ppm from the water resonance. The 

frequency selective saturation was achieved using continuous wave presaturation with 3sec 

duration and γB1/2π ~ 155 Hz. Spectra were apodized with a 3 Hz exponential line 

broadening. Peak areas were measured using TopSpin3.0 (Bruker) and z spectra and MTR 

asymmetry plot were generated in Excel (Microsoft).

Dynamic detection of CPG2 activity in cell extracts

The generation of β-gal (control) and stCPG2(Q)3-expressing WiDr stable cell lines used in 

this study has been described previously [7]. The cells were cultured in Dulbecco’s 

Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum (Gibco) at 

37°C in a 5% CO2 atmosphere. The dense cell monolayers were then extracted as described 

previously[8]. Briefly, cells were first washed twice with PBS, followed by 5 mL of 

extraction buffer (250mM TrisHCl, 10% (v/v) glycerol, 1% (v/v) Triton X-100, pH 7) added 

to the flask. Cells were lysed for 5 min at room temperature. Cell extracts were then spun 

down in a microfuge (18000g) to remove cell debris. 50μl of extract was then added to 500μl 

of a 12mM solution of 3,5-DFBGlu in 100mM phosphate buffer, containing 260μM ZnCl2, 

at pH 7and maintained at 37°C. Acquisition of a series of 4 spectra (4 averages, TR=17s) 

was initiated immediately after the sample was positioned in the spectrometer, with either no 

saturation, or selective saturation at +3ppm, +2ppm, or +1ppm. This sequence was repeated 

over a period of 3 hours. The frequency selective saturation was achieved using continuous 

wave presaturation with 5sec duration and γB1/2π ~ 280Hz. Each spectrum was apodised 

with a 3Hz exponential line broadening function. Peak areas were calculated using 

TopSpin3.0 (Bruker) and fitted as (Msat(t)−M0)/M0 in Excel.

Detection of CPG2 activity in purified solution of CPG2

10mU of purified CPG2 (EC 3.4.17.11, Sigma Aldrich, 1U cleaves ~ 2μmol 3,5-

DFBGlu.min−1 [6]) or vehicle solution were added to a 5mM solution of 3,5-DFBGlu (in 

100mM phosphate buffer containing 260μM ZnCl2, at pH 7 and maintained at 37° C). 1H 

MRS spectra (16 averages, TR=14s) were acquired two hours later (to ensure total 

conversion of 3,5-DFBGlu into glutamate) with either no saturation, or selective saturation 

at −3ppm or +3 ppm, using continuous wave presaturation with 3sec duration and γB1/2π ~ 

155 Hz. Each spectrum was apodised with a 3Hz exponential line broadening function. The 

GluCEST signal was calculated as MTRassym = (M−3ppm − M+3ppm) /M0, where M−3ppm and 

M+3ppm represent the bulk water signals acquired with selective RF saturation at ±3ppm 

resonance offset from the water frequency.

Results

Fig. 2 shows z-spectra and the magnetization transfer ratio asymmetry (MTRassym) of the 

water 1H NMR signal as a function of saturation offset frequency for 10mM solutions of the 

imaging reporter probe 3,5-DFBGlu, and the products of its CPG2-mediated cleavage, 3,5-

DFBA and glutamate, at varying pH representative of the physiological range associated 

with tumors (pH 5-8). Glutamate demonstrates a sharp CEST peak in the z spectrum at 

+3ppm offset from the water resonance at lower pH as previously demonstrated [2], whilst 
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3,5-DFBA, and most importantly, 3,5-DFBGlu, did not demonstrate any detectable CEST 

effect over this range of pH.

The ability of CEST MR to detect CPG2 activity was subsequently evaluated using extracts 

of stCPG2(Q)3 WiDr colon carcinoma cells, genetically-engineered to express CPG2, and 

control WiDr cells, genetically engineered to express β-galactosidase (LacZ WiDr). The 

addition of 3,5-DFBGlu to the extracts of CPG2-expressing WiDr cells caused a time 

dependent increase of the CEST effect at +3ppm (Fig. 3a). No change in the CEST effect 

was observed following addition of 3,5-DFBGlu to the non-CPG2 expressing LacZ WiDr 

control cell extracts. CPG2 activity was also detected by the change in CEST signal at 

+2ppm with improved sensitivity, corroborating the z spectrum of 3,5-DFBGlu and 

glutamate at pH 7 (Fig. 2). Finally, a ~3% GluCEST signal (+3ppm) was detected two hours 

following the addition of 10mU purified CPG2 to a solution of 5mM 3,5-DFBGlu (Fig. 3b). 

No GluCEST signal was detected following the addition of CPG2 enzyme buffer alone.

Discussion and Conclusions

This study demonstrates the potential of CEST-MRI to monitor CPG2 activity via its 

sensitivity to the CPG2-mediated release of glutamate, resulting in the“activation”of 

GluCEST contrast (+3ppm). We have previously demonstrated the utility of 19F MRS, in 

combination with the imaging reporter 3,5-DFBGlu, to monitor CPG2 activity in vivo using 

human tumor xenografts derived from CPG2-expressing WiDr cells, exploiting the 

1.4ppm 19F MRS chemical shift change upon CPG2 mediated cleavage of 3,5-DFBGlu [6]. 

Although the 19F MRS approach provides invaluable information on the level of CPG2 

activity in the tumor, the inherent lack of sensitivity of conventional MRS precluded the 

assessment of the heterogeneous distribution of enzyme activity within the tumor, an 

important prognostic factor for successful therapy. We also investigated if the increased 

signal provided by hyperpolarized 13C MRS could be utilized to detect and potentially 

provide CPG2 activity maps. While CPG2 activity was successfully detected in vitro, we 

concluded that the relatively short T1 of the 13C within 3,5-DFBGlu would only afford a 

short 13C signal enhancement time window, making the translation of the approach in vivo 

challenging [9].

GluCEST MRI is an attractive method for metabolic imaging of glutamate since it utilizes 

the bulk signal from water protons, providing a signal enhancement of ~700 fold, enabling 

the indirect detection of glutamate concentration at higher temporal and spatial resolution 

compared to its conventional direct detection by 1H MRS [2]. The release of glutamate from 

the amido, carbonyl or ureido bonds is the hallmark of CPG2 activity. As a result, the 

approach could be applied to substrates of CPG2, including natural substrates such as folic 

acid, MTX (CPG2 is approved for use in MTX overdose), the noninvasive imaging reporter 

3,5-DFBGlu, and, most interestingly, to the arsenal of prodrugs designed for GDEPT using 

CPG2. The change in glutamate concentration measured with GluCEST MRI could provide 

a noninvasive biomarker of CPG2 activity, in addition to acting as a surrogate for prodrug 

activation and the concentration of activated drug in the tumor. The information provided on 

the active drug is of particular interest in the clinical setting, as the extremely short half-life 

of the active drug precludes the direct measure of its intra-tumoral concentration [3].
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The activity of cytosine deaminase (CD), another prodrug activating enzyme utilized in 

GDEPT, has been previously monitored using CEST MRI in vitro [10]. CD mediates the 

conversion of the prodrug 5-fluorocytosine (5-FC) or cytosine into the conventional 

chemotherapy agent 5-fluorouracil (5-FU) and uracil, respectively, through the removal of a 

CEST active amine group. CD activity thus leads to a reduction of the CEST signal 

(negative contrast). CPG2 activity offers more favorable characteristics than CD towards 

CEST MRI, since it is sensitive to CPG2-mediated glutamate production (positive contrast).

Glutamate metabolism and diffusion out of the extracellular space may potentially cause 

limitations for the translation of the approach in vivo. The success of CPG2 detection with 

CEST MRI will thus depend on the intra-tumoral CPG2 activity levels, CEST sensitivity 

and careful optimization of the CEST MRI acquisition time. In the forthcoming clinical trial, 

CPG2 will be targeted to the tumor using a replication-competent adenoviral vector. These 

vectors drive the infected cell to express CPG2 whilst replicating. The vector is designed to 

target and infect tumor cells following intravenous delivery, and to release both CPG2 and 

CPG2 armed virus into the extracellular space. Preclinically, the use of such vectors results 

in CPG2 concentrations of up to 100 units/g of tumor [11]. Since CPG2 has favorable 

kinetics, this excess of enzyme is able to cleave the prodrug and release glutamate in the 

tumor within minutes of prodrug administration, as we demonstrated using 19F MRSI [6]. 

Elevated levels of glutamate, typically between 5-10mM, have been detected in a range of 

human solid tumors [12]. This, coupled with the slightly acidic pH associated with tumors, 

means that the endogenous pool of glutamate (both extra and intracellular) will provide a 

significant baseline GluCEST signal, and the necessary threshold for detection of CPG2-

mediated glutamate release in the mM range [6].

The combined excellent temporal resolution of GluCEST MRI protocols as demonstrated by 

Cai and colleagues [2], and the high levels of CPG2 intra-tumoral activity, should provide a 

sufficient temporal imaging window during which the contribution of glutamate metabolism 

and diffusion into the extracellular space is minimized.

Conclusion

This study thus encourages the in vivo assessment of GluCEST-MRI for imaging CPG2 

activity.
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Figure 1. 
Carboxypeptidase G2 (CPG2)-mediated hydrolysis of the glutamate moiety of nitrogen 

mustard prodrugs, and the 19F MRS in vivo reporter probe 3,5-difluorobenzoyl-L-glutamate 

(3,5-DFBGlu).
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Figure 2. 
CEST z-spectra acquired at 11.7 T of 10 mM 3,5-DFBGlu, 3,5-difluorobenzoic acid (3,5-

DFBA), and glutamate (L-Glu) in PBS at varying pH and at 37 °C. Msat and M0 represent 

the bulk water signals acquired with and without selective RF saturation, respectively. 

Inserts show corresponding MTRassym plots, defined as MTRassym = (M−Δω − M+Δω) /M0 , 

where M−Δ  and M+Δω represent the bulk water signals acquired with selective RF 

saturation at ±Δω resonance offset from the water frequency.
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Figure 3. 
Detection of CPG2-mediated cleavage of 3,5-DFBGlu with CEST-MR. (a) Evolution of the 

CEST signal over time, following the addition of 10mM 3,5-DFBGlu to extracts of WiDr 

cells engineered to express CPG2 (CPG2 WiDr) or β-galactosidase (LacZ WiDr), at pH 7 

and 37°C. CEST signal is expressed as (M0 − Msat(t))/M0, where M0 and Msat(t) are the bulk 

water signal acquired without and with saturation (at +2ppm and +3ppm) at a time t after 

addition of 3,5-DFBGlu. (b) GluCEST signal from a 5mM solution of 3,5-DFBGlu 

measured 2h following the addition of 10mU of purified CPG2 or enzyme buffer. The 

GluCEST signal was calculated as MTRassym = (M−3ppm − M+3ppm) /M0 , where M−3ppm and 

M+3ppm represent the bulk water signals acquired with selective RF saturation at ±3ppm 

resonance offset from the water frequency. (*** p<0.005, Student’s 2-tailed unpaired t-test 

with a 5% level of significance, n=3)
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