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For birds, unpredictable environments during the energetically stressful times

of moulting and breeding are expected to have negative fitness effects. Detect-

ing those effects however, might be difficult if individuals modulate their

physiology and/or behaviours in ways to minimize short-term fitness costs.

Corticosterone in feathers (CORTf) is thought to provide information on total

baseline and stress-induced CORT levels at moulting and is an integrated

measure of hypothalamic–pituitary–adrenal activity during the time feathers

are grown. We predicted that CORTf levels in northern common eider females

would relate to subsequent body condition, reproductive success and survival,

in a population of eiders nesting in the eastern Canadian Arctic during a capri-

cious period marked by annual avian cholera outbreaks. We collected CORTf

data from feathers grown during previous moult in autumn and data on phenol-

ogy of subsequent reproduction and survival for 242 eider females over 5 years.

Using path analyses, we detected a direct relationship between CORTf and arri-

val date and body condition the following year. CORTf also had negative

indirect relationships with both eider reproductive success and survival of

eiders during an avian cholera outbreak. This indirect effect was dramatic

with a reduction of approximately 30% in subsequent survival of eiders

during an avian cholera outbreak when mean CORTf increased by 1 standard

deviation. This study highlights the importance of events or processes occurring

during moult on subsequent expression of life-history traits and relation to indi-

vidual fitness, and shows that information from non-destructive sampling of

individuals can track carry-over effects across seasons.
1. Introduction
To cope with unpredictable environments, individuals can modulate their

physiology and behaviour to minimize short-term fitness costs. Although

environmental factors can influence individual condition and fitness directly

over the short term, they might be more likely to result in indirect consequences

(carry-over effects, COEs) later in life [1,2]. COEs are defined as events or pro-

cesses that occur in one season and that can affect an individual’s performance

in a subsequent period [2]. COEs on the state of individuals can have important

repercussions by magnifying or reducing population regulatory processes [3,4].

For migratory species, obtaining relevant metrics of individual state outside the
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breeding period is challenging, which makes identifying lin-

kages between conditions experienced at specific locations or

habitats and phases of the life cycle also challenging, more so

owing to the difficulty in tracking migrants across seasons

and locations [2].

Studies of migratory bird species provide examples of COEs.

In earlier studies, arrival date on the breeding grounds was

shown to be related to factors that occurred prior to the breeding

season such as use of high-quality versus marginal wintering

habitats [5–7]. The importance of spring body condition on

reproduction is another example of a COE reported in several

income–capital breeders [8–11]. Recently, an experimental

manipulation of greater snow geese (Anser caerulescens) showed

that stressful events (captivity) during migration affected sub-

sequent reproduction [12]. Despite these examples, COEs are

understudied, particularly in the context of novel environmental

challenges such as climate change, food web disruption or emer-

ging infectious diseases. Such factors have the potential to either

magnify or ameliorate COEs making detection and the sub-

sequent study of COEs and their impacts context-dependent.

Also important in the study of COEs is the ease of measurement

and reliability of indices by which conditions experienced ‘earlier

on’ are assessed and tracked.

In birds, corticosterone (CORT) is the primary glucocorticoid

released by activation of the hypothalamic–pituitary–adrenal

(HPA) axis in response to a stressor [13]. CORT is responsible

for mediating allostasis and promoting foraging and gluco-

neogenesis [14]; high levels of CORT can be a consequence of

exposure to a threat or a result of increasing requirements for

energy, movement (locomotion) and/or metabolism [15–17].

The stress response and quantification of CORT in natural popu-

lations have become important components of many studies in

ecology, physiology and conservation biology [18–22].

Stress hormone levels have been linked to body condition

in several species, although the mechanisms are not clear [22].

In upland geese (Chloephaga picta leucoptera), individuals with

higher faecal CORT levels had decreased body condition [23].

Experimentally, tree swallow (Tachycineta bicolor) nestlings

that received CORT implants showed reduced growth rates

compared to controls [24]. Since increased CORT may affect

body condition, CORT levels may be linked to arrival date

and reproductive success in subsequent seasons.

In birds, CORT is deposited into feathers during growth so

that the amount of CORT measured in a feather can provide an

index of an individual’s HPA activity during the growth of that

feather and provides an integrated measure of CORT [24–26].

Previous studies have demonstrated the utility of measur-

ing CORT in feathers and have shown that feather CORT

(CORTf) is related to parental efficiency [26], social signals

[27], nest microclimate [28], egg mass [29], cost of reproduction

[30] and possibly climatic conditions [31]. Thus, CORTf has the

potential to be used as a reliable index to study COEs of events

occurring during the moulting period on the subsequent breed-

ing period. In Anatidae, including northern common eiders

(Somateria mollissima borealis), all flight feathers are moulted

simultaneously once a year in late summer, after breeding.

A feather collected in spring, prior to breeding, could thus pro-

vide an indication of the energetic demands experienced by the

moulting birds approximately nine months earlier.

In addition to increasing energetic and catabolic costs, elev-

ated CORT can also alter feather quality. Elevated levels of

CORT in passerines during moult can affect the rate of feather

growth [13,24] and experimental increases in CORT resulted in
a decline in feather quality [32]. If eiders with higher CORTf

levels have diminished feather quality, this may lower their

flight or foraging efficiency during the over-wintering period

and result in negative COEs into the breeding season.

In common eiders, CORT measured in feathers probably

reflects responses to environmental conditions experienced

by birds during moult [31] and may potentially be used as a

metric to study COEs of responses to climatic conditions on

subsequent reproduction and survival many months later.

Furthermore, it may also be used as a tool to examine

the relationship between glucocorticoid responses during the

molting period and infectious diseases.

Glucocorticoid levels can affect susceptibility to disease in

many species, usually through effects on immune function

[33] and energy metabolism. Exposure to chronically elevated

CORT levels may decrease immune function [34] and

increase susceptibility to disease, and even acute stress has

been shown to affect survival of eiders in the face of an infec-

tious disease outbreak [35]. Avian cholera (caused by the

bacterium Pasteurella multocida) has been a cause of massive

annual adult mortality in common eiders nesting at our

study site in the low Arctic since 2005 [35,36]. Female

eiders do not eat during the approximately 26 day incubation

period. Egg laying and incubation are energetically demand-

ing activities that may reduce immune function and future

fecundity [37]. Large clutch sizes in eiders are associated

with lower survival of female eiders in the face of severe

avian cholera outbreaks [36]. Prior to 2005, avian cholera

had not been documented in this population of eiders [35],

and avian cholera in northern common eiders in the eastern

Canadian arctic has previously only been documented in

northern Quebec (Canadian Wildlife Health Cooperative,

S. Iverson, N. J. Harms 2012, unpublished data).

Breeding success of common eiders is strongly influenced by

body condition at time of breeding and by timing of migration

[38]. Here, we expand the previous path analyses of Descamps

et al. [38] by testing whether HPA activity during moult could be

carried-over approximately nine months later to affect the

timing of migration and arrival condition, and have direct or

indirect links to reproductive success and survival, in the face

of avian cholera outbreaks. The unexpected appearance of

annual disease outbreaks in our study colony was the impetus

behind our investigation into the potential COEs of events

occurring during moult on the following breeding season.
2. Material and methods
(a) Study area and field methods
Eiders were captured on Mitivik Island (648020 N, 818470 W) in

the East Bay Migratory Bird Sanctuary, Nunavut, Canada, from

2007 to 2011 [31,32]. Eiders were captured using large mist nets

very early in the season when they were flying over the colony;

we therefore assumed that capture date was a good proxy of arrival

date [39]. At capture, body mass was measured using a Pesola scale

(+2.5 g), and one tail feather (second lateral right feather) was

plucked from each individual and stored in an envelope in a dark

and dry place until laboratory analyses. All eider flight feathers

are moulted simultaneously once a year in late summer, after breed-

ing. Commonly, eider tail feathers are grown during moult in

August–September, following the breeding season [40] and prior

to autumn migration. Eiders from the eastern Canadian Arctic

winter along the western coast of Greenland and northeastern

coast of Labrador, Canada [40,41].
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Venous blood samples were collected from a subset of female

eiders. Blood samples were collected from the tarsal vein within

3 min of capture, placed into heparinized vials and centrifuged

to harvest plasma. Plasma samples were stored frozen at

2208C in the field and 2808C in the laboratory until analysis

for CORT. Although the plasma was collected as part of another

study, we used the plasma CORT data to examine the relation-

ship between plasma baseline CORT levels and CORTf. Eiders

were banded with a metal band (United States Geological

Survey) and two coloured alphanumeric Darvic bands (Pro-

Touch, Saskatoon, Canada) [35]. All females were also marked

with a unique colour and shape combination of two temporary

plastic nasal markers (Juno Inc., Minneapolis, MN, USA) to

enable identification of individual birds from a distance. We

attached nasal markers with synthetic absorbable suture monofi-

lament (Polydiaxanone suture, 2.0 or 3.0 metric; Ethicon,

Markham, Canada), so that nasal tags would be shed prior to

autumn migration. We restricted the analyses to birds captured

during the prelaying period to compare body condition and

avoid any effect of egg laying on body mass. To do so, for

each year, we included data only from birds caught before the

date at which more than 2.5% of the population had started

laying [31]. Individuals with known laying dates were sub-

sequently added to the dataset if known laying date was later

than capture date (with a buffer of 3 days to account for potential

error on laying date estimation). Arrival and laying dates were

standardized relative to the median (0—median arrival or

laying date in each year). Because body mass alone is a better

predictor of condition than mass corrected for body size in this

species [38,39], body mass was used as our measure of condition.

In 2011, 69 female eiders received subcutaneous corticosterone

or sham implants (Innovative Research of America, Sarasota, FL,

USA) as part of a separate study, and 44 of the implanted birds

were included in this study. Such manipulation could have induced

changes in eider reproductive outcomes, which could alter our con-

clusions. We performed all analyses with and without inclusion of

eiders captured in 2011 to assess the robustness of our conclusions.

Precise information on reproduction (lay date of the first egg and

hatching success—at least one duckling hatched) for all eiders in

this study was collected by monitoring nesting birds from eight

observation blinds strategically located within the colony. Obser-

vation blinds allowed us to monitor over 90% of the eider nesting

area [35] while minimizing disturbance to the colony. Final

number of ducklings hatched was available for a very limited

number of females included in this study. Therefore, we did not

examine the link between CORTf and number of ducklings.

The island was scanned with spotting scopes twice a day

throughout the nesting season to detect nesting females. Females

observed greater than or equal to 2 times at the same nest within

36 h were considered to be breeding, and nesting status and fate

were monitored twice daily until hatch or nest failure [35]. We

were able to evaluate the lay date and nesting success of up to

350 (marked and unmarked) females each year [36,42].

Carcasses of nasal-tagged female eiders that died on their nests

were located and collected during daily observation periods, or

were recovered at the end of the breeding season when transects

spaced 1 m apart were walked across the entire island by five

observers to enumerate dead birds. Following the avian cholera

outbreak on East Bay Island in 2005 [36], we assumed that eiders

found dead on their nests or at the end of the breeding season

died due to avian cholera. A subset of eider carcasses recovered

each year were submitted to the Canadian Wildlife Health

Cooperative for confirmation of the diagnosis of avian cholera

using gross and histopathologic findings and bacteriology [43].

Marked birds that were no longer observed on the colony and

not found dead were assumed to have survived an avian cholera

outbreak. This assumption is feasible because eiders that abandon

their nests leave the colony within 24 h [42] and thus are no longer
exposed to the disease during the avian cholera outbreak. Further-

more, given that the island is very small (24 ha), we are confident

that our methods for monitoring nests and surveying transects are

effective at detecting the majority of carcasses on the island.

(b) Corticosterone analysis
CORTf measurements were performed using a previously estab-

lished protocol [25] that includes a methanol-based extraction

followed by analysis of the extracts via radioimmunoassay. This

method has been previously used for eider feathers [31] and

other avian species [26,28,44,45]. In this study, we assessed the effi-

ciency of methanol extraction by including eider feather samples

spiked with a small amount (approx. 5000 CPM) of 3H-corticoster-

one in the extraction. Greater than 92% of the radioactivity was

recoverable in the reconstituted samples. Bortolotti et al. [25,27]

showed that CORT is deposited into feathers in a time-dependent

fashion; therefore, our values are expressed as a function of feather

length (pg mm21). All samples were measured in duplicate and

were run randomized and blind. Assay variability was determined

as the per cent coefficient of variation (CV) resulting from repeated

measurement of samples spiked with a known amount of CORT in

each assay. The average within-assay variation was 5.4% (range 2–

10%), and inter-assay variation was 13.7%. Serial dilution of

feather extracts from eider feathers produced displacement

curves that were parallel to the standard curves. Hormone analyses

were performed at the Department of Biology, University of

Saskatchewan (Canada).

Baseline plasma CORT was analysed using a previously

validated enzyme-linked immunoassay (Assay Designs, Ann

Arbor, MI, USA; [46]) run in triplicate at a 1 : 20 dilution with

1.5% of kit-provided steroid displacement buffer. Each plate was

run with a kit-provided standard curve by serially diluting a

200 000 pg ml21 CORT standard and a control of laying hen

plasma (Sigma-Aldrich Canada, Oakville, Ontario, Canada).

Assay plates were read on a plate reader at a wavelength of

405 nM, and the mean inter- and intra-assay CV across all plates

was 7.17% and 6.22%, respectively.

(c) Path analyses
The importance of HPA activity levels during pre-migratory moult-

ing period on reproduction and survival was assessed using path

analysis, a special form of structural equation model [47], following

Shipley [48]. The principle of the method is to specify how the vari-

ables are linked together in terms of direct and indirect effects or

relationships. Information on CORTf, condition at arrival, arrival

date, reproduction (laying date, reproductive success) and survival

was available for 242 eider females from 2007 to 2011 (table 1).

Among the 242 females, only two females were sampled in 2

years representing less than 1% of the data. The two additional

measurements of the same individuals were considered as being

independent. We developed our path diagram (figure 1) from a

similar analysis that tested a condition-dependent optimization

model on the same eider population [38]. We expanded the

relationships (both direct and indirect) to include CORTf, reproduc-

tive success and survival. Arrows in figure 1 indicate relationships

between two variables following event chronology (moulting, pre-

breeding and breeding). Arrival date and body condition were

assessed at the same time so determining causation was not poss-

ible. Mortality of female eiders due to avian cholera was detected

following nest initiation [35]. Therefore, we investigated whether

lay date or nest success could affect the survival of eiders during

an avian cholera outbreak.

The fit of a generalized multi-level path model was assessed

using the concept of d-sep (directional separation) tests [47].

A d-sep test represents a test of the statistical independence

between two variables. If two variables are d-separated relative



Table 1. Description of model variables by year for female northern common eiders captured on East Bay Island, Nunavut, Canada.

year

n
common
eiders

CORTf
( pg mm21)
(mean+++++ s.d.)

body condition
(kg)
(mean+++++ s.d.)

Julian arrival
date
(mean+++++ s.d.)

Julian lay date
(mean+++++ s.d.)

reproductive
success (%)

% eiders
survived
outbreak

2007 106 5.44+ 2.00 2.191+ 0.165 172.7+ 3.2 183.7+ 5.2 42.5 83

2008 38 4.33+ 1.23 2.218+ 0.132 171.2+ 3.3 179.9+ 5.5 44.7 73.7

2009 44 4.05+ 1.23 2.225+ 0.167 176.4+ 4.2 184.8+ 5.7 20.5 95.5

2010 10 3.58+ 0.97 2.213+ 0.164 166.4+ 4.9 176.6+ 5.2 50.0 100.0

2011 44 5.82+ 1.61 2.255+ 0.206 170.0+ 2.5 179.8+ 4.5 50.0 100.0

pre-migratory period

pre-laying period

breeding period

O
H H

H
HO

OHO

body condition arrival date

feather
corticosterone

laying date

mortalityreproductive
success

Figure 1. The hypothesized causal structure linking energetic management, as represented by CORTf, during molt, arrival state, timing of reproduction and fitness
components (reproductive success and survival of an avian cholera outbreak) in the face of an avian cholera outbreak in an eider colony on East Bay Island, Nunavut,
Canada. Solid lines indicate the significant paths included in the final best-fit model, while dotted lines indicate additional or alternative paths that were tested but
not found significant. The direction of the arrows indicates predicted effect.
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to a set of variables Z in a directed graph, then they are indepen-

dent conditional on Z in all probability distributions such a graph

can represent (see Shipley [48] for more details). Shipley [47] shows

that for each acyclic path model, there is a subset of independence

tests referred to as a ‘minimum basis set’ that account for all poss-

ible independence relationships (or claims). Model fit is evaluated

using a set of (k) mutually independent claims of probabilistic

independence that must be true if the structure of the hypothesi-

zed path model is correct. The null probabilities ( pi) from these

k-tests are used to derive Fisher’s C statistic: C ¼ 22
P

ln( pi),

which follows a x2-distribution with 2k degrees of freedom [47].

The null hypothesis is that the proposed correlational structure

of the model does not differ from the observed correlational struc-

ture in the data, and therefore p � 0.05 indicates the proposed

causal structure is incorrect [47]. To calculate path coefficients,

each variable was standardized ((value – average)/s.d.) such

that path coefficients represent standardized partial regression

coefficients, or the standard deviation change in y when x is

increased or decreased by 1 s.d. [47].

Shipley [48] showed how the d-sep test can be combined

with generalized linear mixed models. We followed detailed

instructions provided in Shipley [48] using the packages nlme

and lme4 in R [49]. We used linear mixed models (using terms

CORTf, arrival date, body condition, laying date, hatching suc-

cess and survival) to regress each variable on its direct causes.

A random Year effect was included in each model. The

random effect accounted from 0.46 to 5.71% of the deviance

explained depending on the dependent variable considered.
3. Results
The correlational structure of our path model (figure 2) was con-

sistent with the correlational structure of the data (seven tests

of probabilistic independence; Fisher’s C14¼ 8.82, p ¼ 0.84;

implied independencies did not differ from those observed).

The model defined in figure 1 provided a strong fit to the

data as indicated by the high p-values (null probabilities) of

the goodness-of-fit tests (table 2). Partial regression slope

of CORTf was not different from zero in all claims revealing

no direct effect of CORTf on lay date, reproductive success or

survival. CORTf was significantly different among years

(F4,237 ¼ 11.43; p , 0.001). Arrival date on the breeding colony

was positively associated with CORTf (figure 3a; b ¼ 0.26+
0.13 (s.e.); t236¼ 2.07; p ¼ 0.04). Lower body condition (body

mass) at arrival was related to higher levels of CORTf

(figure 3b; b ¼ 222.56+6.09; t236 ¼ 23.71; p , 0.001). There

was no direct relationship between CORTf and lay date (t236¼

1.50; p¼ 0.14), reproductive success (z236 ¼ 21.38; p ¼ 0.17)

or survival eiders during the avian cholera outbreak

(z236 ¼ 20.16; p ¼ 0.87). We found that body condition

increased over time during the pre-breeding period (b ¼

6.78+3.14; t236 ¼ 2.16; p ¼ 0.03), so that birds arriving later

were in better body condition. As expected, arrival date was

positively linked to lay date and birds that arrived earlier

laid earlier, and eiders that arrived in better body



Table 2. Test of conditional independence implied by the path diagram (figure 1). ((X; Y)jfZg means that variables X and Y are independent conditional
of variable Z (i.e. if Z is held constant, variation in X does not imply variation in Y). The associated mixed model used to test the independence claims are
Y � Z þ X þ 1jYear, where Year represents a random effect. The variable whose partial regression includes zero is X1 for all claims. Variables: X1 (CORTf ), X2
(Arrival date), X3 (Body condition), X4 (Laying date), X5 (Hatching success) and X6 (Survival of an avian cholera outbreak).)

d-sep claim
of independence mixed model

partial regression
slope (s.e.) null probability (distribution)

(X1,X4)jfX2,X3g X4 � X1 þ X2 þ X3 þ (1jYear) 0.072 (0.176) 0.68 (normal)

(X1,X5)jfX4g X5 � X4 þ X1 þ (1jYear) 20.046 (0.090) 0.61 (binomial)

(X2,X5)jfX1,X4g X5 � X4 þ X1 þ X2 þ (1jYear) 0.014 (0.096) 0.89 (binomial)

(X1,X6)jfX4g X6 � X4 þ X1 þ (1jYear) 0.014 (0.039) 0.71 (binomial)

(X2,X6)jfX1,X4g X6 � X4 þ X1 þ X2 þ (1jYear) 20.074 (0.069) 0.28 (binomial)

(X3,X6)jfX1,X4g X6 � X4 þ X1 þ X3 þ (1jYear) 0.010 (0.039) 0.79 (binomial)

(X4,X6)jfX5g X6 � X4 þ X5 þ (1jYear) 0.057 (0.046) 0.21 (binomial)

body condition

reproductive
success

mortality

arrival date

laying date

–0.30
(0.05)

+0.15 (0.05)

+0.26–0.072

(0.07–0.04)

+0.43
(0.05)

–0.16 
(0.05)

–1.20
(0.15)

–1.40 (0.38)

+0.49
(0.14)

feather
O

O

HO

H

H

H

OH

corticosterone

Figure 2. Standardized path coefficients in hypothesized structural model. Bold
numbers are standardized beta coefficients with s.e in brackets (n ¼ 242).
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condition also laid earlier (b ¼ 0.73+0.09; t235 ¼ 8.52; p ,

0.001 and b ¼ 24.73+1.75; t235 ¼ 22.71; p ¼ 0.007, respect-

ively). Later lay date had a direct negative effect on

reproductive success, so that birds laying earlier in the season

were more likely to hatch at least one egg (b ¼ 20.24+0.04;

z236 ¼ 26.42; p , 0.001).

Body condition at arrival was positively associated with

reproductive success (b ¼ 2.68+0.90; z236 ¼ 2.96; p ¼ 0.003)

but was not associated with survival. However, there was a

direct negative relationship between reproductive success

and survival (b ¼ 1.29+0.50; z242 ¼ 2.59; p ¼ 0.01) where

birds that reproduced successfully were more likely to sur-

vive. The overall indirect relationships between CORTf and

reproductive success and survival were relatively high; the

sum of all products of path coefficients for each variable

was 20.22 and 20.27, respectively. This indicates that if

CORTf increased by 1 s.d. from its mean, reproductive suc-

cess was decreased by 0.22 s.d. and survival of eiders

during avian cholera outbreak decreased by 0.27 s.d. from

its own mean. Female eiders captured in 2011 underwent

an additional manipulation (subcutaneous CORT implant;

see Material and methods) that was not done in any of the
other years. Similar results were found when excluding

eiders captured in 2011 from the analyses. The results pre-

sented in the manuscript thus included 2011 to maximize

sample size. Within same individuals, there was no signifi-

cant relationship between baseline CORT levels (measured

in plasma during the pre-breeding period (O. P. Love,

H. Hennin, H. G. Gilchrist, J. Bety 2006–2013, unpublished

data) and feather CORT (F1,195 ¼ 0.02; p ¼ 0.89).
4. Discussion
Our results provide evidence that energetic management

during the moulting period, reflected by CORT levels in feath-

ers, can be carried over to the subsequent breeding season and

affect reproductive success and survival. Using path analyses,

we detected a direct relationship between CORTf levels during

moult and body condition and arrival date the following year,

and an indirect negative relationship between reproductive

success and survival. The magnitude of the indirect relation-

ship between CORTf and fitness parameters was important,

with a decrease of approximately 0.25 s.d. from the mean of

reproductive success and survival for every increase of 1 s.d.

of CORTf. The importance of arrival date and condition on

reproductive success was expected given that the path analysis

developed here is an extension of Descamps et al. [38], who

found similar relationships in accordance with the condition-

dependent optimization model [9,50]. As per causal pathways

drawn from the optimization model [38,50] birds can adjust

their reproductive decisions as a function of their arrival date

and body condition at arrival. Our study is probably unique

in showing that both these variables can be significantly related

to CORTf levels, which may reflect a level of energetic

management experienced during the previous year. Increases

in energetic challenges or response to stressors experienced

during the time of moult in autumn can ultimately have

significant fitness consequences, indirectly affecting both

reproduction and survival in the following breeding season.

Another possible explanation is that CORTf values reflect

basal CORT levels of individuals regardless of the time

period considered. This hypothesis would gain credence if

baseline CORT during the breeding or pre-breeding period

could predict relative fitness of individuals [51–54]. However,

we found no evidence for any relationship between CORTf
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and pre-breeding basal CORT within individuals, providing

little support for this explanation. Furthermore, we also

found that CORTf was not repeatable within individuals

from year to year and was influenced more by environmental

factors encountered during moult (e.g. temperature) rather

than intrinsic measures of quality (e.g. body size) [31].

While COEs are increasingly reported to influence fitness

components [2], measuring such effects at the individual

level are rare in the literature, as is their measurement relative

to novel environmental challenges. Furthermore, very few

studies have reported events occurring during the previous

autumn with latent effects on subsequent summer reproduc-

tion and/or survival. Interestingly, in an Icelandic eider

colony, Jónsson et al. [55] reported negative effects of warm

and wet autumns on subsequent clutch size. The authors

argued that the effect was probably due to delay in migratory

movements and in pair formation. In addition, we recently

reported that warmer autumn temperatures were linked to

slightly higher CORTf levels, suggesting a physiological

cost to increasing temperatures in an arctic environment [31].

Finally, we documented that survival on the breeding

colony was also indirectly related to increasing energetic

demands experienced during moult the previous autumn

(i.e. CORTf). Carry-over effects on survival or mortality rates

from events occurring in autumn have been rarely reported

in the literature [7,56,57]. Recently, Koren et al. [58] found

that high CORTf levels in house sparrows (Passer domesticus)

were predictive of lower survival over the subsequent winter.

Crossin et al. [30] measured feather CORT in giant petrels

(Macronectes spp.), which begin moult during the breeding

season, and found that variation in CORTf was linked to

both current reproductive success and future reproductive

effort. In contrast to the results found in sparrows [58],

CORTf levels in giant petrels were not related to overwinter

survival [30]. Female petrels with high CORTf values were,

however, successful breeders in the current year but more

likely to defer breeding in the next year, suggesting that

CORT upregulation does exact a cost on future effort [30].

Even if the mechanism remains unclear, energetic costs associ-

ated with maintaining elevated CORT levels have often been

reported to explain reduced survival rates [20,21,59–61].

Since pre-breeding condition and CORTf were related in

female eiders, such increased energy expenditure could be

involved. However, survival was only indirectly linked to

CORTf, through its positive association with breeding success.
This agrees with previous studies from our research group

[36,62] suggesting that breeding decision, reproductive invest-

ment and the duration of exposure to disease at the nesting

colony are key factors explaining survival of eiders facing

avian cholera outbreaks.
5. Conclusion
Our work emphasizes the importance of determining how

events are linked throughout the annual cycle to better

understand population dynamics of migratory animals. Our

approach also highlights the importance of energetic manage-

ment challenges outside the breeding period (possibly

generated by climatic variability) that can have subsequent

carry-over effects on reproduction and survival during out-

breaks of avian cholera, an emerging disease in arctic-nesting

common eiders. Little is known about the moulting period for

many bird species, including eiders [63], thus our results

shed some light on a relatively unknown stage of the annual

cycle. Combining information that can be gained from non-

destructively sampling a single feather, including stable isotopes

[64–66], coloration [5] or physiological analysis such as hormone

levels [58] can contribute to tracking COEs across seasons.

Furthermore, considering both direct and indirect path-

ways may be required to understand relationships among

spatio-temporally distinct events affecting individual fitness.
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